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Abstract

This paper presents a technique for using a
priori contextual knowledge for performing situa-
tion assessment for autonomous underwater vehi-
cles (AUVs). What sets this technique apart from
other assessment techniques is that it uses explicitly
represented contextual schemas to describe discrete
contexts that may occur in the world. A modified
version of the internist–1/caduceus [10] algo-
rithm is then used to diagnose the situation as an
instance of one or more of the set of known con-
texts. The schemas representing these contexts can
then be merged to give a coherent assessment of the
current situation that can serve as the basis for the
AUV’s behavior.

Introduction

An intelligent mission controller for autonomous
underwater vehicles (AUVs) must be able to quickly
and accurately assess its current situation in order
to determine how to behave. Ideally, instead of rea-
soning about the situation de novo for each decision
it needs to make (e.g., about which action to take
to achieve a goal, which sensor to use, etc.), such
a controller should always have “in mind” a good
idea of what the current situation is. Then infor-
mation about the current situation can be used to
immediately inform and guide decision making.

Over the past few years, much work on the Orca
intelligent mission controller [17; 13; 14; 16] has
concentrated on devising mechanisms for doing just
this. In this work, we make a distinction between a
“situation”, which includes all features of the world
currently observable by the AUV, and a “context”,
which is a recognized type of situation. Situation
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assessment then becomes the problem of identifying
the context.

There is much evidence that humans, and perhaps
other higher animals, make use of a priori knowl-
edge about contexts when understanding sensory in-
put and selecting actions [3; 18; 8; 2; 7]. This makes
sense. The world is to some extent predictable, with
broad patterns that tend to recur. Knowing about
these patterns can help an agent by allowing it to
make decisions more quickly and accurately when
the pattern is recognized.

In Orca, contexts and contextual knowledge are
represented explicitly as knowledge structures that
the agent can examine and use. Contexts that Orca
knows about, each representing a class of situa-
tions, are represented by frame-like structures called
contextual-schemas (c-schemas). The idea is that
Orca is initially given a set of contextual schemas
obtained by knowledge acquisition techniques from
experts on AUV missions, then, over time, the pro-
gram will add information about new contexts it
encounters as well as adjust the information about
existing contexts based on its experience.1

Each c-schema contains knowledge both about
what its corresponding context is as well as what
to do when in that context. The c-schema’s de-
scriptive knowledge provides information about ex-
pected features of situations that are instances of
the context. This helps to assess the situation, and
it also helps Orca disambiguate sensor input, make
predictions about potential events, and determine
the context-dependent meaning of such things as its
fuzzy symbolic knowledge. The c-schema’s prescrip-
tive knowledge guides Orca as it handles unantici-
pated and anticipated events, decides how to focus
its attention, sets behavioral parameters, and deter-
mines which actions are appropriate for the context.

At all times, Orca maintains an idea of what the
current context is. This is done by one of its mod-
ules, echo (Embedded Context-Handling Object),

1The learning aspects of Orca have not yet been addressed
in our work.

This paper appears in the Proceedings of the 13th International Symposium on Unmanned Untethered Submersible
Technology (UUST), Durham, NH, August, 2003. Copyright c© 2003 AUSI and the authors.



Schema Applier

Agenda Manager

Event Handler

Context Manager
(ECHO)

Long-Term
(Schema) Memory

AgendaWorking Memory

Context Object

1 - Requests, contextual schemas
2 - Requests, procedural schemas
3 - Maintenance of contextual structure, contextual information
4 - Attention-focusing information, goal activation/deactivation
      requests
5 - P-schema suggestions, parameter setting requests
6 - Event-handling information, predictions
7 - Agenda maintenance, goal activation/deactivation
8 - Goal to work on
9 - Goal activation in response to events

1 2

3
4

5

6

7

89

Sensor
Data, Status,

Messages

Commands,
Messages,

Parameter Settings

Orca

Figure 1: Orca’s current architecture.

which uses its a priori contextual knowledge—its
c-schema repertoire—to diagnose the current sit-
uation as an instance of one or more known con-
texts. Figure 1 shows echo’s relationship to the
other Orca modules.

Situation assessment is done by a diagnostic al-
gorithm based on work done in artificial intelligence
(AI) in medicine. This is reasonable, since in a
very real sense, diagnosis is situation assessment:
the purpose is to use the patient’s presentation (i.e.,
his or her signs and symptoms, also called the find-
ings) to determine what the clinical situation is so
that the physician can know how to act. In our do-
main, the current situation’s features can be viewed
as the “signs and symptoms” of the underlying con-
text to be identified. Thus, abductive (hypothetico-
deductive) techniques that have been developed for
diagnosing a disease from its manifestations, the
signs and symptoms it causes, can be adapted to
identify a context environmental and other features
of the situation.

