
INTERFACING THE CODA AND CADCON SIMULATORS:
A MULTI-FIDELITY SIMULATION TESTBED FOR AUTONOMOUS

OCEANOGRAPHIC SAMPLING NETWORKS

Erik Albert, Jonathan Bilodeau, and Roy M. Turner∗

Department of Computer Science, University of Maine
5752 Neville Hall, Orono, ME 04469 USA

{albert17,bilodeau,rmt}@umcs.maine.edu

Abstract

Simulation testbeds are important for develop-
ing complex systems, such as autonomous oceano-
graphic sampling networks (AOSNs), as they allow
the development and testing of control mechanisms
without incurring the cost or risk of using real ve-
hicles. Over the past several years, two simulators
for AOSNs, CoDA and CADCON, have been de-
veloped. The CoDA simulator is a multi-fidelity
simulation testbed for the intelligent AOSN control
mechanisms being developed at the University of
Maine. While it can simulate AOSNs at a range of
fidelities, it lacks truly high-fidelity simulation of the
environment and of vehicle dynamics. CADCON is
a high-fidelity multi-AUV simulation testbed devel-
oped at the Autonomous Undersea Systems Insti-
tute. This paper reports on work done to combine
the two simulators into the CoDA/CADCON sim-
ulator, which is capable of a range of AOSN sim-
ulations, from faster-than-real-time simulations of
aggregate AOSN control mechanism properties to
high-fidelity, real-time simulations of an AOSN as
it carries out missions.

Introduction

Work on developing complex systems is facilitated
by the availability of simulators. This is especially
true if the system is expensive or contains many
expensive or difficult to obtain components. Such
is the case for autonomous oceanographic sampling
networks (AOSNs) [4], which are composed of many
autonomous underwater vehicles (AUVs) and other
instrument platforms.

∗This work was funded in part by grants N0001-14-96-
1-5009, N0001-14-98-1-0648, and N00014-00-1-0614 from the
Office of Naval Research. The content of this paper does
not necessarily reflect the position or the policy of the U.S.
government, and no official endorsement should be inferred.
Authors are listed alphabetically; contact author is Roy M.
Turner (rmt@umcs.maine.edu). The authors thank Andrew
Sylvia for his work on part of the simulator and also the
other members of the Maine Software Agents and Artificial
Intelligence Laboratory (MaineSAIL.umcs.maine.edu).

There are several existing simulators for AOSNs
(e.g., [10; 16; 3]). These typically either simulate
the high-level behavior of an AOSN (e.g., SAMON
[10]) or the low-level behavior of the vehicles within
the AOSN (e.g., CADCON [3]).

The CoDA (Cooperative Distributed AOSN con-
troller) project [17] takes a different approach. The
CoDA simulator, described in more detail elsewhere
[16], is meant to allow AOSNs to be simulated at
several different levels: it is a multi-fidelity simula-
tor. For example, once the designers have completed
an overall design for an AOSN control mechanism,
they can use CoDA to quickly implement a high-
level model and run simulation experiments. As ex-
perience with the design accrues, the model can be
made incrementally more detailed, so that higher-
fidelity simulations can be run. Different pieces of
the model can be simultaneously at different lev-
els of detail. For example, the high-level behav-
ior of a group of AOSN agents (i.e., the vehicles
and other instrument platforms) can be simulated
by rules that model the overall effects of coopera-
tion protocols, while other parts of the model (e.g.,
task assignment) can be modeled at a higher fidelity,
perhaps even with the code that would be fielded in
an actual AOSN. Multi-fidelity simulation promotes
rapid prototyping and faster-than-real-time simu-
lation (e.g., by discrete-event simulation) of over-
all system properties by selectively avoiding high-
fidelity, continuous time-dependent pieces of the
simulator, yet it also allows more detailed simula-
tions to be done later for accuracy.

Until the current phase of the CoDA project,
while the simulator has been able to simulate
AOSNs at a range of fidelity levels, it has not been
able to support truly high-fidelity simulations of ve-
hicle dynamics and sensors. This paper reports on
the current phase, in which work that has been
done add this capability to CoDA by interfacing
it with the Autonomous Undersea Systems Insti-
tute’s (AUSI’s) CADCON high-fidelity simulator.
The combined simulator, called CoDA/CADCON,

This paper appears in the Proceedings of the 13th International Symposium on Unmanned Untethered Submersible
Technology (UUST), Durham, NH, August, 2003. Copyright c© 2003 AUSI and the authors.

