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Abstract

The ideal development platform for autonomous
underwater vehicle control software is an actual
physical vehicle. However, limited availability of
AUVs and the high costs associated with purchas-
ing and maintaining them often call for the use of
computer simulations as a more feasible and flexible
development platform. The simulation must accu-
rately emulate real-world conditions and equipment
to allow control software development in a virtual
space. Unfortunately, simulations tend to be devel-
oped from the ground up for particular AUVs and
are thus idiosyncratic and difficult to reuse, and de-
velopment time and cost can be substantial.

We are developing a simulation testbed for intelli-
gent control software for AUVs that is based on us-
ing off-the-shelf, sophisticated simulation software:
game engines. A game engine provides physics,
modeling, and rendering capabilities that can be sig-
nificantly reduce simulator development time. The
particular game engine we are currently using is
Unity, which allows network connections to con-
trol in-world objects. A translator/network inter-
face then allows existing AUV control software to
receive sensor data from and to control simulated
AUVs in the world.

Introduction

The design and development of intelligent con-
trollers for autonomous underwater vehicles is a dif-
ficult, labor-intensive process that cannot be done in
isolation from aspects of the AUV to be controlled.
The best development system and testbed for such
software is, of course, an actual AUV. However, this
may not in most cases be the best first development
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system. Purchasing or (especially) building an AUV
is very costly, and there is significant cost involved in
maintaining the vehicle and in the support needed
for fielding it. In addition, the primary focus of
intelligent control researchers is usually not field-
ing AUVs, and they often lack expertise in vehicle
maintenance and operation. They may also be dis-
tant from collaborators who do have AUVs and the
interest and expertise to operate them. And using
an AUV for the early stages of prototyping and de-
bugging control software can take the vehicle away
from more productive work it could be doing using
its existing software. Consequently, the best first
testbed for intelligent control software is usually a
simulator.

Unfortunately, simulators have their own prob-
lems. Development of intelligent control software is
often highly specific to the vehicle itself, and so there
is limited availability of off-the-shelf simulations to
suit the needs of a particular project. Instead,
these simulations are typically build the ground up,
with the emulated vehicle systems implemented by
the artificial intelligence (AI) researchers themselves
and customized to the target AUV. This involves
the significant overhead of designing physics en-
gines, model design, and building rendering mech-
anisms (or interfacing with existing ones, such as
OpenGL)—none of which directly contributes to the
task of developing the control software itself.

In addition, creation of a new simulator carries
with it a significant commitment to maintaining the
software and adding new technology and function-
ality to keep it up-to-date. Software maintenance is
often estimated to take up to 90% of the total effort
devoted to a piece of software. This was certainly
true of our own early simulator for intelligent con-
trol research, SMART [Turner et al., 1991], which,
though quite simple, still rapidly became obsolete.
Even very sophisticated simulators, such as the



DIS–JAVA–VRML simulator [Brutzman, 1995] for
the Phoenix AUV [Brutzman et al., 1998] or CAD-
CON [Chappell et al., 1999], are rapidly outpaced by
new technology without significant resources to ded-
icate to the simulators—resources that AUV labs
usually can put to better use directed toward vehi-
cle and software development.

Fortunately, there are alternatives. There are
numerous off-the-shelf platforms that have capa-
ble physics engines, rendering, and modeling facili-
ties that others have already committed to main-
taining and extending: Game engines. As the
name implies, these software systems are created
for the design and development of modern 3D video
games. Examples include Unity [Goldstone, 2009],
Torque3D [Lloyd, 2004], Polycode [Safrin, 2013],
and CryEngine3 [Seeley, 2007].1 These range from
well-maintained rendering and physics libraries to
full toolkits that feature GUI-driven game world and
object creation editors. Using these, a game de-
signer can concentrate on the game itself and leave
the physics and rendering to the engine.

The GEAS2 (Game Engine-based Agent Simula-
tor) project aims to leverage game engines for AUV
simulation development. We are focusing initially
on the free Unity engine. In the remainder of the
paper, we discuss how such a game engine can be
used to simulate AUVs and their environment, and
how AUV intelligent control software can interface
with such a game engine via middleware so that no
modifications are needed to the controller. We dis-
cuss the status of GEAS and plans for future work.

