
Using Contextual Knowledge for

Trust Strategy Selection

Larry Whitsel1 and Roy M. Turner2

1 University of Maine at Augusta
Bangor, ME 04401 USA

larry.whitsel@maine.edu

2 School of Computing and Information Science
University of Maine, Orono, ME 04469

rturner@maine.edu

Abstract. In open multiagent systems in which some of the agents may
be self-interested, it is vital that an agent be able to make trust deci-
sions about its peers to determine which of them may be untrustworthy
and how to behave in response. The agent’s context, including the en-
vironment, observed and inferred actions and motives of other agents,
and properties of the MAS as a whole, is critical to making an informed
trust decision and especially to choosing a strategy for taking actions.
However, most prior work in the area has ignored context or only treated
it implicitly. In this paper, we present an implemented approach that ex-
plicitly represents the agent’s context, informed by known contexts, and
that uses that contextual knowledge to select the best strategy, even in
the presence of untrustworthy agents.

Keywords: Multiagent systems, trust decisions, self-interested agents, context
representation, miscreant agents

1 Introduction

An open multiagent system (OMAS) is a multiagent system in which agents can
come and go and may not all be under the control of the same entity. An agent
in an OMAS that contains self-interested agents must be able to identify others
in the society that are likely to act in a way inimical to its own interests, to
the society’s interests, or both. We refer to these as miscreant agents. Once a
miscreant has been identified, the agent must then decide which actions to take
when interacting with it to protect and advance its own interests.

The problem of identifying a miscreant agent is essentially a trust decision:
for each other agent in the system, can we trust that agent? We use trust here
the general sense of Castelfranchi and Tan [3] to mean both that the agent is
trustworthy in the normal sense and that it is capable of performing whatever
action we are concerned with.

Unfortunately, trust decisions are made difficult by several factors. Self-
interested agents will usually have utility functions for their actions that are

This paper appears in the Proceedings of the Ninth International and Interdisciplinary Conference on Modeling and Using Context (CONTEXT’15), November 2-6, 2015, Larnaca, Cyprus, and in Lecture Notes in Artificial Intelligence (Springer). Copyright Springer and the authors. The final publication is available at http://dx.doi.org.

hidden or otherwise unpredictable, and so an agent will need to observe their
behavior over time to detect patterns indicating their trustworthiness. In addi-
tion, an agent’s view of the current situation will be incomplete, since in most
domains the environment will be only partially-observable. Consequently, the
agent will need to infer what its observations may have missed, including others’
actions and their effects on others.

Determining how to behave in the presence of miscreants is also difficult. We
call an agent’s mapping (implicit or explicit) from particular configurations of the
situation to actions its strategy. An agent will have multiple possible strategies
to choose from, but not all will be appropriate for the context. In particular, the
strategy in use will depend on the presence and kind of miscreant behavior.

Consequently, knowledge about the current context must be used to deter-
mine which strategy to select at any given time. As the context changes—for
example, as miscreants come and go in the OMAS—the agent should use its
contextual knowledge to select strategies to automatically tune its behavior in
response.

Research on trust decisions has generally been concerned with identifying
what we call miscreants by focusing primarily on the other agent. For example,
socio-cognitive approaches [5], or that of Mao [10], used game theoretic or psy-
chological attribution theory to either respond directly to or to infer an agent’s
motives. Reputation-based approaches (see, e.g., [12]) decide to trust an agent
based on its past observed behavior. Machine learning approaches (e.g., [7]) have
attempted to learn strategies based on a set of interactions with another agent.

Few if any approaches, however, have focused on using the context, including
the environment, the goals of the agent (and the MAS), and observed properties
of other agents, including their reputation, to infer the presence of miscreants
and how to respond to them. Yet doing so allows better assessment of the true
situation, and it can allow previously-successful strategies to be immediately
identified and used.

In our approach, we use explicitly-represented contextual knowledge to help
an agent identify and respond to miscreant agents. Known contexts—classes of
situations—are represented in knowledge structures called contextual schemas

(c-schemas) [17]. Features of the current situation, including environmental fea-
tures, current goals, and possible indications of miscreant behavior, are used
to select one or more matching c-schemas, essentially identifying the current
context. The c-schema(s) then suggest appropriate strategies for the situation.