MLO

TLO

adjustment
impossible

TLO Work Phase

TLO Design

MLO Discovery

MLO Formation
(Self-Organization/Reorganization)

TLO
Adjustment

change

environment

mission

AOSN
compositionAOSN

capabilities
mission

task assignment

organizational
structure

Figure 1: CoDA’s two-level approach to AOSN control. [From Turner & Turner, 2001, copy-
right c© 2002 IEEE; used by permission.]

is now able to perform at fidelity levels ranging
from high-level, low-fidelity simulation of only the
AOSN’s aggregate properties to high-fidelity simu-
lations which include agents’ reasoning processes as
well as vehicle dynamics.

In the remainder of this paper, we first discuss
the two major pieces comprising CoDA/CADCON,
CoDA and CADCON. We then describe the
CoDA/CADCON simulator, and discuss some of
the problems we faced in interfacing the two and
our solutions. We then give an example of a
CoDA/CADCON simulation.

CoDA

The CoDA project has as its goal developing an
open, distributed, intelligent control mechanism for
AOSNs. We assume that for many AOSN missions
of interest, it may be impossible to pre-specify an
organization for the system. For example, it may
be impossible to predict ahead of time which agents
will take part in the AOSN (e.g., due to attrition
during transit through a hostile or dangerous area).
We further assume that many missions will require
the absence of contact with the AOSN, either due to
mission characteristics (e.g., covert missions) or the
environment (e.g., when operating under ice). Con-
sequently, the AOSN must be able to organize itself
autonomously, carry out its mission, and reorganize
as needed.

Our approach treats the AOSN as a multiagent
system that uses cooperative distributed problem
solving (CDPS) (e.g., [5]) to organize and reorga-
nize. No single agent is assumed to have a complete

global view or complete control. Instead, the agents
cooperate to organize the AOSN, carry out its mis-
sion, and reorganize it as needed.

CoDA uses a two-level approach. When the
AOSN components arrive at the work site, some
subset of them communicate and cooperate to form
a meta-level organization (MLO). The MLO is a
loose organization composed of those agents intel-
ligent enough to participate in organization design.
Its job is to analyze the current situation and de-
sign another organization, the task-level organiza-
tion (TLO), that will actually conduct the mission.
Once designed, the TLO takes over control of the
AOSN until there is a significant problem (e.g., loss
of a vehicle), at which point an MLO re-forms and
repairs or redesigns the TLO. Figure 1 illustrates
this process.

Cooperation protocols [17] control the interaction
of the AOSN’s agents. Different protocols are used
in different phases of CoDA’s operation and by dif-
ferent classes of agents. Task assignment is done
based on matching an agent’s capabilities with those
needed for the mission. This is currently done via
a constraint-based mechanism [11; 12] that is based
on constrained heuristic search [6]; in the future,
this will be done in a distributed manner. Organi-
zation design is currently done very simply, and the
TLO is always a simple hierarchy. In the future,
other organizational structures will be used as well.

The CoDA simulator is written in Allegro Com-
mon Lisp (Franz, Inc.) and CLIPS, a rule-based
language developed by NASA [7], and runs on Linux
and other Unix-like systems. Low-fidelity, high-
level aspects of the AOSN’s behavior are encoded

CLIPS

Misc. Rules

Facts

Discrete-event
Simulation Support

CLIPS
Controller

FIFOs

STDIN/STDOUT

Lisp

Lisp
Interface

Agent
Simulation Rules

Environment
Simulation Rules

X
-W

in
do

w
 G

U
I

CHS-based
Task Assignment

Organization
Design

Experiment
Harness

Figure 2: The CoDA simulator.

in CLIPS rules, while higher-fidelity portions of the
control mechanism are written in Lisp. The simu-
lator can be under the control of either CLIPS or
Lisp, the former to use CLIPS’ graphical user inter-
face for debugging and the latter to run simulation
experiments.

Figure 2 shows CoDA’s structure prior to inter-
facing with CADCON. The CLIPS portion contains
rules for a low-fidelity simulation of the AOSN’s en-
vironment and agent movement as well as rules that
simulate the agents’ behavior when following the
CoDA protocols. It also contains a discrete-event
simulation (DES) component [1] that manages the
simulation time. For example, when one agent sends
a message via acoustic link, the time-of-flight is de-
termined and an event is posted to cause delivery
of the message at the appropriate time. If no other
events are scheduled before that one, and there are
no other high-priority rules triggered, the DES com-
ponent will advance the system’s simulated time to
the time of that event.

