RI, September, 2000. Copyright © 2000 IEEE.

This paper appeared in the Proceedings of the Conference of the IEEE Oceanic Engineering Society (OCEANS), Providence,

Simulating an Autonomous Oceanographic Sampling Network:

A Multi-Fidelity Approach to Simulating Systems of Systems*

Roy M. Turner
Elise H. Turner
Department of Computer Science
University of Maine
Orono, ME 04469 USA
{rmt,eht} @umcs.maine.edu

Abstract—-Many useful ocean engineering sys-
tems, such as autonomous oceanographic sam-
pling networks (AOSNs) are actually systems of
systems. Such systems are complex and require
simulation during design and development. How-
ever, adequately simulating such systems is also
difficult. We have developed an approach to
multi-fidelity simulation that allows systems of
systems to be simulated at several points along
the spectrum from high-level, low-fidelity to low-
level, high-fidelity simulation. We have imple-
mented this approach a simulator for the CoDA
(Cooperative Distributed AOSN control) project.
Such an approach provides simulation support
throughout the lifetime of the project, from de-
sign through proof-of-concept and beyond.

INTRODUCTION

Many systems that are useful in ocean engineering are
systems of systems. For example, an autonomous oceano-
graphic sampling network (AOSN) [1] is a system com-
posed of autonomous underwater vehicles (AUVs) and
instrument platforms, each of which is itself a system.
Systems of systems are complex, not only because of the
complexity of the individual systems, but also because of
the complexity of the interactions between the compo-
nent systems.

Because of the complexity, simulation is an important
tool in designing new systems of systems. However, it
can be difficult to create an effective simulation for such
systems. Because of the many components, it takes a
long time to create a traditional, detailed simulation of

*This work was funded in part by grants N0001-14-96-1-5009
and N0001-14-98-1-0648 from the Office of Naval Research. The
content of this paper does not necessarily reflect the position or the
policy of the U.S. government, and no official endorsement should
be inferred.

the entire system. In addition, a detailed simulation of
the entire system may not allow designers to isolate spe-
cific mechanisms for interactions that should be evalu-
ated. On the other hand, this level of detail is not always
necessary to get important feedback that can impact de-
sign. However, detailed simulation is ultimately needed
to truly evaluate the system.

Our approach is to create a multi-fidelity simulation
for systems of systems. This approach includes several
possible levels of simulation fidelity, ranging from a high
level of abstraction to a high level of detail.

Many approaches allow simulation at an abstract or
at a detailed level, or both. For example, simulations
based on Petri nets or finite state machines often model
the interaction of systems without modeling more than a
highly abstract version of each component’s state. At the
other extreme, simulators such as CADCON [2] model
the systems and their interactions in a highly detailed
manner. Unfortunately, for these and most other sim-
ulators, there is nothing in between: there is no route
from abstract, high-level simulation of system properties
to highly-detailed, low-level simulation of system compo-
nents.

Our approach differs by being capable of simulation
at several levels of fidelity in a single simulator for the
system. These levels are:

Protocol level: The aggregate properties of
the entire system are simulated by focusing
on the interaction protocols and treating the
component systems as black boxes.

Technique level: Techniques are developed
that carry out steps in the protocol level, but
are not necessarily implemented as algorithms
that will be executed by the components.

Algorithm level: Algorithms that a compo-
nent will use to implement the techniques are
selected and implemented.

Full agent in software level: All algorithms
required to control the component are im-

plemented, and these components interact to
carry out missions in a simulated world.

Full agent in hardware level:
Algorithms and interactions are tested using
robots in the laboratory.

At any given time, different parts of the system to be
simulated can be simulated at different levels of fidelity.
For example, a robot in the laboratory may interact with
another agent implemented completely in software and
still others simulated at the protocol level or with only a
few techniques implemented as algorithms. This provides
a smooth path between an initial high-level, low-fidelity
simulation and the ultimate low-level, high-fidelity simu-
lation of the system. The approach allows us to quickly
simulate the overall system properties without requiring
commitments to implementation details. More impor-
tantly, it allows us to focus on an individual technique
and evaluate it in the context of the full system without
requiring the full system to be implemented in detail.
The approach also modularizes the development process
and allows incremental development and testing.