Our algorithm uses the current situation’s fea-
tures to find and return a set of c-schemas that each
fit the current situation. These are then merged to
give a coherent assessment of the current situation.
Information from the merged context is then used
by other components of Orca to determine how to
behave.

In the remainder of the paper, we first discuss c-

schemas in a bit more detail, then we describe our
diagnosis-based situation assessment algorithm. We
next discuss schema merger and the distribution of
contextual information, then conclude and discuss
future work.

Contextual Schemas

All of Orca’s contextual knowledge is represented
explicitly as contextual schemas. This is in contrast
to the usual way context is encoded in reasoning
systems, for example, as antecedent clauses in rules
or as preconditions in plan operators. This has sev-
eral benefits. It decreases redundancy, since a given
context is represented once, not in multiple rules
or preconditions. This facilitates acquiring infor-
mation about context, as well as maintaining the
knowledge base. It allows Orca to devote reason-
ing effort up front to identifying the context so that
this can automatically inform all reasoning within
the context. It will also ultimately allow Orca to
examine and modify its own contextual knowledge.

Contextual schemas contain knowledge about the
features of the situation (descriptive knowledge) and
knowledge about how to behave when in the context
(prescriptive knowledge). Descriptive knowledge in-
cludes:

• expected features of the situation: e.g.,
for a harbor, that the water column
will be shallow;



C-HARBOR
:ACTORS

(actor (variable ?self) (frequency 1.0) (import 1.0))

:OBJECTS
(obj (variable ?setting) (description ^place) (frequency 1.0) (import 1.0))
(obj (variable ?mission) (description ^mission) (frequency 0.5) (import 0.6))
(obj (variable ?surface) (description ^surface) (frequency 1.0) (import 0.8))
(obj (variable ?wc) (description ^wc) (frequency 1.0) (import 1.0))

:DESCRIPTION
(fx (description (depth ?wc shallow)) (frequency 0.8) (import 0.7))
(fx (description (and (traffic-volume ?surface ?value)

(>= ?value some)))
(frequency 0.65) (import 0.9))

(fx (description (fish-density ?setting high)) (frequency 0.8) (import 0.7))

:DEFINITIONS
(shallow (linguistic-variable (:slot ^physical-object depth)

(membership-function ((0 1) (10 0)))))

:STANDING-ORDERS
(so (condition t) (description (set-LLA-parameter depth-envelope (5 10))

(when :during)))

:EVENTS
(ev (description (power-level ?self low)) (likelihood unlikely) (importance critical)

(effects (^event-desc (description (status ?mission failed))))
(response (description (achieve (^a-abort)))))

:ACTIONS
(a (description (^a-abort) (action (^p-abort-to-bottom))))

Figure 2: A contextual schema representing the context of being in a harbor.

• possible features of the situation: e.g.,
there may be swift currents;

• information about how to interpret
sensory information: e.g., sonar con-
tacts overhead will likely be boats or
ships; and

• knowledge about the semantics of sym-
bolic information the program uses:
e.g., “deep” in this context does not
mean the same as in the middle of the
ocean, even though the same (fuzzy)
term may be used in the same rules
governing the depth envelope in both
contexts [15].

Prescriptive knowledge includes information
about:

• how to set behavioral parameters: e.g.,
what the appropriate depth envelope
is;

• how to handle unanticipated events:
how to recognize them, how to diag-
nose them, how to assess their impor-
tance, and how to respond to them;

• how to set goal priorities: e.g., on a
rescue mission, goals having to do with
self-preservation may have a lower pri-
ority; and

• how to select actions that are appro-
priate for the current situation.