The Lisp portion of the simulator contains a mod-
ule to control CLIPS as well as modules for high-
fidelity simulation of parts of CoDA’s operation. In-
cluded in these are modules for constrained heuristic
search-based task assignment and TLO design. This
portion of CoDA also contains an “experiment har-
ness” that generates various AOSN configurations
for experiments.

Communication between the two parts of CoDA
is by means of standard input/output and Unix
named pipes (FIFOs). The pipes handle bidirec-
tional I/O between the two languages during nor-
mal operation. For example, requests to generate
randomly-configured AOSNs travel over one FIFO
from CLIPS to Lisp, and the result travels back via
the other FIFO. Lisp uses standard input/output
(stdin/stdout) to control CLIPS. Basically, when
Lisp is in control of the simulation, it interacts with

CLIPS essentially as would a user typing at the key-
board. In this way, commands, rather than sim-
ulation messages, can be given to CLIPS and the
results received by Lisp.

CADCON

CADCON is a high-fidelity, multi-vehicle simula-
tor written in C and OpenGL that runs under the
Linux and MS Windows operating systems [3]. It re-
alistically simulates several different kinds of AUV,
as well as several different kinds of sensor data. It
is a distributed simulation testbed; users can con-
nect from around the world to control the simulated
AUVs. It also allows hardware-in-the-loop simu-
lation. Clients are available via the World Wide
Web1.

Figure 3 shows the structure of CADCON. It is a
client–server system. An environment server pro-
vides a simulation of the environment, including
sensor information and communication (e.g., acous-
tic link) simulation. A visualization client provides
a graphical user interface to the distributed sys-
tem. One or more AUVSim clients are used to sim-
ulate AUVs, which interact with the environment
server to comprise the simulated system. Additional
clients are planned, as the figure shows. All agents
communicate with one another via the Internet.

The Combined Simulator

In this section, we discuss the overall design of the
combined simulator. In the next section, we discuss
the integration issues that arose and our solutions.

The overall design of the combined
CoDA/CADCON simulator is shown in Fig-
ure 4. The interface between CADCON and CoDA
is via the Internet.

1At www.ausi.org.

Internet

AUVs are cool.
Drop your tether.
All work and no play
makes Jack a dull boy.

MSEL lives
in Lee, NH

I use Lisp because
I know C, Ada, C++,
Java, ...Linux rocks.

Environment
Server

AUVs are cool.
Drop your tether.
All work and no play
makes Jack a dull boy.

MSEL lives
in Lee, NH

I use Lisp because
I know C, Ada, C++,
Java, ...Linux rocks.

Autonomous Systems
Monitoring & Control Client

AUVs are cool.
Drop your tether.
All work and no play
makes Jack a dull boy.

MSEL lives
in Lee, NH

I use Lisp because
I know C, Ada, C++,
Java, ...Linux rocks.

External Model
Interface Client

AUVs are cool.
Drop your tether.
All work and no play
makes Jack a dull boy.

MSEL lives
in Lee, NH

I use Lisp because
I know C, Ada, C++,
Java, ...Linux rocks.

AUVSim
Client

Visualization
Client

o Simulate AUV
o Evaluate Multi-AUV Behaviors

o 3-D View of
 Environment &
 Vehicle Interaction

o Interface to External
 Environment Models

o Multiple Vehicle Control
o Evaluate Multi-AUV Behaviors
 & Organizational Protocols

Under Development

o Scenarios
o Environments
o Sensor & Communication Models
o Web-based Status

Figure 3: The CADCON Simulator. (Courtesy AUSI.)

CADCON was designed to support multi-agent
simulations, but the assumption was that each
piece of vehicle control software would control a
single AUVSim. Vehicle control software would
communicate with its AUVSim “body” via the
generic behavior-based Common Command Lan-
guage, CCL [15; 3]. In contrast, CoDA needs to
control several or many simulated AUVs simultane-
ously.

One approach would have been to have CoDA
control several instances of AUVSim clients via the
network and CCL. However, this has the drawback
of requiring CoDA to translate from its internal rep-
resentation to CCL for each command sent to each
AUVSim. In addition, CCL itself is still under ac-
tive development, hence subject to change.

Consequently, we took the approach of im-
plementing AUVSim functionality in Lisp. In
CoDA/CADCON, the Common Lisp Object System
(CLOS) class VIPbase2 implements a Lisp-based
AUVSim. This has several benefits:

• it avoids the overhead of translation to
and from CCL;

• it decouples work on CoDA/CADCON
from work on AUSI’s AUVSim clients;

• it prevents a proliferation of AUV-
Sim processes, hence making debug-

2The term VIPs has been used in the past in our work to
refer to Vehicles and Instrument Platforms.

ging and control of the simulator more
straightforward; and

• it provides a Lisp-based, simple AUV-
Sim for those investigators working in
the Lisp language, for example, those
looking at artificial intelligence tech-
niques for mission-level control.