In the remainder of this paper, we will discuss this
approach to simulation in more detail. We describe the
challenging issues confronting such simulations and how
our approach addresses them. We then present an im-
plementation of our approach, the CoDA (Cooperative
Distributed AOSN control) simulator [3; 4], which simu-
lates autonomous oceanographic sampling networks.

SIMULATING SYSTEMS OF SYSTEMS

Approaches to simulating systems of systems, which we
will refer to hereafter as multiagent systems, have gener-
ally taken one of two paths. The first path is to simulate
the aggregate properties of the system by concentrating
on the interactions between the components. In this ap-
proach, the components themselves are treated as black
boxes. For example, a Petri net or other mechanism may
be used to simulate the evolving state of the entire system
as actions are taken and messages are sent between com-
ponents, but the actual decision-making processes of the
agents that would produce the actions or messages are
not simulated. This approach can give a very good idea
of what the overall system will do, and it is very quick to
implement, easy to use for simulation experiments, and
easy to change as needed. However, it has the drawback
of simulating the multiagent system at only a high level
of abstraction. Ultimately, the behavior of the system
will depend on the decision-making processes of its com-
ponents as they interact with their local environment and
the other components.

The other path is to simulate to a high level of detail
the decision-making processes of the agents comprising
the multiagent system—in fact, the actual agent control

programs, or something very close to them, would likely
themselves be used in the simulation. This approach has
the benefit of yielding high-fidelity simulations of what
the behavior of the actual system will be. However, it has
its price. It is much more difficult to design and imple-
ment the agent control programs than it is to simply sim-
ulate what they might plausibly do in various situations.
This kind of simulator takes much longer to implement.
In cases where the agent control programs are themselves
being designed, needed information about agent details
may not be known or implementation of the simulator
may be delayed waiting for the results of the control pro-
gram research. Such a simulator takes longer to run, too,
since the agent control programs may have to run in real
time, whereas an aggregate property simulation can often
run many times faster than real time.

The first approach is often taken for systems in which
the focus is the interaction, not the control programs of
the components and, generally, where the components
themselves are rather simple. For example, this would
be an appropriate kind of simulation for designing and
debugging a new Internet protocol. The assumption for
this kind of simulation is that either: the components
being simulated can be adequately characterized by the
rules, state transitions, or other means used to repre-
sent their actions; or that the components can be readily
designed to some set of specifications that are being sim-
ulated. The second approach is often taken for systems
in which the focus is on the agent-level control programs,
the agents are seen to be very complex, or both. For ex-
ample, this kind of simulation is the norm in artificial
intelligence research, where the agents are very complex.
The behavior of such agents generally cannot be reduced
to a simple set of rules, nor can they be designed with
confidence to meet a set of specifications without the aid
of simulation.

Neither approach by itself is sufficient for a simula-
tor supporting development of a multiagent system, such
as an AOSN, in which attention has to be paid both to
the interaction between protocols and to the complex na-
ture of the components themselves. What is needed is a
multi-fidelity approach to simulating multiagent systems,
where “multi-fidelity” refers both to simultaneously sim-
ulating different components at different levels of fidelity
as well as supporting different levels of simulation fidelity
over time as development progresses.

MULTI-FIDELITY SIMULATION

We have taken an approach to simulating systems
of systems that calls for simulation of components and
their interactions at several different levels, both over the
course of the development of the multiagent system and
simultaneously, with different components simulated at

different levels.

Early in the development of a multiagent system such
as an AOSN, it is important to quickly simulate aggre-
gate properties of the system. We refer to this level as
the protocol level, since what is being simulated here is
typically the protocols the components of the system use
to communicate and cooperate with one another. This
allows the researchers to quickly try different high-level
approaches to controlling the system without the need
to commit to or implement simulations of agent control
program details. Many dead-ends can be detected and
avoided by using this kind of simulator to predict general
properties of the system, saving much effort that would
otherwise later be wasted.

