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Abstract

In this paper I evaluate an approach to autonomous,
reactive mission planning that uses organizational
features of the situation to inform commitment to
future actions and goals. By organizing actions
around these commitments, we have created a plan-
ner that is able to react quickly to unanticipated
events, operate opportunistically, and quickly in-
corporate new goals without the need to replan. I
have built a reference implementation of the plan-
ner that operates on simple domains that can be
used to evaluate the feasibility and scalability of the
approach.

Introduction

The task of autonomous mission planning in the un-
derwater vehicles domain is a complicated task that
is only exacerbated by the dynamic nature of the
environment, a lack of complete knowledge of the
environment and the mission, and uncertainty about
the actual tasks and goals that will need to be ac-
complished.

Of special interest are long-term, collaborative
missions of self-organizing agents. One such type
of mission is an autonomous oceanographic sam-
pling network (AOSN) [8], which can be used
for a variety of tasks such as scientific monitoring
and long-term surveillance. An AOSN is an open
system, meaning that equipment (agents) may be
added to, or removed from, the AOSN at any time.
Agents in the AOSN may need to take on additional
tasks when another leaves (or fails), and new agents
are assigned tasks only after they join the mission.

Agents operating autonomously in real world en-
vironments continuously have to deal with the prob-
lem of their plans becoming invalidated. Irregard-
less of the robustness of any plan, there remains
a large chance that the commitments made during
planning are inappropriate during execution. The
arrival of new goals (through collaboration, in re-
sponse to equipment failure, etc.) can also invali-
date an agent’s plan.

Many approaches to flexible control of AUVs
(e.g., [6, 14, 21, 17, 3, 4]) have attempted to
alleviate the over-commitment problem by em-
ploying a reactive planning[1, 9, 11] approach.
These planners, while avoiding unnecessary over-
commitments, suffer from not being able to make
any commitments to future actions, such as those
required for collaboration. Being completely reac-
tive, it is difficult to bound or predict the behavior
of an agent utilizing this type of approach.

Another common approach is to use a fast classi-
cal planner (such as FastForward [13] or Graphplan
[5]) and to replan whenever the plan becomes in-
validated. In this approach, the planner completely
commits to future actions, following the assump-
tion that when a commitment becomes invalidated
that a new plan can be generated quickly. While this
approach may work well in simple domains, these
approaches do not scale well as the complexity of
the domain increases.

What is needed is an approach that allows forap-
propriate commitment to future actions and goals
while otherwise remaining reactive to the current
situation. We consider appropriate commitments to
be those that are based on features of the situation
that are important enough to justify the risk of the



commitment becoming invalidated [2]. A planner
can use these appropriate commitments to organize
actions and inform additional commitments in the
mission plan.

In the next section, I will give an overview of our
method for planning in dynamic environments. I
will then show the experimental results obtained by
running our planner, and a fast replanning system,
in simulated environments. Finally, I will give my
conclusions and outline areas of future work.

The Appropriate Commitment Re-
active Planning Approach

Our approach, calledappropriate commitment re-
active planning, is a mission-level reactive planning
system. We have based our approach on Orca [20],
a schema-based reactive mission planner. A schema
is an explicit representation of patterns that exist in
the real world and in problem solving. Procedu-
ral schemas (p-schemas) are similar to hierarchical
plans and specify the steps that must be taken to
achieve goals. These steps can be primitive actions,
other p-schemas, or goals. A schema-based plan-
ner solves a mission by applying schemas from its
knowledge base to achieve the goals in its agenda.

Our work extends the schema-based planning ap-
proach to allow for informed selection between al-
ternatives, improved interleaving of actions from
disjoint schemas, the quick addition of new goals
into the mission plan, and an increased efficiency
in mission execution. To meet these ends, we have
first introduced an explicit representation for the
intentions and commitments of the planner that is
flexible enough to allow for dynamic reorganization
and goal addition. This representation makes ex-
plicit important interactions between goals, so that
reasoning about these interactions can be automatic
and inexpensive. Secondly, we have created tech-
nique for focusing attention (deciding what to do
next) that can utilize all of the information encoded
in the plan representation.

The Reactive Plan Network

The reactive plan network is an explicit representa-
tion of an agent’s current plan, including goals, pro-

cedural schemas, alternatives currently under con-
sideration, and organizational information. Com-
ponents in a reactive plan network are connected
to the other components to which they are related.
For example, a goal will be connected to the proce-
dural schema that has been chosen for its achieve-
ment. There is never any effort made to totally or-
der the plan components in a reactive plan network
– a planner may decide to work on any area of the
plan at any time1.