We anticipate that over time, the Lisp-based
AUVSim client will become the home for more and
more of the intelligent vehicle control software, as,
for example, mission controllers such as Orca [13;
14] replace the simulated mission controllers cur-
rently present in CLIPS rules. We also anticipate
that as CADCON and CoDA mature, VIPbase will
become less of an AUVSim client and more of an
interface to AUSI’s AUVSim clients. This is part
of the planned progression in CoDA from high-level
simulation to fielded AOSNs.

In the remainder of this paper, we will refer to
instances of VIPbase as AUVSim agents.

Specifications for AUVSim agents are written in
a frame-based knowledge representation language.
This not only provides a convenient way to describe
the vehicles, but it also provides compatibility with
other, frame-based systems (e.g., Orca) that will use
the agents in the future. So far, specifications exist
for (and there can be AUVSim agents for) EAVE ve-
hicles [8], solar-powered AUVs [9], and some instru-
ment moorings, in particular, a simplified version
of a CONVEX mooring used to detect convective

CLIPS

Misc. Rules

Facts

Discrete-event
Simulation Support

CLIPS
Controller

FIFOs

STDIN/STDOUT

Lisp

Lisp
Interface

Agent
Simulation Rules

Environment
Simulation Rules

X
-W

in
do

w
 G

U
I

CHS-based
Task Assignment

Organization
Design

Experiment
Harness

AUV object
AUV object

AUV object
AUV object CADCON

(Environment Server)

Clock
object

Figure 4: The CoDA/CADCON simulator.

overturn events [2]. For example, Figure 5 shows
the definition of an EAVE vehicle.

To set up a simulation, CoDA either generates a
sample AOSN or creates one based on a file the user
specifies. The AOSN’s agents, represented by Lisp
AUVSim agents, are also reflected in corresponding
facts in CLIPS’ working memory. When each AUV-
Sim agent is created, it registers as a vehicle with
CADCON’s environment server. When the simula-
tion begins, CLIPS rules simulate the AOSN as it
follows CoDA protocols to organize itself and carry
out its missions. Movement and other commands
are sent to the corresponding AUVSim, which com-
municates with the environment server. As the
server sends back updated position, posture, sen-
sor, and other data, AUVSim translates this as nec-
essary to match what CoDA expects, then informs
CLIPS, which asserts it as facts in its working mem-
ory.

Integration Issues and Solutions

The CoDA and CADCON simulators are quite
different from one another, both in purpose and
implementation. Consequently, integrating the two
was challenging. The major issues that arose are
the following:

Implementation languages. The simplest is-
sue to deal with, thanks to CADCON’s networked
design, was the difference in implementation lan-
guages. Initially, the CLOS agent class used Al-
legro Common Lisp’s (ACL’s) foreign-function in-
terface to call some AUVSim functions provided by
AUSI, written in C. This worked; however, it did
make the CoDA/CADCON simulator dependent on
AUSI’s code rather than just on the network pro-
tocols and message types. Consequently, AUVSim
code was replaced by Lisp code, and the current
version communicates directly with CADCON’s en-
vironment server. As mentioned, in the future com-
munication may be with AUVSim clients running
separately from CoDA.

Keeping CADCON integration optional. A
goal of this phase of the work was to add capability
to what already existed in the CoDA simulator, not
replace one capability with another. Thus, we want
the user to be able to run simulations using CoDA
with or without CADCON, that is, to continue to
allow multiple levels of fidelity of simulation. Con-
sequently, all of the changes to CoDA to create the
CoDA/CADCON simulator needed to be optional.
This means that the simulator:

• must be able either to simulate vehicle
behavior and capabilities using CLIPS
rules or via the AUVSim agent com-
municating with CoDA;

• must be able to use either discrete or
continuous time (see below); and

• must be able to model, at some level of
detail, the environment when it is not
using CADCON’s environment server.

By doing this, simulations can be run in low-fidelity
mode much faster than real time to quickly test
AOSN control mechanisms, then, when desired, run
in high-fidelity mode in real-time to get better sim-
ulation results.