As work progresses, it is important to be able to try
out different techniques for problems the agents must
solve. For example, in an AOSN, mission tasks need
to be matched up with AUVs or instrument platforms
that will perform them. There are many ways of ap-
proaching this task assignment problem. The simulator
should support easily trying these different techniques
in the context of the full system. It should not at this
stage, however, require a commitment to how the tech-
nique will ultimately be implemented aboard an actual
agent. Such a commitment may not be possible at this
stage, and in any case, it risks confounding properties
of the technique with implementation details. We refer
to this level of simulation fidelity as the technique level.
For example, constrained heuristic search (CHS) [5] is an
attractive candidate for task assignment. A distributed
version, DCHS [6], exists and would likely be used in
the AOSN. Implementing the distributed version would
require developing the algorithms to be used by partic-
ipating agents as well as knowledge of details of these
agents’ processing capabilities and means of communica-
tion. We can avoid this overhead by first implementing a
CHS-based task assignment mechanism and testing it in
the context of the AOSN simulation. If the technique is
successful, DCHS can be implemented in the algorithm
level.

As techniques are selected for various agent control
problems, implementation commitments will be made.
It then will be possible to write the code that will run
aboard the agent in the real world. It is likely that this
will occur for some techniques before others, and so it
may be desirable to test the implementations before the
full agent control programs are ready to be tested. The
simulator should support this, as well. This level of simu-
lation, the algorithm level, entails some parts of the mul-
tiagent system being simulated with an extremely high
level of fidelity to the ultimate system while the rest of
the system is left at lower-fidelity levels (i.e., protocol
and technique levels). For example, a DCHS-based task
assignment mechanism might be implemented and used

in the simulation while the rest of the agent is being sim-
ulated at the protocol level.

As work progresses, more and more of the agent con-
trol programs will be fully specified and implementable.
This leads to the next level of simulation, the full agent
in software level. This level is equivalent to the second
traditional simulation approach mentioned at the start
of this section; it can give very good predictions of the
performance of the actual multiagent system. One agent
may be implemented at this level while others are imple-
mented at other levels, thus allowing this level to co-exist
with others in the multi-fidelity simulator.

A simulator will ideally support yet another level. The
highest-fidelity level of simulation is the full agent in
hardware level. At this level, the agent control program
is controlling portions of the actual hardware that will be
fielded, ideally the entire agent hardware, while still re-
maining in a simulation setting. For example, one could
imagine an AOSN simulator in which some AUVs are
being simulated, while others are actually in the ocean,
with their positions and and other data being integrated
into the ongoing simulation.

It is important to note that a multi-fidelity simulator
should not require all components to progress through
these levels at the same rate. Indeed, not all components
need to progress at all. For example, the simulator should
allow researchers concentrating on task assignment or
agent organization techniques to try out their solutions
in the simulator before other pieces, such as communica-
tion modules or mission planners, are ready. Some agents
may never be simulated at high fidelity. For example, this
might occur when the system is to include components
to whose internals the researchers do not have access, or
when testing how the system would behave in the pres-
ence of agents that do not yet exist.

A multi-fidelity simulator provides a smooth migration
path for research on multiagent system control from the
earliest design phases, supported by simulation at the
protocol level, through implementation and full proof-
of-concept, supported by simulation at the full agent in
hardware level. In order to support this, the simulator
must have a flexible skeleton that the simulated com-
ponents, regardless of their level of simulation, can “plug
into.” At the aggregate level, this may mean adding rules
to simulate what the component would do under given
conditions. At higher levels of fidelity, it will require well
worked-out communication protocols and languages for
the pieces to use to talk to the rest of the simulator,
either directly, or more likely, via wrappers around the
simulated components.

Whether a component is simulated at a high or a low
level of fidelity should be transparent to the user. The
only difference noticeable to the user of the simulation
should be that the higher the overall fidelity, the better

CLIPS s » | Agent Control
STOIN_ | [Sruiation CLIPICLASP Software
S.I.‘/;e;n STDOUT Control Other Simulators
Rules for | [Tecmiquetea] | T " (e.g., CADCON)
/S_ggrleg_ate Simulation Code
mulation Nework | e » | Technique-Level
CLIPS<->Lisp| FIFOs | Lisp<->CLIPS Server % Simulation Code
Rules for Communication Communication (future)
Environmental || Algorithm-Level Algorithm-Level
Simulation Simulation Code Simulation Code
L Full-Agent Full-Agent
Discrete Event Simulation Code Simulation Code
Simulator
Hardware& | | vt » Hoadware&
L |nterface Code Interface Code

Figure 1: CoDA simulator.

the system’s behavior matches the real-world behavior of
the simulated system. The level of simulation of a compo-
nent should be transparent as well to the other simulated
components. For example, a full-agent simulation of an
AUV mission controller should not need to know that
a mooring is being simulated at the aggregate property
level. Similarly, an AUV deployed in the ocean and com-
municating with the rest of the simulation should need
only changes in the way it communicates (i.e., through
the simulator rather than directly to other components)
and changes to allow it to “see” other AUVs and instru-
ment platforms.