The approach is called CATS (Context-based Agent Trust System), and it has
been implemented and tested in a toy domain (Liar’s Dice) that is a reasonable
surrogate for many real-world open multiagent system domains [18,19]. In this
paper, we focus on how contextual knowledge is represented and used in CATS.

In the remainder of the paper, we will first discuss context and its represen-
tation, then how an agent using the CATS approach assesses and manages its
context. This makes use of inferences about properties of agents based directly
on their own actions as well as on their interactions with others (society-level

analysis of motives [18]). We then briefly touch upon our evaluation of CATS
via experiments in a simulated MAS.

2 Context and context representation

We view a context as a kind of situation, where a situation is itself the sum of all
observed and unobserved features of the environment, the agent, other agents,
etc. Contexts are classes of situations that have some implication for how an
agent should behave [17]. For example, the context of an agent operating in an
OMAS with a pair of collusive miscreant agents would likely encompass many
different situations: playing bridge, participating in an auction, and so forth,
where such agents were present. The utility of recognizing a particular situation
as an instance of a known context is that it allows the agent to focus on the
salient features and to select appropriate behavior.

Contexts are related to one another. One context can be a specialization
of another, for example, or it can be a blend of several other known contexts.
For example, an agent engaged in an Internet bandwidth auction where there
are collusive agents present could consider its context as composed of other
contexts such as as participating in an auction, negotiating about bandwidth,
and operating in the presence of collusive agents. In our approach, if there is
something about the composite context that has important implications for the
agent’s behavior, then it will be remembered; otherwise, the agent will blend the
components when it is encountered again.

As we have argued elsewhere (e.g., [17]), an agent should explicitly represent
contexts it knows about rather than spreading contextual knowledge across its
knowledge base (e.g., as rule antecedents or plan preconditions). Context repre-
sentations can be a means of bundling facts and assertions about the world (cf.
[6]), allowing all relevant information to be retrieved at once about the context,
as well as facilitating knowledge acquisition and learning. In addition, explicit
representations allow an agent to commit to what its context is, then auto-
matically behave appropriately until the context changes, thus saving reasoning
effort.

We represent contexts as contextual schemas (c-schemas) [17]. C-schemas
both limit the scope of reasoning and bundle together related knowledge about
(in CATS) trust decisions and appropriate behavior. Previous work on trust has
used the agent’s context only to limit scope, e.g., turning a dynamic situation
into a static one by limiting the agent’s predictions or decisions to one case and
ignoring the rest. In contrast, we allow multiple contexts to be recognized at
once and represented by multiple c-schemas as well as make use of context as a
bundling mechanism by adding additional knowledge to our assessment of other
agents’ actions to help fill in missing knowledge.

CATS relies on a library of c-schemas from which the appropriate one(s) can
be found based on the situation. In other work [9,17], c-schemas have been orga-
nized in a dynamic conceptual memory (e.g., [8]). Here, we make no commitment

(defrule in-wary

(is-me ?me ?cf)

(game-round (bidder-is ?x)(certainty ?cf0))

(or (and

(claim (claim-type ally)(source ?x)(target ?y)(certainty ?cf1))

(claim (claim-type enemy)(source ?me)(target ?y)(certainty ?cf1)))

(system-state (state-name global-alert)(certainty ?cf1))

(claim (claim-type enemy)(source ?me)(target ?x)(certainty ?cf1))

(or (belief-strength (belief trustworthy) (source ?x)

(strength very-low)(certainty ?cf1))

(belief-strength (belief trustworthy) (source ?x)

(strength low)(certainty ?cf1)))

(claim (claim-type cheating)(target ?x)(certainty ?cf1))

(claim (claim-type enemy)(source ?x)(target ?me)(certainty ?cf1))

(belief-strength (belief bid-aggressive) (source ?x) (target ?me)

(strength very-high)(certainty ?cf1))

(belief-strength (belief bid-aggressive) (source ?x) (target ?me)

(strength high)(certainty ?cf1)))

=>

(assert (in-context wary ?cf1)))

Fig. 1. A rule from the contextual schema in-wary.

as to how c-schemas are stored; we simply assume that they can be retrieved as
needed based on the situation’s features.