C-schemas are represented in a locally-developed
frame language. Figure 2 shows a c-schema rep-
resenting the context of being in a harbor. The

first three sections of the schema contain descriptive
information about the context. Each of the three
sections contains features expected in the context.
Each feature is tagged with the frequency of its oc-
currence in situations that are instances of this con-
text and its importance.2 The :ACTORS section
lists all of the agents that are expected in the con-
text. A representation of the physical embodiment
of Orca, bound to the variable ?self, is the only one
necessary in C-HARBOR. The :OBJECTS section
lists all of the objects, both physical and abstract,
that are referenced within the schema. The example
schema requires a description of the AUV’s locale
(?setting), a representation of the water column
(?wc), a mission (?mission), and a representation
of the water’s surface (?surface). The frequency
value for each feature specifies how frequently the
feature is associated with situations that are in-
stances of the context, which is an estimate of how
probable the feature is. For example, when in the
context of a harbor, an AUV may or may not have a
mission; this is reflected by a frequency of 0.5 in the
mission object. The final piece of descriptive infor-
mation that the schema gives is :DESCRIPTION.
This slot contains predicate-like declarations about
the expected state of the world. For example, in

2The importance values are currently context-indepen-
dent but are linked into the schemas for convenience



C-HARBOR, we see that the expected depth of the
water column is the fuzzy value shallow.

Following the descriptive sections are the pre-
scriptive sections, which tell Orca how to behave
when in the context. In our example, the first
section, :DEFINITIONS, contains context-sensitive
definitions for fuzzy values (e.g., [19]). In this ex-
ample, shallow is defined as a membership function
on depth ranging from zero to ten meters.3 Next,
the :STANDING-ORDERS section contains infor-
mation about how the AUV should adjust its be-
havior when in the context via setting behavioral
parameters. When an AUV is in a harbor, it should
tighten its depth envelope, thus the example con-
text contains a standing order to do so. The next
section, :EVENTS, contains information about how
to handle unanticipated events that may occur in
the harbor context. The only event described in
the example schema tells the AUV to activate a
high-priority goal to abort (^a-abort) in case of low
power. Finally, the :ACTIONS slot describes some
of the actions that may be needed, in particular, ac-
tions that are appropriate in this context for goals
that may usually be achieved by different actions.
In this context, a good way to handle ˆa-abort is to
abort to the bottom.

Contextual schemas are stored in Orca’s long-
term memory, which is an associative conceptual
memory [6; 13]. Essentially, the memory consists
of multiple interconnected discrimination networks
in which c-schemas form multiple generalization–
specialization hierarchies. When presented with a
“probe” consisting of a subset of the current sit-
uation’s features, the memory searches its index-
ing structure and returns a set of the most specific
c-schemas that fit the probe. The probe is said
to evoke these candidate c-schemas, and they be-
come grist for the situation assessment algorithm
described below.

A given c-schema is not intended to necessarily
represent all facets of the situations that are in-
stances of it. Rather, the idea is that several c-
schemas will be merged to form a coherent picture
of the current context. For example, the context
representation for a situation in which an AUV is
conducting a search mission in a harbor while its
batteries are low might be comprised of c-schemas
representing: conducting a search mission, being in
a harbor, and operating on low power. Merging
c-schemas is discussed below. Determining which c-
schemas to merge is the function of the diagnostic
algorithm.

3The other specifics of the membership function are de-
fined elsewhere.

Ultimately, Orca’s contextual schemas will come
both from human experts and from its own expe-
rience. The encoding process starts with a domain
expert determining the most salient descriptive fea-
tures of each context. These features then become
slots within the contextual schema that will later
be used to help diagnose the current context. Next,
prescriptive knowledge is added to the schema. In
the future, Orca will be able to use knowledge ac-
quisition techniques to create c-schemas based on
its own experiences.

Diagnosing the Context

Orca’s echo module is responsible for diagnos-
ing the current context. When the program starts,
and whenever the context has potentially changed,
echo probes the long-term memory for a new set
of c-schemas that might fit the current situation,
then applies its diagnostic algorithm and merges the
results to complete the process of situation assess-
ment.

The diagnostic algorithm in our work is based on
that implemented in the internist–1/caduceus
program [10]. internist was designed to perform
diagnosis in the domain of general internal medicine.
It performs differential diagnosis, unlike rule-based
diagnostic approaches (e.g., mycin [11]). Differen-
tial diagnosis is the process by which all possible
diagnoses for a given set of findings (signs and symp-
toms) are grouped and further work is then done to
determine the actual diagnosis [4]. This allows di-
agnoses to be compared and played off against one
another, guiding information gathering. When per-
forming diagnosis in Orca, we view the features of
the current world as manifestations of some under-
lying context; this context is then the “disease(s)”
that we are trying to diagnose. While work on the
actual diagnostic machinery in echo is still ongoing,
we discuss here the algorithm that will be used.