Related Work

There have been many simulators developed over
the years for AUV development, including those fa-
cilitating intelligent control development. Our own
early effort, SMART (Simulator for MultiAgent Re-
search and Testing), was a simple Lisp- and C-based
simulator for multiagent systems research that sim-
ulated the EAVE [Blidberg et al., 1990; Blidberg
and Chappell, 1986] AUVs. Sensor (e.g., sonar) and
low-level control simulations were reasonable, but
vehicle dynamics was crude, graphics was simplis-
tic, and there was little or no real physics engine.

An early example which shared some of GEAS’s
goals was the DIS-Java-VRML simulator from the
Naval Postgraduate School, which had sophisticated
physics and rendering capabilities, making use of

1Some of the names are registered trademarks of the or-
ganizations producing the engines.

2Pronounced “gesh”.

hardware help from Silicon Graphics workstations.
It was one of the first to use both standardized
communication (Distributed Interactive Simulation
[DIS] protocol [Fullford, 1996]) and a standard-
ized modeling language (Virtual Reality Markup
Language [VRML; Hartman and Wernecke, 1996]).
While it was a very advanced simulation for its time,
it also was written entirely from the ground up and
it relied on specialized hardware, and its age clearly
shows, at least visually. Its descendant, the AUV
Workbench [Davis and Brutzman, 2005], while more
modern, will also require substantial resources for
maintenance and continuous modernization.

The CADCON (Cooperative AUV Development
CONcept) simulator [Chappell et al., 1999] was an
ambitious project at the Autonomous Undersea Sys-
tems Institute (AUSI) that aimed to provide a com-
munity multiagent system simulation facility utiliz-
ing a client–server model. The server, a Linux-based
system, maintains the shared virtual world, while
the Windows-based clients represent the simulated
AUVs and provide visualization services. CADCON
has been incorporated into a high-level multiagent
systems control simulator (CoDA/CADCON [Al-
bert et al., 2003]), and it has been updated and
used to support multi-vehicle operations using solar
powered AUVs (SAUVs) [Komerska and Chappell,
2006]. Unfortunately, this simulator is also custom-
built and is tied to particular operating systems,
and its visualization abilities and physics engine are
somewhat limited compared to game engines. It
is also unclear at the present time what support is
available for maintenance and upgrades.

The use of game engines for simulation has been
done at least once in the research community, for
traffic and land vehicle simulation [Pereira and Ros-
setti, 2012], and it is done for so-called “serious
games” (e.g., for military applications and training)
and simulators. However, to our knowledge, they
have not been used for simulation for AUV intelli-
gent controller development.

GEAS

GEAS is a simulator for research in intelligent
control of autonomous agents, especially AUVs. It
is not targeted toward developing simulation meth-
ods for low-level vehicle control software develop-
ment (e.g., control-theoretic or other movement con-
trol software), which would require a level of detail,
environmental verisimilitude, and speed that it is
unclear game engines are appropriate for. Instead,
GEAS focuses on simulation at the level appropriate
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Figure 1: The GEAS simulator.

for high-level mission control software.
Figure 1 shows the structure of GEAS. The basic

idea is that researchers develop their intelligent con-
trol software on any platform and in any language
they wish. GEAS itself runs on a server machine,
which may or may not be the same machine as the
AUV controller (but usually will not be). Unity
supports TCP sockets, and so GEAS can communi-
cate with a server process that listens to a port for
incoming connections.

The AUV controller either connects directly to
the GEAS server running on the server machine or
(the usual case) communicates with a GEAS client
running on its own machine, which in turn connects
to a server, depending on user preferences and needs
(explained below). The server starts GEAS, if nec-
essary, then forks a copy of itself to handle further
communication with the AUV controller.