We are not concerned in CATS with many of the kinds of information usually
stored in c-schemas (e.g., context-dependent semantics, event-handling informa-
tion, etc.). Instead, we are more concerned with strategies, that is, mappings from
situations to actions. C-schemas in this project are associated with a strategy
that is appropriate for all situations that are instances of the context represented.
Thus, contexts in this project are delimited based on changes in strategy.

At the present time, to populate our agent’s c-schema library, we rely on the
system designer. In an ideal system, the agent would learn its own c-schemas,
either by modifying those initially given to it or creating them de novo. This
would require the agent to track the success of strategies in different situations
and group together similar situations that share strategies successfully.

Showing a complete c-schema would require more space than can be allotted
in this paper, but an example of one production rule that acts as descriptive
knowledge for a c-schema called in-wary is shown in Figure 1. In this case our
agent is making use of an embedded CLIPS [13] rule-based system to implement
its context manager.

3 Context assessment and management

Representing context is half the problem. The other is identifying the context
the agent is in and managing the corresponding representations.

In CATS, we break this into four processes or modules: tracking the situa-
tion to produce inferences useful for recognizing the context (Track); society-level
analysis of motives to produce additional interagent-based inferences (Analyze);
recognizing the context and managing the contextual knowledge (Contextual-
ize); and selection and execution of context-appropriate strategies by the agent
(Execute).

Figure 2 shows an overview of our approach, the major modules discussed
below, and some of the data paths between them.

World

Execution Track

Analyze

Contextualize

Working
Knowledge

acti
ons

percepts

observations

history
beliefs

context

C-schemasStrategies

beliefs

Fig. 2. Overview of the reasoner’s architecture

3.1 Tracking the situation

The Track module is primarily concerned with making non-society-level infer-
ences about the situation that can help identify the context. It uses the agent’s
percepts and the history of those percepts over time to produce beliefs about the
current situation that can then be used by the other CATS modules. This is rem-
iniscent of some robotics software architectures (e.g., [2]), where raw, objective
sensor data is aggregated and processed into subjective, symbolic, agent-centric
inferences for use by (e.g.) situation assessment.

We are primarily interested here in how an agent can differentiate between
agents it can trust and those who are miscreants. Thus, Track is concerned with
establishing the values of trust-warranting properties (e.g. [1]) of others. For this,
we look to humans for inspiration.

Humans, being social animals, are greatly concerned with recognizing de-
ception by others; it is even possible that we have evolved specialized “cheater-
detection” circuits in our brains [4]. However, even for humans, detecting decep-
tion is a difficult task. It is even more difficult in environments with electronic-
mediated communications [15], which of course has implications for trust deci-
sions by artificial agents.

Humans use the perceived intent of others’ actions to help decide about trust-
ing them. To do this, we rely on a combination of observable trust-warranting
properties (“manifesta”), a history of previous interactions, and beliefs we have
about the motivations of others [1,3]. From these, we develop beliefs about other,
hidden trust-warranting properties (“krypta” [1]). Humans also use others’ rep-
utations to make trust decisions, as do some agent-based systems (for a review,
see [14]). Others’ reputations can be maintained by an agent itself or by relying
on a (hopefully trusted) third party.

Both of these sources of trust-warranting information are mirrored in CATS’
Track module. One source of information is properties of the problem domain
that are easily observable, for example, board positions or moves in a game
domain or bidders and values of bids in an auction. The value of this kind of
immediately-available information has low durability, that is, it decays rapidly
over time, and it is highly domain-specific.

Another kind of information available has to do with properties of the OMAS
itself, such as protocols used, organizational structures in effect, and rules of
behavior. These tend to be more durable. For example, the speed at which
system rules or protocols change is constrained by the need to disseminate them
to all participating agents. Although knowledge of how another agent interacts
with the system itself may not be readily generalizable to other OMASs, it can
give significant indications of the agent’s intentions and trustworthiness.

Track produces beliefs about the world and about trust-warranting properties
for each other agent in the society. We represent beliefs as tuples < P,O, V, C >,
where P is the property that is the subject of the belief, O is the object(s) or
agent(s), V is the value of the property for O, and C is a confidence value in
the range [�1, 1]. O can consist of more than one object. For example, the belief
that agent A has goal G might be represented as < hasGoal, (A,G), 0.735 >.