The overall process is as follows:
1. Identify the set of possible diagnoses

(contexts) evoked by the observations.
2. Group the contexts into logical com-

petitor sets (LCSs) [1], or “problems”.
3. Select one of the LCSs and “solve” it

by gathering about the topmost diag-
nosis or to in some other way separate
it from its competitors.

4. Repeat until all important signs and
symptoms have been accounted for.

The result, in the case of internist, is a list of
diseases that the patient likely has. For Orca, it is a
list of c-schemas that can be merged to become the
situation assessment.



The diagnostic process begins with Orca find-
ing all relevant contextual schemas that the current
manifestations evoke. This is done by gathering all
of the appropriate facts from working memory (a
short term memory that contains all of the infor-
mation that Orca knows about the current world)
and using them to construct a long-term memory
probe. The information in this probe is then used
to guide a depth-first traversal of Orca’s long-term
memory. This search will return the most specific
c-schemas related to the situation.

The memory associates with each returned c-
schema an evoking strength, a number that indi-
cates how specific the set of findings are for the c-
schema. In the medical domain, evoking strength
measures to what degree a particular finding brings
to mind (evokes) a particular disease hypothesis. It
is related to the probability of the disease, given
the finding. In our approach, the evoking strength
of a particular finding for a c-schema is an indica-
tion of the likelihood of the current situation being
an instance of the represented context. We are cur-
rently investigating whether these evoking strengths
should be context-sensitive: that is, should an evok-
ing strength for a particular finding be influenced by
the presence of other findings?

The set of candidate c-schemas is just a starting
point, however. Though evoked, there may be in-
sufficient evidence to support some, and some may
compete with others. Consequently, the set of can-
didates now undergo differential diagnosis.

A context hypothesis is created for each of the can-
didate c-schemas.4 Each hypothesis contains addi-
tional information:

• a list of all of the features that are both
present in working memory and pre-
dicted by the schema (called present–
explained);

• a list of all of the features that are
predicted by the schema but that are
known to be absent in the current
world (absent–explained);

• a list of all of the features that are
present, but not described by the
schema (present–unexplained); and

• a list of all of the descriptive features
of the schema that nothing is known
about (unknown–explained).

Next, each context hypothesis is given a score
based on comparing the current findings to those
predicted to be manifestations of situations char-
acterized by the c-schema. The score is based
on three real-valued versions of the functions used
in internist. internist’s scoring algorithm uses

4Called in internist a “disease hypothesis”.

Figure 3: Scoring function based on the
frequency of present–explained findings:
E(f) = 21

√
1600(1+12fe).

integer-based scoring, with evoking strength, man-
ifestation strength (frequency), etc., all taking on
small numerical values. In our approach, these are
real numbers over the range [0,1]. We fitted in-
ternist’s scoring to exponential functions over that
interval.5

A hypothesis’ score should be proportional to the
evoking strengths of findings it predicts that are ac-
tually observed. Our function for these present–
explained manifestations is as shown in Figure 3,
where fe is the evoking strength of a finding f that
is explained by the hypothesis.

The score also takes into account two other
things. The first is a frequency value that the c-
schema maintains about each of its manifestations.
This is a measure of how often a manifestation oc-
curs when the context occurs. What is used here,
though, is the frequency value of each of the absent–
explained manifestations. The function shown in
Figure 4 is used to penalize the context hypothe-
sis for each of these according to its predicted fre-
quency. In the figure, mf is the frequency of a
manifestation m predicted by the context, but not
present.

The second thing that modifies the score is the
import value of a finding. An import value is a
context-independent measure of how important a
finding is.6 For example, a sonar return would have
a low import value, while the detection of a leak
would have a very high value. A context hypoth-

5Consequently, the functions may seem a bit odd. How-
ever, internist’s functions work quite well in its domain, and
so we have not been tempted to change them.

6In the future, we will examine context-dependent import
values.



esis is penalized for each present–unexplained find-
ing based on that finding’s import value according
to the function shown in Figure 5, where fi is the
import value of a finding f that is present but un-
explained by the hypothesis.

The net score Sc for the hypothesis is the sum of
these three scores for all findings:

Sc =
∑

E(fpe) +
∑

A(mae) +
∑

I(fpu)

where fpe are the present–explained findings, mae

are the absent–explained manifestations, and fpu

are the present–unexplained findings.
Once scored, all context hypotheses some thresh-

old value below the top hypothesis are set aside.
This threshold value can be tuned to improve the
performance of the algorithm. A value too low will
cause the algorithm to reason about infeasible hy-
potheses, while having a high threshold will cause
the algorithm to throw out valid hypotheses. Hy-
potheses that have been set aside may be reconsid-
ered later should their score increase due to further
diagnosis.