An organizational feature2 of the plan or the en-
vironment is something that is costly to acquire, ex-
pensive or limited, can be predicted with a great
deal of certainty [19], or otherwise directly influ-
ences the appropriateness of commitments in the
reactive plan network. In real world domains, such
as the AUV domain, these features include location
and quantitative and qualitative resources [15].

Each organizational feature in a domain is mod-
eled by anorganizational nodein the reactive plan
network. Plan components are connected to the
features that are known to influence them withuse
linksand to features that may influence them, or in-
fluence a possible expansion of them, usingexam-
ine links.

An example reactive plan network (from the stu-
dent experiment, described below) is shown in Fig-
ure 1. The organizational node representing the lo-
cation of the agent is depicted at the center of the
network, and is connected through organizational
links (solid lines are use links and dashed lines are
examine links) to all of the goals that require the
agent to be at any specific location.

Focus of Attention

In order to determine what to do next (perform an
action, select a p-schema for a goal, choose be-
tween alternatives, add information to a schema in
the plan, etc.), the ACRP planner uses a simple ac-
tivation metaphor. Each component in the plan re-
ceives two types of activation:intentional activa-
tion, which is based on the priority of goals, and
organizational activation, based on the organiza-
tional strategies specific to each type of organiza-

1There is support for the specification of uninterruptible se-
quences, such as those used to implement protocols.

2Previously calledpredictive feature[2].
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Figure 1: An example reactive plan network

tional feature.

In the reactive plan network of Figure 1, orga-
nizational activations are depicted as a series of
pluses (+) or minuses (-). The pluses represent
positive activation, or activation that encourages
the selection of a particular plan component, while
the minuses represent negative activation – activa-
tion that delays the selection of a plan component,
causes a plan component to be shed from the mis-
sion plan, or causes one plan alternative to be se-
lected over another. For example, the location orga-
nizational node is giving a large amount of positive
activation to those plan components that require the
agent to be at the location@home, the current loca-
tion of the agent. Other plan components receive a
slight negative activation.

We are currently evaluating a single value ac-
tivation metaphor, where the activations from all
sources are compiled into a single activation value.
Each component is ranked by their compiled activa-
tion value in order to determine where the planner
will focus its attention next. This approach is ef-
ficient, as we can treat all sources of activation as
equivalent “advisors,” and in order to focus atten-
tion, we only need to take into consideration one
activation value per component.

A planner operating with the reactive plan net-
work of Figure 1 would likely focus its attention
on thegrade papers procedural schema that
achieves the Grading goal, due to its large amount
of both positive organizational activation (from the
location organizational node) and positive inten-
tional activation (from the high priority of the Grad-

ing goal).

Experiments

In order to evaluate the feasibility of our approach,
we have designed two experimental domains: the
student domain and the islands domain. These two
domains stress the ability of the ACRP approach
to handle the types of resource- and location-
constrained missions that exist in the AUV domain.
We have kept each of the domains very simple in or-
der to be able to quickly implement an experimental
version of the ACRP planner, to evaluate specific
features of the ACRP approach in isolation, and to
be able to encode the domains using the planning
domain definition language (PDDL) [16, 10] to al-
low for comparison with existing planners.

In addition, we have built a discrete-event do-
main simulator that allows for the experimental
simulation of our domains. The simulator also
loads a simulation file (encoded in a PDDL-like lan-
guage) that allows the specification of real action
durations, future events, and scenarios.

For these experiments, we decided to specify
goal priorities as an integer value between zero and
five, with zero meaning that a goal is optional and
five meaning that a goal is critical to the success of
a mission. Activation values are specified as real
numbers in the range [-3, 3] so that it is easy to
differentiate positive and negative activation. Goal
priorities are converted into intentional activation in
the range [1, 2].

For comparison, we have also run our experi-



ments with the Metric-FF planner [12], an exten-
sion of the FastForward planner that allows for nu-
meric state variables. In the experiments that we
designed, there are often situations in which a plan
that satisfies all goals is not possible. The Metric-
FF planner (along with many other classical plan-
ners), is not guaranteed to terminate when there is
no possible plan. We devised the following strate-
gies that allow planning for subsets of the goal set:

Contract In the contract strategy, the planner first
attempts to find a plan that solves all of the
goals in the plan. If that fails, all of the goals
at the lowest priority level are removed and
Metric-FF is re-invoked. This continues either
until a plan is found or all goals have been re-
moved.