Track adjusts its beliefs, including confidence in existing beliefs, as the sit-
uation changes. It takes what may be called a “frequentist” approach to belief
confidence revision: the more observations that are made that support a be-
lief, the more confident Track becomes about that belief. Knowledge about the
durability of a property, as discussed above, factors into this as well.

Interagent interactions are another source of information important for mak-
ing trust decisions. This is the purview of the Analyze module and its society-
level analysis of motives.

3.2 Society-level analysis of motives

An important source of trust-warranting information is how another agent in-
teracts with others in the OMAS. By observing this, an agent can infer possibly-

hidden motives. This is called society-level analysis of motives (SLAM, intro-
duced earlier in relation to collusion detection [18]), which is done by the Analyze
module.

Analyze depends on the beliefs created by Track about domain, system, and
agent properties. It uses knowledge about how agent actions and their results can
affect others to create beliefs about relationships between agents. It also takes
into consideration exogenous events and actions such as messages between the
agents, system-wide information messages, agent entry or exit, and so forth. The
beliefs are then used by Contextualize as it determines what the current con-
text is. Analyze also makes use of contextual information from Contextualize to
change which knowledge it uses to create beliefs. This circularity is unavoidable,
since the meaning of agent interactions is itself context-dependent.

Analyze examines each action taken by another agent to determine what it
might mean to other agents, including itself. For example, an agent may take
an action that indicates that it is unusually aggressive, that it is similar to
another, or that provides disproportionate benefits to some other agent (possibly
indicating collusion).

Occasionally, any agent’s actions may seem to indicate miscreant behavior,
for example, by going against our agent’s interests or disproportionately bene-
fiting some other agent. However, it is the pattern of an agent’s behavior over
time that is most important in making a trust decision, as well as any sudden
unexpected changes in the pattern, for example, if agent A always takes actions
that benefit B more than itself, or if an aggressive agent suddenly begins to act
benignly toward another.

As an example, suppose our agent is engaged in a series of “English”, or
outcry, auctions with other agents. Suppose that one of the other agents always
bids aggressively, yet never wins the bid, thus bidding up the final price. Its
actions have a cost to itself, i.e., the actual cost of participating and the potential
cost incurred if it should win an auction. However, the benefits, except if it wins,
go to another agent in the system: the seller. Our Analyze module would regard
this as grounds for the hypothesis that there is an unsanctioned coalition (i.e.,
collusion) between that agent and the seller, even though no explicit collusive
actions or messages have been observed. It would consequently treat the other
agents as miscreants.

Analyze accrues evidence about factors indicating relationships by keeping
a weighted count of the occurrences (or non-occurrences) of the factors, then,
during each of its decision cycles, calculating the mean and standard deviation
for all observations. Bayesian inference is then used to infer a new belief state
from the prior one, and the probabilities are used to assign a symbolic value to
the degree of belief, from very-weak to very-strong. Rules are then used to
combine these individual beliefs into beliefs about relationships.

For example, in our auction example, we inferred that one of the agents bid
aggressively, had actions that disproportionately benefited the auctioneer, and
seldom won a bid. The combination of these factors would allow Analyze to
believe the hypothesis that the agent was a shill for the auctioneer and, hence,

a miscreant, with a confidence value derived from the probabilities determined
for each factor involved.

Once Analyze has inferred an agent’s motives and its relationships to others,
it remembers these as a durable hypotheses about the agent. A durable hypothesis
is different from other beliefs in that it persists from one decision cycle to another,
whereas others are generated from historical and perceptual information at the
start of each decision cycle. The duration of hypotheses will vary based on the
stream of more transient beliefs and on a decay process that the Analysis module
uses to reduce the confidence in the hypothesis over time. We have found it useful
to have multiple classes of durable hypotheses, each with its own decay rate. The
more significant a hypothesis is to our assessment of the situation, the longer we
wish to consider it, but still at some point the agent forgets an old hypothesis if
beliefs cease to support it.

Based on its durable hypotheses and other beliefs, the Contextualize module
then can determine the current context.