The AUV controller sends commands (e.g., to
move the simulated vehicle) and receives sensor and
telemetry data in the same way it would if it were
controlling a real vehicle. We can think of this as
the “language” it uses to control the vehicle. This
language could be either idiosyncratic to the vehi-
cle (i.e., the API3 of the low-level software) or it
could be one of the common control languages in
use, such as DIS, Player interfaces [Gerkey et al.,

3Application Programming Interface.

2003], the AUV Control Language (AUVCL) [Davis,
2005], or Generic Behaviors [Komerska et al., 1999;
Turner et al., 1993], if that is what the vehicle un-
derstands. Commands and data in this language are
exchanged with the simulated vehicle inside GEAS
via the GEAS client and server.

The GEAS simulator is a standalone program (a
game) built using Unity and running on a server
machine, which can be virtually any common hard-
ware and software combination.4 The simulated ve-
hicles are contained in a simulated world that GEAS
maintains.

As in most modern video games, interactive ob-
jects (actors) in Unity are controlled by the game
players or by scripts run within the game world it-
self, e.g., to add an AI-based opponent. The code
that handles the inputs from the users or from
scripts are called controllers. In GEAS, controllers
and scripts for AUV objects are implemented to ac-
cept input from and send data to GEAS servers
in order to communicate with their intelligent con-
trollers.

The simulation can be easily viewed using the
game engine’s built-in GUI functionality. A sepa-
rate (invisible) object can be created for the user,

4There is even the possibility of the server running on a
mobile platform or a dedicated gaming console; see the Unity
website (unity3d.com) for more information.



Figure 2: Unity user interface.

and this object can move around the simulated
world under the user’s command. Alternatively,
Unity has the ability to let the user view the simula-
tion from any of the simulated AUVs’ perspectives.
And, of course, since this is a game engine-based
simulator, it is relatively straightforward for a hu-
man to control a simulated AUV, either directly (as
in a standard video game) or by sending informa-
tion via the server from another, external interface.
Instrumentation of the simulation is possible as well
by capturing, for example, the real position of a ve-
hicle at different times.

The simulation can be controlled by connecting to
GEAS in the usual way, then sending control com-
mands to the GEAS server. This can be done di-
rectly by a controller program or by such a program
using a GEAS client.

World and Vehicle Simulation

Unity, like most game engines, provides a rich
set of objects and functions with which to design
a game world, and it provides a convenient inter-
face for the world builder. Figure 2 shows a model
of an AUV being constructed, and Figure 3 shows

Figure 3: A simulated underwater world.

a simple simulated world. Unity can also import
models from common 3D modeling programs, e.g.,
Blender [Roosendaal and Wartmann, 2003].

Underwater environments can be defined using a
seabed terrain mesh, which is done using Unity’s
terrain tools, or actual terrain data can be im-
ported from external files. Underwater environ-
ments in video games are typically simulated using
lower movement speeds and reduced gravity, and
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Figure 4: Internal structure of the GEAS server and client. Dashed boxes indicate optional
modules.

these techniques will be used along with others (e.g.,
simulating drag by applying a decay factor to veloc-
ities, etc.) to simulate underwater motion, at least
as a first approximation to what is needed. Future
work will entail investigating how to make the un-
derwater physics more realistic.

In addition, we are interested in simulating other
aspects of the underwater environment, including
currents, temperatures, and so forth that impact the
vehicle and that serve as input for sensors simula-
tion. Currents can be emulated by having the con-
troller (the in-game script) apply the appropriate
forces to the simulated vehicle based on its location
relative to the currents, for example. Maps for tem-
perature, magnetic fields, etc., can be maintained
and sampled at the simulated vehicle’s location, and
in-world data about the objects and terrain can be
used as input for sonar simulations, possibly cross-
referenced with maps with information about den-
sity gradients (e.g., thermoclines) to simulate such
things as sonar refraction and ambient noise.

Simulating Sensors and Effectors

GEAS will provide a suite of simulated sensors
for the user that correspond to common vehicle
sensors, including various sonars, location sensors
(e.g., GPS, long-baseline navigation, dead reck-
oning), temperature sensors, depth sensors, salin-
ity sensors, magnetometers, and laser rangefinders.
Sensors will be parameterized where needed, for ex-
ample, to control sampling rate or to specify the
geometry and range of a sonar. One important pa-
rameter for many sensors will be the noise model, if
any, to apply to the real sensor data.