A timeout parameter limits the length of time
that the Metric-FF planner is allowed to run
during each invocation.

Contract with Individuals In this strategy, the
planner first attempts to find a plan using the
contract technique. If this fails, the planner at-
tempts to find a plan for a single goal, starting
with the goal with the highest priority.

Expand In the expand strategy, the planner first or-
ders the goals in the mission from highest to
lowest priority. The planner then attempts to
find the first goal for which a plan can be de-
rived. If no plan is found within the time limit,
the goal is removed from consideration; oth-
erwise, it is added to a set of included goals.
The planner continues to attempt to add each
of the remaining mission goals to the inclu-
sion set. Because of the initial ordering of the
goals, priority is given to the goals with high
priority values.

This approach has two parameters: a timeout
that limits the amount of time that the Metric-
FF planner will be allowed to run, and an op-
tional time limit that specifies the total amount
of time that the expand technique is allowed to
run while generating a single plan.

If, at the end of a planning cycle, a plan could not
be generated, the agent will perform a wait action

before attempting to replan. Hopefully, after wait-
ing, the situation will have changed in such a way
that a plan will now be possible.

Organizational Features of the Experimental Do-
mains

In the experimental domains, we identified a num-
ber of organizational features that directly influence
the appropriateness of commitments. These fea-
tures, while simple in these experimental domains,
map directly to features of the AUV domain.

Simple Discrete Locations
This organizational features is a simplification of
the complex location feature into several distinct lo-
cations that are fully connected. Travel between lo-
cations may take time or be otherwise costly (fuel,
money, etc.). This feature is used when move-
ment is abstracted away to very high-level move-
ment functions such as “drive to the library.”

The activation strategy used by the simple dis-
crete locations organization node is to give positive
activation to components that require the current lo-
cation, and negative activation to components that
require another (in the student experiment, these
values are -1 and 1.5, respectively).

Two-Dimensional Discrete Locations with Natu-
rally Bounded Areas
The two-dimensional discrete location feature is a
model of the world in which location is abstracted
into a two-dimensional grid, where each cell in the
grid is the same size and travel between cells is rel-
atively uniform. In this abstraction, the agent can
only move from one cell to an adjacent cell and can-
not move diagonally.

A naturally bounded area (NBA) is a permanent,
or extremely long-duration, feature of the environ-
ment that is costly or dangerous for an AUV to cross
[18, 7], such as a strong current.

The organizational node that represents this fea-
ture uses a simple strategy for assigning activation
to connected plan components. If a component
requires the agent to be in a different NBA, the
component receives negative activation; otherwise,
the component receives activation inversely propor-
tional to the distance of the required location from



the agent’s current location.
If there are components that require the agent to

change NBAs, the organizational node will add a
goal to change NBA to the reactive plan network
that has a priority equal to the maximum priority of
all of the components of which it is required.

Quantitative Resources

A quantitative resource is a resource that is con-
sumed when used. In the AUV domain, exam-
ple quantitative resources include electricity, fuel,
and sensors with limited charges (such as biolog-
ical tests). There are many factors that determine
how an organizational node distributes activation to
connected components, including: the amount of
resource remaining, the amount of resource to be
consumed by a component, the priorities of the plan
components, and whether or not there is a method
of replenishing the resource.

Qualitative Resources

Qualitative resources can generally be considered
as “tools,” meaning that as they are used they are
not consumed (e.g., a hammer), but their state may
be changed (i.e., they may be unavailable while
in use). For example, an AUV might possess
an acoustic modem for communication; however,
while the modem is in use for transmitting a mes-
sage, it is unavailable for the transmission of other
messages.

The strategy that an qualitative resource organi-
zational node uses for dispersing activation is to
give a large amount of positive activation while the
resource is available, and a small amount of nega-
tive activation otherwise.

If a qualitative resources is not available and its
associated organizational node has an component
connected by a use organizational link, or if there
is a connected component with a sufficiently high
priority, the organizational node may add a goal to
acquire the resource (if one does not already exist)
to the reactive plan network.