3.3 Context management

The Contextualize, or context management, module uses the beliefs and durable
hypotheses from Track and Analyze to determine what the current context is
and to manage the application of associated contextual knowledge.

As an example of context management, consider this scenario. On a cold win-
ter day, you are sitting at your desk at work. A man enters the building wearing
a ski mask. Suddenly, you hear the sound of sirens outside, and the man steps
quickly into another room and closes the door. Here, the data is straightforward.
We have two human actors, three locations (outside, the entryway, and the other
room), and at least three objects (the desk, the ski mask, and the siren). Why
does the siren beginning to sound result in a change in your perception of the
other person’s trustworthiness?

In our approach, the explanation is that you perceive a change in the context.
Prior to the sound of the siren, the observation that a man had arrived wearing
a ski mask was evaluated in the context of cold weather; our agent would have
formed the hypothesis that the other person had donned the mask as a response
to local conditions. When the siren sounds and the other agent takes an action
to conceal himself, the agent’s idea of what the context is and what the man’s
motivations are would change, and its trust in the agent should drop. Whereas
our prior context-motivated strategy may have caused us to continue working
on a paper, after the context change, a new “act warily” strategy may suggest
the action “call police”.

Contextualize has four major tasks. First, it must find contextual schemas
matching the current situation. Second, it must activate the appropriate c-
schemas from this set and deactivate any currently-active c-schemas that no
longer match the situation. Third, it must select a strategy appropriate for the
current context and make that available to the Execute module. And fourth, it
must update the knowledge used by the other modules to reflect what is known
or predicted about the context based on the knowledge from active c-schemas.

C-schema retrieval. Contextualize has to find c-schemas that match the
current situation. In previous work, we relied on a content-addressable “dynamic”
schema memory for this (e.g., [8,9]) of the kind sometimes used in case-based
reasoning. However, we do not require such a mechanism. As long as an appro-
priate set of c-schemas can be found that match the current situation, CATS is
agnostic as to the mechanism.

In our approach, we refer (after [11]) to c-schema retrieval as evoking a set of
c-schemas based on the situation’s features. In CATS, the primary features used
are the beliefs about the world and interagent interactions produced by Track
and Analyze. At the evoking stage, we are not overly concerned with the degree
of match between a contextual schema and the situation; it is enough that some
beliefs “bring to mind” (evoke) the c-schema with some level of confidence (based
on the belief’s confidences).

Contextualize continually watches the situation to detect context changes
that should bring to mind new c-schemas; or, to better phrase it, it is constantly
looking for c-schemas that now match the situation, which could indicate a
change in context. If it detects beliefs predicted by a c-schema not currently in
use, than that c-schema is considered. In addition, c-schemas in CATS explicitly
list the “boundary conditions” for entering or leaving the represented context.
This is used by Contextualize as well to change the set of c-schemas under
consideration.

There may be situations in which no specific c-schema can be identified. For
this eventuality, CATS has a “default” c-schema that is always applicable, albeit
with low confidence.3 Thus, when no other, more-specific context is recognized,
this c-schema would provide a default strategy; otherwise, it is “overruled” by
more specific c-schemas during activation/deactivation.

C-schema activation/deactivation. Retrieving contexts is only part of
the problem of context assessment, since not all will be good matches. For ex-
ample, being involved in an Internet auction for bandwidth might remind an
agent of auctions, auctions involving some of the agents that are present now,
and Internet auctions; only the latter two would be good matches, since the first
is just a generalization of the latter.

In other work, we use a differential diagnosis process to determine which of
the evoked c-schemas should be used as the representation of the current con-
text [17]. In this work, we are more focused on representing and using contextual
knowledge, and so we use a correspondingly simpler diagnostic process. Contex-
tualize uses a version of mycin’s certainty factor combination technique [16] to
assess the match between the observed/inferred situation and what is predicted
by the agent’s c-schema. This includes the boundary rules mentioned previously
that c-schemas may contain that, when matched to the situation, change Con-
textualize’s belief in what the current context is. The c-schema or c-schemas
that this process selects as matching the current situation are then activated to
represent the current context.

3 In other projects, the corresponding c-schema would automatically be retrieved from
memory when no more-specialized ones were found.