Next, a competitor set for the top scoring hypoth-
esis is created. A competitor set contains all hy-
potheses that compete with each other with respect
to the findings that they explain. The internist
algorithm makes use of a simple heuristic to create
this set:

Two diseases are competitors if
the items not explained by one
disease are a subset of the items
not explained by the other; oth-
erwise they are alternatives (and
may possibly coexist in the pa-
tient). [10]

Figure 4: Scoring function based on the
frequency of absent–explained findings:
A(m) = − 5

√
63 ∗ 15(6mf−1).

Figure 5: Scoring function based on the im-
port value of present–unexplained find-
ings: I(f) = − 5

√
2(10fi+3)3(2−2fi)5(6fi).

With respect to context, this heuristic basically
means that if two contexts together explain no more
about the current findings than they do when taken
separately, then they are competitors.

Once a competitor set is created for the topmost
hypothesis, the algorithm checks to see if the top-
ranking hypothesis in the set has a score that is more
than a threshold value (currently 100 points) greater
than the nearest competitor. If this is the case, then
the algorithm concludes that the competitor set has
been “solved”: The hypothesis has been confirmed
and the other competitors are discarded. The corre-
sponding c-schema characterizes the situation, and
so it becomes one of the c-schemas that will later be
merged.

Currently, we follow internist’s algorithm at
this point and remove from further consideration
all findings explained by this hypothesis. This is
not ideal, however, since here the analogy to medi-
cal diagnosis becomes somewhat strained. Whereas
“cough” is explained by “lung cancer” and can
therefore usually be ignored when trying to deter-
mine what else is wrong with the patient, some-
thing like “shallow depth”, though predicted by the
c-schema for being in a harbor, is not necessarily
caused by it in the same way. Consequently, future
work will focus on determining which findings to re-
move from consideration at this point and how to
treat the others. Ideas from other medical diagnosis
approaches (e.g., [12]) will likely be useful here.

Once the topmost context hypothesis is solved
and its manifestations dealt with, the algorithm con-
tinues, creating a new list of hypotheses, a new com-
petitor set for the topmost, and so on. This contin-



ues until all findings with an import value greater
than a threshold (currently 0.4) are explained.

If no conclusion can be made, then the algo-
rithm enters a question-asking mode. In the orig-
inal internist algorithm, this would require the
system to enter one of three questioning modes.
If the topmost diagnosis has a score that is al-
most conclusive (close to 100 points greater than its
nearest competitor), the system would enter “pur-
suit mode”, in which questions are asked regarding
unknown–explained manifestations with high evok-
ing strengths that belong to the topmost hypothe-
sis. If multiple hypotheses have scores that are close
to the topmost hypothesis’, the system would en-
ter “ruling-out mode”, in which questions are asked
about unknown–explained manifestations with high
frequency values in the competitors. Finally, if only
a few hypotheses are close to the topmost hypothe-
sis, “discrimination mode” is entered, in which ques-
tions are asked about unknown–explained manifes-
tations in all of the competitors in the hope that it
will spread the scores out.

Orca will use the same modes as internist, but
instead of always using questions, it will use pro-
cedural schemas (p-schemas) to gather information.
A p-schema [13] can be thought of as an executable
plan to achieve some set of goals. All actions in
Orca are the result of applying p-schemas based on
the situation and its goals. To gather information
about a finding, echo can post a goal to obtain the
desired knowledge. Orca’s agenda manager, which
controls its focus of attention, and its schema ap-
plier, which takes actions based on p-schemas, then
would decide whether to work on the goal and how
to achieve it.

This part of the situation assessment process is
still in progress. In the near future, work will fo-
cus on issues related to deciding whether to gather
information or not, such as: how to determine how
important the information is, how to estimate how
long the corresponding p-schema will take to exe-
cute, and how many resources it will use, etc. Af-
ter the information has been gathered (or it has
been decided not to gather it), the diagnostic algo-
rithm is run again and, as described before, will con-
tinue until all important manifestations have been
explained. Upon completion the algorithm will re-
turn a list of all concluded schemas.

Merging C-Schemas

Once diagnosed, the set of c-schemas that repre-
sent the context must be merged to provide a com-
plete assessment of the situation. This is harder

than it may sound and is an active research topic in
our laboratory.