Time-Limited Resources

A time-limited resource is a type of qualitative re-
source in which the availability of the resource is
determined by the current time. An example time-

limited resource in the AUV domain is the sun;
a solar-panel equipped AUV can only recharge its
batteries during the daylight hours.

The activation strategy employed by time-limited
resource organizational nodes is to give a small
amount of negative activation while the resource is
unavailable, and to give an amount of positive acti-
vation inversely proportional to the amount of time
the resource will remain available. The actual acti-
vation is given by the formula:

AF +(AM −AF)
TNOW−TA

TU −TA

whereTNOW is the current time,TA andTU are the
times at which the resource becomes available and
unavailable,AF is the minimum amount (the fixed)
activation that the organizational node will give,
andAM is the maximum amount of activation that
will be given. AF andAM are parameters that can
be specified per resource.

The Student Experiment

The student domain was designed to evaluate the
ability of our planning approach to manage scarce
resources. One criterion that we had when design-
ing this experiment was to make it approachable
to non-specialists in order to get experimental data
from human participants. To that end, the goals and
tasks in this experiment are based on common tasks
that a graduate student may need to accomplish on a
Sunday in order to be prepared for work and classes
on Monday.

There are three discrete locations in the student
domain:@home, @market, and@library. An
agent in this domain can travel between locations
at any time; however, this takes time and consumes
fuel.

The mission involves completing a number of
goals that require the use of the agent’s resources
(e.g., money) and the domain’s resources (e.g., the
library). Many of the goals are given at the start of
the mission, although two more are added later dur-
ing the mission time period. The complete set of
goals are:

• Mission critical goals (priority 5):

– Read journal (available from the library)



– Grade papers

• Required goals:

– Hang photograph (priority 4)

– Fix desk (priority 3)

– Buy milk (priority 3)

– Buy juice (priority 3; new at 10:38 AM)

• Optional goals (priority 0):

– Get novel (available from the market and
the library)

– Buy coffee

– Assemble furniture

– Buy chocolate (new at 11:10 AM)

Additionally, there is a preservation goal to re-
turn any object that has been borrowed.

In order to evaluate performance in this domain,
each mission is scored based on which goals have
been completed. Each optional goal is worth ten
points and each required goal is worth points equal
to ten times its priority. If any of the mission critical
goals have not been completed, a 200 point penalty
is applied. There is a 100 point bonus if all of the
required goals have been completed, and an addi-
tional 100 point bonus if all of the optional goals
listed above have also been completed. The status
of the preservation goal to return objects is not con-
sidered when calculating the bonus. The highest
possible mission score is 480.

This domain consists of a number of organiza-
tional features, including the library and market
(time-limited resources), money (a quantitative re-
source), a hammer and a neighbor (qualitative re-
sources), and the agent’s location (a simple discrete
location feature). The neighbor is a resource that,
when available, can lend the agent a hammer. Sev-
eral of the required actions require the use of a ham-
mer, and if the agent does not borrow the hammer
from the neighbor, it will have to spend half of its
money to purchase a hammer from the market.

The student domain is completely determinis-
tic and fully observable; however, the planners are
given no information about future events and only
estimates for action durations. There are also three
separate scenarios which vary in the availability of
the neighbor:

no-ted The neighbor is never at home.

early-ted The neighbor arrives home at 8:30 AM
but leaves again at 10:05 AM.

late-ted The neighbor arrives home at 12:12 PM.

For the human trials, I created a web-based in-
terface that allows the user to select the next action
to perform from the set of all actions that are cur-
rently applicable. The interface displays the results
of each action, the location of the player, and the
current time. The user is responsible for keeping
track of all other details.

The ACRP experimental planner and the Fast-
Forward planning strategies were also run on each
of the three simulation scenarios3. The contract and
contract with individuals strategies were run with a
thirty second timeout. The expand strategy was run
with a ten second timeout and no total time limit for
plan generation. Figures 2 and 3 show the results of
the student experiment.

In Figure 2, you can see the average human score
compared with the scores obtained by the auto-
mated planners. The error bars show the standard
error of the mean (because the domain is determin-
istic, each automated planner scored the same score
on each of its trial runs). In each of the scenar-
ios, the ACRP planner and the FF / Expand planner
achieve the best scores. In the early-ted scenario,
the ACRP planner borrows the hammer from the
neighbor early in the mission and is able to accom-
plish all goals aside from returning the hammer (for
a mission score of 470).