Simulated sensors will take data directly from the
in-world controller and synthesize the sensor data
needed, possibly adding noise. This functionality
will usually reside in the GEAS server. However, for
flexibility, we will allow the functionality to reside

instead on the client machine, in the GEAS client.
This allows the user to write his or her own custom
sensor simulation and noise models by creating a
custom instance of the GEAS client. A special sim-
ulated sensor in the GEAS server will be available
to return whatever raw data from the simulation
necessary to the client in this case. Or, if the user
would rather not customize the client, then he or
she can write a custom sensor that can receive the
raw data from the client itself.

Actuators (effectors) will be simulated in a sim-
ilar manner. There is a set of behaviors that the
simulated objects, via their controllers, can perform
directly. These may or may not correspond to the
effectors desired. For example, the object may be
able to move with a particular velocity, but the
AUV controller may need a simulated vehicle that
has thrusters, that is, that can be controlled by ap-
plying forces along particular axes. The simulated
“thruster” effector would have to map between the
generated forces and changes in acceleration (and
thus, periodic velocity updates).

Actuators can be simulated in either the GEAS
server or client as well, as the user needs. A suite of
actuators will be provided that can be implemented
in the server, such as basic velocity settings, way-
point finding (i.e., move to location), orientation
(e.g., heading) changes, and so forth, including some
specialized effectors (e.g., lights). If the user needs
additional or more specific simulated effectors, then
he or she can create them as part of a custom in-
stance of the GEAS client or external effector sim-
ulation code. In the latter cases, the client or the
custom code will need to produce raw commands
that GEAS’ object controller can understand. Noise
models, to model inexact effector response, can be
specified for the GEAS server or built into the client
or custom software.

Figure 4 shows where the simulated sensors and



effectors can reside in the GEAS servers and clients.

Translating Between Controller and Vehicle

GEAS also needs translation services, since it is
highly unlikely that the AUV controller will use the
same input/output language as the simulated ob-
ject’s in-world controller. For example, the AUV
controller may use DIS, AUVCL, Generic Behaviors,
or a custom command language when communicat-
ing with the lower-level software aboard an actual
AUV. The Player interfaces/drivers are also a com-
mon control “language” for robots (particularly for
land robots). GEAS would need to translate these
languages to and from its internal object controller
language.

Translation can occur in several ways. The de-
fault, and usual, way will be to have the GEAS
server handle it, as shown in Figure 4. When the
AUV controller requests a connection (usually) via
a GEAS client, it will specify the translator needed,
which will then be part of the server that is forked.
In this case, whatever the AUV controller’s native
language is will be transferred over the network to
the server.

Alternatively, if the user is using a language that
is not handled by GEAS, for example, an idiosyn-
cratic command language, then he or she can cre-
ate a custom GEAS client instance that includes
a custom translator he or she writes, as shown in
Figure 4. In this case, the client will communicate
with the AUV controller via the controller’s own
language, but the object controller language will be
sent to the GEAS server. Or, if the user does not
want to customize the client, he or she can write his
or her own translator that communicates using the
object controller’s language with a default GEAS
client that itself does no translation.

Status and Future Work

GEAS is still being developed and implemented.
At the time of writing, the overall design has been
developed, and simple versions of a simulated world
and the GEAS servers and clients are being imple-
mented. Work on simulated sensors is ongoing, as
is implementation of a translator module that can
understand DIS.

In the future, additional work will focus on ex-
panding the sensor, actuator, and translation li-
braries. In addition, work will include developing
a library of simulated vehicles and additional ambi-
ent in-world agents (e.g., fish, surface traffic, etc.).

We intend to test GEAS first using our own in-
telligent controllers (Orca [Turner, 1995] and the
ACRO planner [Albert et al., 2007]), both to aid in
those controllers’ development and to gain experi-
ence with GEAS. Ultimately, GEAS will be released
to the AUV community as a simulation resource.
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