Like most merging operations (e.g., [9; 5]), the
challenge of merging c-schemas is that they may
contain conflicting information. For example, the
harbor context, c-harbor, dictates that an AUV
should tighten its depth envelope in order to avoid
collisions and entanglement. Likewise, the context
of a rescue mission, c-rescue-mission, allows an AUV
to operate at any depth in order to perform its mis-
sion. Now if an AUV is in a harbor and on a rescue
mission the diagnostic algorithm will return both c-
harbor and c-rescue-mission. If these schemas are to
be merged, Orca will have to realize that the depth
envelope from c-rescue-mission is more important
and use it in the context. How this can be done is
still an open question, but we do have some ideas
regarding the process.

A näıve approach to merging these schemas would
be to give each piece of prescriptive information an
importance value. Then when a conflict arose dur-
ing the merging phase, the most important piece of
information could be chosen. For example, a knowl-
edge engineer could tag all of the information within
a rescue schema as very important. This would
force information from this schema to have prece-
dence over any other contextual information. The
problems with this technique are obvious, however:
two pieces of information may have the same impor-
tance; a choice of one or the other may not be the
best way to handle the problem; and the importance
of a context may not be a reliable estimate of the
salience of its information for a particular situation
when compared to another c-schema—for example,
when performing a rescue in a harbor, information
from the harbor c-schema about currents and bot-
tom conditions should be preferred.

A better method would be to use the frequency
values already present in the c-schema along with
the diagnostic score Sc of the c-schema to determine
which c-schema to use as the source of the informa-
tion. The scores of the c-schemas give a indication
of the relative “fit” of the c-schemas to the current
situation, and the frequency value for the informa-
tion in question would allow a decision to be made
about which schema has better information about
the particular piece of information.

Still better might be to associate with each kind of
information in a c-schema a set of preferred merging
operations for the information. These merging op-
erations might be specific to the context, the knowl-
edge contained within a slot, or both. For example,
two pieces of fuzzy knowledge might be merged by
preferring one over the other, by adding their mem-



bership functions, etc. Allowing merger operations
to be specified would give echo more options when
determining how to merge two disparate pieces of in-
formation. This technique obviously would require
much reasoning, but we believe it would give better
results and be more extensible. It could also han-
dle any type of knowledge that may exist within the
schemas.

Distributing Contextual Information

Once the global context has been created, echo
must distribute the contextual information to the
appropriate modules. This can be done in one of
three ways. The first technique is to allow echo
to act as an “oracle” that other modules may ask
context-related questions. This has the advantage
of being simple to implement, but it requires Orca’s
other modules to have some idea about context and
what they can get from a representation of it. An-
other way is to have echo send specific information
to each module as needed. This technique, while
more complex, allows for a finer grain of control
and leaves the task of understanding context to the
context manager. The final technique is to allow
echo to serve as a sort of information filter that has
the ability to “massage” information within Orca
in order to add context-sensitivity in a transparent
way. Each of these techniques has its pros and cons,
which leads us to believe that the final context dis-
tribution algorithm for Orca will be a mixture of all
three techniques.

Conclusions and Future Work

In this paper we have presented a technique for
performing situation assessment using a priori con-
textual knowledge. Specifically, we have discussed
representing context and contextual information ex-
plicitly as c-schemas, then diagnosing the AUV’s
current situation as being an instance of one or
more c-schemas using a modified version of the
internist–1/caduceus algorithm. The schemas
are then merged to give a complete assessment of
the situation. This information is then distributed
to the rest of the reasoner to guide its behavior.

Future work will focus on completing the imple-
mentation of the diagnostic process and fully inte-
grating it into Orca’s operation. In particular, we
will need to look closely at the issues associated with
information gathering in service of situation assess-
ment. We will also need to examine our choices of
the threshold values described above to tune echo’s
diagnostic process to the domain. How to merge c-

schemas is a major open question that will be the
subject of a PhD dissertation in our laboratory. The
exact information distribution mechanism will need
to be decided upon and implemented as well. We
will also look at the question of when to re-diagnose
the context: when has the situation changed enough
to warrant the effort and time to re-diagnose? Orca
will also require many more c-schemas than we cur-
rently have, and these will have to be obtained from
experts. In the very long term, learning mechanisms
will be investigated for maintaining Orca’s c-schema
repertoire and acquiring new c-schemas.

This will all be done simultaneously with our cur-
rent project to re-implement Orca in a more modu-
lar form for use by other researchers and, ultimately,
aboard AUVs.
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