In figure 3, you can see the average time spent
by each planner. The ACRP experimental planner
performed at least as well as the Metric-FF planner
using the expand strategy, while only taking a frac-
tion of the total time (less than two seconds during
each of its trials).

The Islands Experiment

The islands experiment was designed to evaluate
the ability of the Appropriate Commitment Reac-
tive Planning approach to effectively manage move-
ment in a two-dimensional domain with naturally

3The trials were run on a computer with a 2GHz Intel Core2
Duo CPU and 756MB of memory.
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bounded areas. In this simulation, all of the goals
in the mission plan require the agent to collect and
deliver packages. Each mission begins with a ran-
dom number of goals (drawn from a normal distri-
bution with mean twenty and variance six) and new
goals are added throughout the mission following a
Poisson process with a parameterized rate.

Fe
rry

Rou
te

Island A Island B

Figure 4: The twin islands

There are two islands in this domain, each di-
vided inton×n discrete locations (Figure 4). The
agent can move between any two adjacent loca-
tions, and movement takes on average three min-
utes (the actual time is drawn from a normal dis-
tribution with mean three and variance 0.25). In
order to travel between islands, the agent must take
a ferry. There are two ferries that travel back and
forth between the islands. They are scheduled to
board fifteen minutes before the hour, to depart on
the hour, and to arrive (on average) at thirty-eight
minutes after the hour. If a ferry arrives late (the ac-
tual transit time is drawn from a normal distribution
with mean thirty-eight and variance ten), the ferry
will still allow fifteen minutes for boarding and will
depart late.

The agent using the ACRP approach does not ex-
plicitly plan to visit specific locations in the do-
main. When the agent focuses on an action, and
the action requires the agent to be in a different lo-
cation, the agent moves one position closer to the
location for the action. After moving, the agent re-
focuses on a new component in the reactive plan
network.

We ran the ACRP planner and the Metric-FF
planner4 (using the contract strategy with a thirty
second timeout, and the expand strategy with a ten

4The trials were run on a computer with two AMD Opteron
240 CPUs and 2GB of memory.

second timeout and two minute time limit) on ten
sets of 5x5 islands, while varying the rate at which
new goals are added to the mission. The experi-
mental results are shown in Figures 5 and 6.

Figure 5 shows the mean delivery rate separated
by the rate of new goals. The ACRP planner and the
Metric-FF planner using the expand strategy per-
form similarly, while the Metric-FF planner using
the contract strategy performs relatively poorly. In
Figure 6, you can compare the average planning
time taken by each of these methods. While both
the ACRP approach and the FF / Expand approach
score similarly with regards to delivery rate, the
amount of time taken by the FF / Expand approach
grows much more quickly as the rate of new goals
increases. The longest time taken by the ACRP ap-
proach in all sixty of its trials was 36 seconds, com-
pared with one hour and twenty-seven minutes for
the FF / Expand approach).

Conclusions and Future Work

Through experimentation, we have shown that a
planner using the appropriate commitment planning
approach remains reactive to changes in the situa-
tion, such as the introduction of new resources and
goals, by dynamically refocusing based on the acti-
vation values generated by the organizational nodes
in a reactive plan network. As the situation changes,
the planner quickly adjusts without having to spend
time replanning.

Even when utilizing a very simple activation
metaphor, the ACRP approach performs very well
in these experimental domains, scoring at least as
well as the FF / Expand technique, while exhibiting
a much slower run time growth as the complexity
of the problem increases.

Having shown the plausibility of our approach,
we will now extend the approach to operate on
a more comprehensive knowledge base of the au-
tonomous underwater vehicle domain, such as the
one used by the Orca mission planner, and a more
expressive domain definition language. Through
simulation, we will evaluate how well our approach
scales from these simple domains, and reevaluate
our activation metaphor if necessary.

In this paper I have addressed only domain-
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dependent organizational features; however, not all
organizational features are necessarily related to the
domain. In the future, we would like to study
domain-independent organizational features related
to recognizable patterns in the reactive plan net-
work, or domain-independent strategies for manip-
ulating the reactive plan network (such as tech-
niques for ordering non-mutually-exclusive actions
that can be completed in parallel).

Many of the strategies employed by the organi-
zational nodes are parameterized, such as theAF

and AM parameters of the time-limited resource
node. The experimental implementation uses a
fixed value for each of these parameters, but in the
future we would like to use machine learning tech-
niques to allow the planner to learn the best values
of these parameters over time.
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