Continuous versus discrete time. CADCON
uses simulated continuous time. Although it has a
basic cycle rate, the passage of simulated time is
roughly one-to-one with the passage of real time.
This is not the case with CoDA. CoDA uses dis-
crete time, maintained by a discrete-event simula-
tor. Scheduled events are placed in a priority queue.
When all CLIPS rules have fired that are appli-
cable at the current time, the next event is taken
from the queue, and the simulated time is advanced
to that event’s time. Consequently, a simulation
can progress very rapidly if events are sparsely dis-
tributed over time. This mechanism for handling
time is only possible because CoDA does not try to
model such things as vehicle motion to any level of
detail: when an AUV needs to move from (x1, y1, z1)
to (x2, y2, z2), the simulator’s rules determine the
travel time and simply post an event representing
the AUV’s arrival at its destination.

(defframe eave (^coptor)

(cadcon-implementation-class VIPBase)

(masss 300) ;; placeholder value

(bouyancy 0.0) ;; placeholder value

(drag 0.25)

(position (0.0 0.0))

(min-turn-radius 0 (aspects (units meters)))

(length 2 (aspects (units meters))) ;; approx.

(width 1 (aspects (units meters))) ;; approx.

(height 1 (aspects (units meters))) ;; approx.

(power-system -

(aspects (isa ^battery-power-system (constraint t))))

(propulsion-system -

(aspects (isa ^eave-propulsion-system (constraint t))))

(sensor-package -

(aspects (isa ^eave-sensor-package) (constraint t))))

Figure 5: Frame definition of an EAVE AUV.

This mismatch in time representation was
one of the thorniest issues in creating the
CoDA/CADCON simulator, especially since we
wanted (1) to keep the ability to post events (e.g.,
to simulate the loss of an AUV) and (2) to keep the
DES ability so that we could still run CoDA apart
from CADCON when needed.

The first solution we considered was to create a
process that would run on the Lisp side of CoDA
constantly send time information to CLIPS. We re-
jected this idea because CADCON has its own sys-
tem time maintained by the environment server, and
one typically wants each part of a simulation to
agree on the state of the current simulation envi-
ronment. Different time values could lead, for ex-
ample, to CADCON and CoDA having different ve-
locity/acceleration values for an AUV.

We solved this problem by using the system time
from CADCON. The packets CoDA receives from
the environment server include timestamps. The
Lisp side of CoDA passes this information to CLIPS,
where it is asserted as the new system time. The
CLIPS rules that determine which events should
take place simply check that the system time is
greater than or equal to the time an event should
take place. Because this mechanism for perform-
ing a scheduled event is independent of the mecha-
nism for advancing time, simply making this alter-
ation to how time advances causes each scheduled
event to happen in real time (within the resolution
of CADCON’s time cycle). A problem in imple-
menting this solution was that vehicle bodies are
not created in CADCON at the start of the sim-
ulation, but rather as they enter the AOSN work

area, via events defined ahead of time in the problem
statement. Without vehicle bodies connected to the
environment server, there are no packets (and there-
fore no timestamps) being received from CADCON.
Our solution was to create a new vehicle body type
called a clock-vip. Clock-vips are massless agents
that the server treats like any other agent, yet have
no detectable physical presence within the simula-
tion. Their only function is to receive the time from
the server and pass this information to CLIPS. One
of CoDA’s first actions is to create an instance of
clock-vip.

Controlling multiple simulated AUVs si-
multaneously. A simulated AOSN obviously re-
quires multiple simulated AUVs and instrument
platforms. In our approach, all AUVSim agents are
controlled by CoDA rules that move them to satisfy
the needs of the protocols and mission. Vehicles can
be added and deleted when necessary (e.g., to sim-
ulate vehicle failure or a new AUV wishing to enter
the AOSN), and they can be paused and resumed
when the user needs to pause/resume the simula-
tion.

Handling telemetry and sensor data. CoDA
needs information about the state of its vehicles as
well as data from their sensors. In prior versions of
the simulator, CLIPS rules simulated this informa-
tion. In the CoDA/CADCON simulator, however,
much of this information comes from CADCON’s
environment server via the network. When a packet
arrives, the AUVSim agent unpacks the information
and translates it into a form that CLIPS rules can
use; this information is then sent via the FIFOs to
be asserted in working memory.

(defrule raster-trigger

?r <- (raster ?vip ?x ?y ?z ?x1 ?y1 ?z1 ?resolution)

=>

(retract ?r)

(assert (waypoint (vip ?vip) (x ?x) (y ?y) (z ?z) (phase 4)

(dx (- ?x1 ?x)) (dy ?resolution) (end FALSE)

(startx ?x) (starty ?y) (startz ?z)))

(assert (waypoint (vip ?vip) (x ?x) (y ?y1) (z ?z) (end TRUE) (position left)))

(assert (waypoint (vip ?vip) (x ?x1) (y ?y1) (z ?z) (end TRUE) (position right)))

(move-vip ?vip ?x ?y ?z))

Figure 6: A CLIPS rule to move an AUV to the first waypoint in a raster search.