Some c-schemas that had matched the situation may be found to be no longer
appropriate as the situation changes. Contextualize will notice this during its
diagnostic process. In addition, it can use any boundary rules in the old c-schema
that suggest the context is no longer in effect. Contextualize then deactivates
such c-schemas.

Strategy selection. Once it has assessed the context, Contextualize must
find the best strategy for the current context and pass that along to Execute.
This is done using knowledge provided by the c-schemas representing the current
context, i.e., by using their suggestions for strategies appropriate for the current
context.

Currently the results of our contextual reasoning is the selection of a single
strategy from those suggested by the active c-schemas. This may be a weakness
if a truly novel context occurs in the society, since our a priori c-schemas may
not respond well to the unanticipated context. In the future, we will look at how
to mitigate this problem by combining strategies from multiple c-schemas, each
of which may capture some aspect of the novel context, to create a new strategy
that will work better than any existing one.

Once Execute receives a strategy suggestion from Contextualize, it can use
this strategy until the situation changes enough for Contextualize to send it a
new strategy.

Propagate contextual knowledge. In addition to suggesting a strategy
to Execute, Contextualize is also responsible for propagating other contextual
knowledge to the agent’s modules. C-schemas provide the agent with declarative
and procedural knowledge. This includes knowledge the other modules use to
do their jobs, for example, to create beliefs about the state of the world and
about agent motives. When the context changes, such knowledge from active
c-schemas needs to be activated, and knowledge unique to exiting c-schemas
should be deactivated. If there are conflicts between knowledge from different
c-schemas, then Contextualize chooses from among them based on its confidence
in the c-schema as a fit for the situation.4

There are several kinds of knowledge that can be activated from c-schemas.
For example, predictions about the world (e.g., a particular miscreant is present)
may need to be activated by establishing a belief or a durable hypothesis. Exist-
ing beliefs may also be revised by changing their confidence values. Diagnostic
rules (e.g., boundary rules from a c-schema) may be added to aid future context
recognition. Other rules may be activated to be used by Track and Analyze to
help them make decisions that are appropriate to the group. This will cause
them to make inferences that are automatically appropriate for the context.

To illustrate how this might work, consider an agent that has been a long term
member of an OMAS. Also existing in the same system is Agent X, for whom we
have a long history of observations about its action. We have labeled Agent X
as “trustworthy”, and therefore use a cooperative strategy when dealing with it.
During the course of observing activity in the system we notice that Agent X is
treated well by Agent Z, but that Agent X makes inaccurate, negative reputation

4 Other work in our lab looks at how to merge such conflicting contextual knowledge.

reports about Agent Z, in effect slandering Agent Z. Our agent would generate a
number of hypotheses about this situation, e.g.: (1) Agent X seeks to undermine
Agent Z; (2) Agent Z’s reputation is lower than it should be; and (3) Agent X
is not as trustworthy as we thought. These hypotheses, together or separately,
should cause Contextualize to recognize a new context and recommend a new
strategy the agent should use. As a result of context recognition, the agent should
revise beliefs it holds to reflect the new hypotheses and beliefs about the effects of
Agent X’s actions. First, it might add a new assumption about the relationship of
Agents X and Z. This would entail asserting a new durable hypothesis. Second, it
should lower its confidence in any beliefs about the reputation of Agent Z, since
it suspects that reputation has been compromised by Agent X’s slander. Since
beliefs are generated anew at the start of each decision cycle, simply updating
the facts for the current cycle is not sufficient. Instead, Contextualize needs to
modify Track’s and Analyze’s working knowledge so that they make the right
decisions. Finally, it should discard its old durable hypothesis that Agent X is a
trustworthy agent and prevent it from arising again by modifying the knowledge
upon which Analyze makes its decisions, for example, by asserting that Agent
X tends to slander Agent Z.

4 Empirical evaluation

To determine if adding context-based reasoning provides an improvement over
general-purpose strategies, we constructed an agent using the techniques de-
scribed in this paper. The agent interacted with other agents using our Liar’s
Dice (a poker-like dice game) test framework [19]. Each of the other agents em-
ployed a single general-purpose strategy (although possibly different for each
agent), while our context-based agent chose which of the strategies to use based
on its contextual reasoning. We tested the agent in several different test scenar-
ios with both mixed-strategy and homogeneous-strategy societies. In some tests
we introduced miscreant agents that employed a collusive strategy, while other
cases did not employ miscreants.