The environment server provides information
about a vehicle’s position and attitude. Some in-
formation is provided about the local environment
as well, such as magnetic flux, current velocity, tem-
perature, and so on. This information is the actual
data from the simulated environment, not sensor
data. The AUVSim agent, like the “real” AUVSim
client, must simulate sensors that view this informa-
tion and provide simulated data. For now, most of
this information is simply passed through as data to
CLIPS; in the future, the agent will be able to mod-
ify the data via various noise models, etc. Sensors
whose information is not provided by the environ-
ment server are simulated completely by the agent,
then their information is reported to CLIPS.

Issuing commands. For now, CLIPS rules sim-
ulate most of the intelligence in the AOSN. This
includes what corresponds to the agent programs
(e.g., intelligent mission controllers) that would, in
a real system, control the vehicles.

Commands to move, to communicate, or (ulti-
mately) to activate effectors are sent from CLIPS
rules to the appropriate agent in Lisp via the FI-
FOs. For example, Figure 6 shows a rule that initi-
ates a raster search of an area by setting a waypoint
and telling the corresponding AUVSim to move to
that waypoint. To move, the AUVSim agent com-
putes the appropriate desired velocity vector and
angular velocities, then sends this information to
the environment server. For simulated communica-
tion (e.g., via an acoustic modem) or effector com-
mands, messages are also sent to the environment
server. The environment server uses the desired ve-
locities to move the vehicle.3

Complex instrument platforms. Because
CADCON’s environment server does not directly
support one VIP having multiple sensors at various
positions, as is needed for (e.g.) a CONVEX moor-

3This is essentially how the real AUVSim clients currently
work, as well. In the future, desired accelerations or even
thruster output might be used instead.

ing, we needed to create a system where AUVSim
clients can create and control other AUVSim clients
in order to support complex instrument platforms.
A complex AUVSim that controls other AUVSims
is specified in its frame representation as having
“intelligent” components. When instantiated, each
of its intelligent components is instantiated in turn
and their output functions (normally connected to
CLIPS) are redirected to send sensor and telemetry
information to their controlling AUVSim. In addi-
tion, the methods that the main AUVSim client sup-
ports (i.e., connect, disconnect, transit, etc.) must
call the corresponding method in each of its intelli-
gent components so that CLIPS can treat the com-
pound AUVSim as a single entity.

Network issues. CADCON communicates with
its clients using packets which are essentially nested
C structures. In Lisp, we needed to represent these
structures twice: once as a Lisp structure whose
slots are native Lisp types, and again as a foreign
type which can be directly sent to and received from
a binary stream. Each pair of structures has cor-
responding functions to convert between them and
also handle other conversion issues, such as convert-
ing data to/from network byte order, replacing Lisp
nil values with a default value specific to each data
type, and truncating strings that are too long.

Speed mismatch. Not only do CoDA and CAD-
CON operate with different representations of time,
their speed differs. CADCON’s environment server,
for example, generates a position (etc.) packet ev-
ery second. Given the complexity of what CoDA
is doing, it cannot guarantee that it will respond
within that time, although it usually will. Conse-
quently, the AUVSim agent must manage any mis-
match. This is done by allowing the agent to send
information to CLIPS at a slower rate than it re-
ceives it from CADCON. Newer information that
arrives at the agent before it is ready to send infor-
mation to CLIPS replaces older information, so that
CLIPS always gets the most current information.

(defproblem demo-problem
(end (time (minutes 20))) ;end simulation in 20 min.
(tasks
(background-survey ;surveying task
(methods survey-alt1 survey-alt2))

(convex ;CONVEX task
(methods convex-default))

(communication-relay ;radio mooring, e.g.
(methods stationary-comm))

(LBL1 ;long-baseline nav transponder
(methods LBL))

...)
(methods
(survey-alt1 ;requires two surveys with two instruments
(capabilities survey-magnetometer survey-side-scan-sonar))

(stationary-comm ;comm. task needs a radio
(capabilities radio))
...)

(VIPs
(EAVE-Ariel ;an EAVE vehicle
(caps CDPS survey-magnetometer loiter transit search acoustic-link

manage manage manage manage) ;simplistic representation for mult. caps
(resource-units 3) (location 0 0 0) (heading 0 0 0)
(entry ;when the EAVE shows up -- 5 s, std. dev. 0.3 s
(time (seconds 5 .3) (distribution normal)))

(exit ;exits 100 seconds later
(time (seconds 100 10) (distribution normal))
(type sudden))) ;without notification

(EAVE-Arista ;another EAVE
...))