For each test scenario we conducted a session of 36,000 games. With this
number of games, there is a > 0.99 probability that the rarest roll (five sixes)
will occur in the session. We can therefore expect that all possible hands will be
experienced.

There were 25 distinct cases based on: whether the CATS agent was present
or replaced by an agent following a random (coinflip) strategy; the presence of
collusive agents (i.e., miscreants); and other context changes, such as the entry
of a non-collusive agent or a system message announcing a change of state.

We measured the success of each agent, meaning the improved performance
in the games, as well as its correctness, the percentage of correct decisions. We
were also concerned with the strength of the strategy used by the agent, measured
as (w� l)/(w+ l), where w and l are the number of wins and losses, respectively.

The results showed a statistically significant (p < 0.05) improvement in both
correctness and success for our context-aware agent compared to other agents

in the society when the test scenario included a miscreant agent.5 In all mixed-
strategy experiments, the CATS agent displayed the highest level of correctness
among all agents. In all but one mixed-strategy experiment, the context-aware
agent was also the most successful agent in the society. In homogeneous-strategy
society experiments, the context-aware agent performed well with or without the
presence of miscreant agents, with two exceptions. Without miscreants present,
the context-aware agent was equivalent to other members of the homogeneous
society of stochastic agents, and it was inferior to other agents in the the case of
a homogeneous society composed of altruistic agents. Barring these two special
cases, the CATS agent showed better success and correctness in all cases, with
statistically significant improvement when miscreant agents were part of the
society. The improvement in strength of CATS over the second best strategy
was > 2.6 for all, while the improvement in correctness over the second best
strategy was > 3.32.

In experiments in which we inserted miscreant behaviors, the CATS agent
maintained or slightly increased its correctness, while the correctness of other
dynamic strategies (i.e., those that changed their actions based on conditions)
were reduced by significant amounts (p 0.05). Since the CATS agent uses
only the strategies available to the other agents in the society, this indicates
that its correctness is the result of its ability to better recognize the situation
occurring in the society and respond to it by choosing a better strategy. This
argument is further supported by the experiments in which no miscreant be-
havior was present. In these experiments, the CATS agent continued to exhibit
comparable levels of correctness, but, since there were no miscreants to affect
the other agents, their performance was improved. In the absence of miscreant
behavior, but in the presence of context change, our approach continued to out-
perform other strategies, but the effect was not statistically significant. in terms
of strength, the CATS agent was the same or slightly better than the others in
the presence of miscreants (p < 0.05), but in experiments in which there were
no miscreants, there was no significant difference in performance.

The results show that a context-aware agent enjoys an advantage over other
agents in environments that include context change, and that the agent’s ability
to detect miscreant behaviors provides a statistically significant improvement in
performance. The CATS agent’s ability to detect miscreants allows it to choose
the best strategy, rather than being locked into a single strategy, as were the
other agents.

We believe that the size of the effect of context-based reasoning will vary
based on the domain and on the amount of tuning put into the creation of
the c-schemas. In the future we expect to be able to confirm and quantify this
relationship.

5 See [19] for complete details, including the statistical analysis.

5 Conclusion

We have described how a context-aware agent employing CATS can make better
trust decisions, resulting in better performance with respect to its goals. In
our approach, an agent not only tracks environmental factors and the actions of
other agents, it also performs a society-level analysis of motives to uncover hidden
relationships and motives agents may have. All of these are indicators of what the
current context really is. Once the context is assessed, then contextual schemas
representing that context provide suggestions for an appropriate strategy, e.g.,
to deal with miscreants, as well as other knowledge the agent can use in the
context. We have implemented and tested this approach in a toy domain that has
many characteristics of real-world open multiagent system domains. Experiments
support the conclusion that context-aware strategy selection is beneficial in an
OMAS. The approach was effective in two ways: (1) allowing an agent to make a
correct decision about whether or not to trust another agent; and (2) maintaining
good overall performance with respect to accomplishing the agent’s own goals.