(events
(failure ;AUV1 fails sometime during
(vip AUV1) ; the TLO-work phase of simulation
(type clean)
(phase "TLO-work"))
...))

Figure 7: A portion of a problem definition.

Example

To use the CoDA/CADCON simulator, the user
first defines the vehicles and instrument platforms
by defining frames to represent them (see Figure 5),
then either defines a problem or else lets the simu-
lator build one or more problems.

To specify a problem, the user creates a file con-
taining a problem definition. Figure 7 shows one
such problem definition. Currently, the parts of a
problem definition are:

• Task definitions: one or more tasks
are named and alternative methods are
specified for accomplishing each.

• Methods: each method specifies the
vehicle/instrument platform capabili-
ties it needs (e.g., CTD, raster search,
etc.).

• VIPs: vehicles and instrument plat-
forms are specified; for each, its capa-
bilities, resources, and location is spec-
ified, as well as when it is to enter or
leave the system.

• Events: this portion specifies events
that are to be scheduled to occur dur-
ing the simulation, for example, the
failure of an AUV.

• Simulation properties: simulation end
time, etc.

The current problem specification mechanism will
be extended in the future to allow the specifica-
tion of full AND–OR task trees [12], task locations,
time, and resources, and constraints between task
elements (e.g., that two capabilities are needed at
the same time, on the same vehicle).

The user next makes an instance of the simulator,
telling it the location of the problem file. When
the simulator is run, the problem definition specifies
which AUVSims are created and when they are to
be created (i.e., as the simulated vehicles arrive at
the work site). These then register with CADCON’s
environment server.

Figure 8 shows two screenshots from CADCON’s
visualization client when CoDA/CADCON is run-
ning. On the right is a simple problem containing
a solar AUV, an EAVE, and a CONVEX mooring.
On the left is a more complex simulation containing
seven AUVSims: six solar AUVs and a CONVEX
mooring. (A mooring with multiple sensors, such as
CONVEX, currently shows up in the simulation as
multiple AUVSim clients.)

Figure 8: CoDA/CADCON screen snapshots.

Conclusion and Future Work

Multi-fidelity simulators facilitate the develop-
ment of complex systems such as AOSNs. Such sim-
ulators allow simulations to be run at several differ-
ent levels, depending on the needs of the current de-
velopment efforts, from high-level, faster than real-
time simulations of aggregate AOSN properties to
highly-realistic simulations of vehicle movement and
behavior.

The purpose of this phase of the CoDA project
was to extend the CoDA multi-fidelity simulator to
support highly-fidelity simulations of AUVs via in-
terfacing with the CADCON simulator. Currently,
CoDA/CADCON simulations can range from aggre-
gate property simulations to those involving very
realistic AUV behavior.

In addition, this phase of the project supports its
sister project, Orca, and projects building on Orca.
The mechanisms developed for utilizing CADCON
from within Lisp will shortly also be used by the
Orca intelligent mission controller, allowing Orca
to drive simulated AUVs in CADCON simulations.
This replaces an older, much cruder simulation
testbed.

Future work in the CoDA project will focus on
issues related both to CoDA protocols and to simu-
lation. Most of the future work will focus on further
developing the mechanisms and protocols for AOSN
operation, in particular for autonomous organiza-
tion/reorganization and task assignment. Work will
also focus on improving the rather primitive means
CoDA now uses to describe problems and, to a lesser
extent, vehicles and instrument platforms. Cur-

rently, for example, tasks require particular capabil-
ities, but there is no principled way to specify when
and where those capabilities will be needed, nor is
there a way to specify resource needs. Constraints
between capabilities are also not well-supported; at
the current time, for example, one cannot specify
“capability A needs to be done by the same vehicle
as capability B”.

With respect to the CoDA/CADCON simulation,
most of our future work will be on the CoDA side.
We anticipate moving more of the CoDA control
mechanism into Lisp and out of CLIPS as we move
from aggregate property simulation to agent-based
simulation. To do this, vehicle controllers (e.g.,
Orca) will be linked to our Lisp AUVSims (VIPbase
objects). Also, as we mentioned above, as work on
CADCON progresses, VIPbase will contain less ve-
hicle simulation code; instead, VIPbase will be mod-
ified to interact with AUSI’s AUVSim clients. This
will allow higher-fidelity simulations as well as the
option of using real hardware. This will be an im-
portant step along the path toward eventually mov-
ing CoDA out of simulation and into the real world.