The results of these experiments are very encouraging and provide several
further paths of inquiry, some of which we have mentioned in this paper.

References

1. Bacharach, M., Gambetta, D.: Trust as type detection. In: Trust and Deception in
Virtual Societies, pp. 1–26. Springer (2001)

2. Blidberg, D.R., Chappell, S.G.: Guidance and control architecture for the EAVE
vehicle. IEEE Journal of Oceanic Engineering OE–11(4), 449–461 (1986)

3. Castelfranchi, C., Tan, Y.: Introduction: Why trust and deception are essential
for virtual societies. Trust and Deception in Virtual Societies (pp. xvii–xxxi). Dor-
drecht: Kluwer (2001)

4. Cosmides, L., Tooby, J., Fiddick, L., Bryant, G.: Detecting cheaters. Trends in
Cognitive Science 9, 505–506 (2005)

5. Falcone, R., Castelfranchi, C.: Social trust: A cognitive approach. In: Castelfranchi,
C., Tan, Y. (eds.) Trust and Deception in Virtual Societies, pp. 55–90. Kluwer
Academic Publishers (2001)

6. Guha, R.: Contexts: A Formalization and Some Applications. 1991. Ph.D. thesis,
PhD thesis, Stanford University, 1991. Also technical report STAN-CS-91-1399-
Thesis, and MCC Technical Report Number ACT-CYC-423-91 (1991)

7. Iszuierdo, L., Izquierdo, S.: Dynamics of the Bush–Mosteller learning algorithm in
2x2 games. In: Weber, C., Elshaw, M., Mayer, N. (eds.) Reinforcement Learning:
Theory and Applications, p. 424. I-Tech Education and Publishing, Vienna (2008)

8. Kolodner, J.L.: Retrieval and Organizational Strategies in Conceptual Memory.
Lawrence Erlbaum Associates, Hillsdale, New Jersey (1984)

9. Lawton, J.H., Turner, R.M., Turner, E.H.: A unified long-term memory system.
In: Proceedings of the International Conference on Case-Based Reasoning (IC-
CBR’99). Monastery Seeon, Munich, Germany (July 1999)

10. Mao, W.: Modeling social causality and social judgment in multi-agent interactions.
Ph.D. thesis, University of Southern California (2006)

11. Miller, R.A., Pople, H.E., Myers, J.D.: INTERNIST–1, an experimental computer-
based diagnostic consultant for general internal medicine. New England Journal of
Medicine 307, 468–476 (1982)

12. Mui, L., Mohtashemi, M., Halberstadt, A.: Notions of reputation in multi-agents
systems: a review. In: Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems: Part 1. pp. 280–287. AAMAS ’02,
ACM, New York, NY, USA (2002), http://doi.acm.org/10.1145/544741.544807

13. Riley, G.: CLIPS – a tool for building expert systems. On the World Wide Web
at http://www.ghg.net/clips/CLIPS.html, accessed December 16, 2004; last up-
dated December 1, 2004. (2004)

14. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artificial Intelligence Review 24(1), 33–60 (2005)

15. Santos Jr, E., Johnson Jr, G.: Toward detecting deception in intelligent systems. In:
Defense and Security. pp. 130–141. International Society for Optics and Photonics
(2004)

16. Shortliffe, E.H.: Computer-based Medical Consultations: MYCIN. Elsevier, New
York (1976)

17. Turner, R.M.: Context-mediated behavior. In: Brézillon, P., Gonzalez, A. (eds.)
Context in Computing: A Cross-Disciplinary Approach for Modeling the Real
World Through Contextual Reasoning, chap. 32, pp. 523–540. Springer (2014)

18. Whitsel, L., Turner, R.M.: A context-based approach to detecting miscreant be-
havior and collusion in open multiagent systems. In: Proceedings of the Seventh
International and Interdisciplinary Conference on Modeling and Using Context
(CONTEXT’11). Karlruhe, Germany (September 2011)

19. Whitsel, L.T.: A Context-Based Approach to Detecting Miscreant Agent Behavior
in Open Multagent Systems. Ph.D. thesis, School of Computing and Information
Science, University of Maine, University of Maine, Orono, ME 04469 USA (De-
cember 2013)