References

[1] J. Banks, J. S. Carson, II, and B. L. Nelson.
Discrete-Event System Simulation. Prentice
Hall, second edition, 1996.

[2] F. Bub, W. Brown, P. Mupparapu,
K. Jacobs, and B. Rogers. Hydro-
graphics survey report: Convective
overturn experiment (CONVEX): R/V
endeavor cruise en–291. Technical

report, University of New Hampshire
Ocean Process Analysis Laboratory, 1997.
(ekman.sr.unh.edu/OPAL/CONVEX/EN291/
en291 report.html).

[3] S. G. Chappell, R. J. Komerska, L. Peng,
and Y. Lu. Cooperative AUV Development
Concept (CADCON) – an environment for
high-level multiple AUV simulation. In Pro-
ceedings of the 11th International Sympo-
sium on Unmanned Untethered Submersible
Technology (UUST99), Durham, NH, Au-
gust 1999. The Autonomous Undersea Sys-
tems Institute, Lee, NH.

[4] T. Curtin, J. Bellingham, J. Catipovic, and
D. Webb. Autonomous oceanographic sam-
pling networks. Oceanography, 6(3), 1993.

[5] E. H. Durfee, V. R. Lesser, and D. D. Corkill.
Cooperative distributed problem solving. In
A. Barr, P. R. Cohen, and E. A. Feigenbaum,
editors, The Handbook of Artificial Intelli-
gence, volume IV, pages 83–147. Addison–
Wesley Publishing Company, Reading, MA,
1989.

[6] M. S. Fox, N. Sadeh, and C. Baykan. Con-
strained heuristic search. In Proceedings of
the Eleventh International Joint Conference
on Artificial Intelligence, pages 309–315, De-
troit, MI, August 1989.

[7] J. C. Giarratano. CLIPS User’s Guide.
NASA, Information Systems Directorate,
Software Technology Branch, Lyndon B.
Johnson Space Center, Houston, TX, 1993.

[8] J. C. Jalbert. EAVE–EAST field test results.
In Proceedings of the 1984 Conference of the
IEEE Oceanic Engineering Society (Oceans
’84), Washington, DC, 1984.

[9] J. C. Jalbert, P. Irazoqui-Pastor, S. Miles,
D. R. Blidberg, and D. James. Solar
AUV technology evaluation and develop-
ment project. In Proceedings of the Tenth
International Symposium on Unmanned Un-
tethered Submersible Technology, pages 75–
87, Durham, NH, 1997.

[10] S. Phoha, J. Stover, R. Gibson, E. Peluso,
and P. Stadter. Autonomous ocean sampling
mobile network controller. In Proceedings
of the Tenth International Symposium on
Unmanned Untethered Submersible Technol-
ogy (UUST), pages 362–374, Durham, NH,
September 1997.

[11] E. H. Turner. Task assignment in AOSNs:
A constraint-based approach. In Proceedings
of the 10th International Symposium on Un-
manned Untethered Submersible Technology
(UUST), Durham, NH, 1997.

[12] E. H. Turner and R. M. Turner. A
constraint-based approach to assigning sys-
tem components to tasks. International
Journal of Applied Intelligence, 10(2/3):155–
172, 1999.

[13] R. M. Turner. Context-sensitive, adaptive
reasoning for intelligent AUV control: Orca
project update. In Proceedings of the 9th

International Symposium on Unmanned Un-
tethered Submersible Technology, Durham,
NH, September 1995.

[14] R. M. Turner. Context-mediated behavior
for intelligent agents. International Jour-
nal of Human–Computer Studies, 48(3):307–
330, March 1998.

[15] R. M. Turner, D. R. Blidberg, S. G. Chap-
pell, and J. C. Jalbert. Generic behaviors:
An approach to modularity in intelligent sys-
tems control. In Proceedings of the 8th In-
ternational Symposium on Unmanned Un-
tethered Submersible Technology (AUV’93),
Durham, New Hampshire, 1993.

[16] R. M. Turner and E. H. Turner. Simu-
lating an autonomous oceanographic sam-
pling network: A multi-fidelity approach to
simulating systems of systems. In Proceed-
ings of the Conference of the IEEE Oceanic
Engineering Society (OCEANS’2000), Prov-
idence, RI, September 2000.

[17] R. M. Turner and E. H. Turner. A two-
level, protocol-based approach to controlling
autonomous oceanographic sampling net-
works. IEEE Journal of Oceanic Engineer-
ing, 26(4), October 2001.