It is also important to allow the user to specify at what
level he or she would like the simulation to run. Although
components cannot be simulated at higher fidelity than
their development stage allows, it will often be useful to
run the simulation at lower fidelity, for example, to run
experiments faster than real time.

Finally, it is important that, at all levels, the simu-
lator provide data collection and simulation monitoring
services to the user.

A MULTI-FIDELITY SIMULATOR

In this section, we discuss an example multi-fidelity
simulator, the CoDA simulator. The CoDA (Cooperative
Distributed AOSN control) project [7; 3; 8] has as its goal
developing intelligent control techniques for autonomous
oceanographic sampling networks. The current phase of
the project focuses on autonomous organization and re-
organization of the AOSN as well as the problem of task
assignment. Our ideas about multi-fidelity simulation
grew out of this project’s need for a way to rapidly pro-
totype communication and cooperation protocols that
would also allow the organization and task assignment
work to be folded into the simulator as it matured.

The architecture of the current simulator, herein just

called CoDA, is shown in Fig. 1. The skeleton of CoDA,
including the simulation controller, is written in Lisp and
runs under Unix (Linux and Solaris). Protocol-level sim-
ulation is currently done in the rule-based expert system
language CLIPS [9]. CLIPS also maintains the simulated
system time, and it provides discrete event simulation
and simple environmental simulation. CLIPS is started
and controlled by the Lisp-based simulation controller.

Communication between CLIPS and Lisp is done in
two ways. First, CLIPS’ standard input and standard
output streams are written and read by Lisp to send
commands and receive information, respectively. Sec-
ond, Unix FIFOs (named pipes) are used to transfer in-
formation between Lisp and CLIPS. For example, pipes
are used when CLIPS requests that Lisp carry out some
higher-fidelity simulation such as running a task assign-
ment algorithm.

Protocol-level simulation is done by CLIPS. Rules are
used to represent what agents would do under different
situations. The rules’ actions simulate what the agents
do when following the cooperation protocols, but not how
they arrived at the decisions necessary to do follow them.
Fig. 2 shows a portion of the output from this level of the
simulator as the AOSN self-organizes. (A more complete
description of this process can be found elsewhere [3].)

As long as the simulator has any portion that is being
simulated at the protocol level, CLIPS performs other
simulation functions, such as maintaining the system
time. This is done by using the discrete event simu-
lator (DES), implemented as CLIPS rules and objects.
Protocol-level simulation rules post events that should
occur at some time in the future. When the rules reach
quiescence, DES moves the system time to the next event
and runs the event. For example, communication via
acoustic link is currently modeled this way. When an
agent sends a message, rules determine the travel time
for the message through the water before it arrives at its

[CLIPS]
[CLIPS]
[CLIPS]

00:00:04.0 (MLO) new agent VIP10 broadcasting organization-present?.
00:00:04.0 (MLO) new agent VIP10 setting timer 1 to wait for replies.
00:00:04.0 (MLO) new agent VIP11 broadcasting (non-CDPS) organization-present?.

[...DES moves time ahead to simulate acoustic link message transit time...]
[CLIPS] 00:00:05.05 (MLO) VIP1l: received organization-present? message from VIP10
[CLIPS] 00:00:33.01 (MLO) VIP16: received organization-present? message from VIP13
[CLIPS] 00:00:33.02 (MLO) VIP14: received organization-present? message from VIP13

[...]

[CLIPS] 00:00:34.0 (MLO) VIP10: waited long enough for organization-present? replies.

[CLIPS] 00:00:34.0 (MLO) VIP10: initiating MLO formation with agents =

(VIP10 VIP13)

[CLIPS] 00:00:34.0 (MLO) VIP10: broadcasting first initiate-MLO message.

[...]

[CLIPS] 00:01:05.05 (MLO) VIP13: completed MLO formation.
[CLIPS] 00:01:05.05 (SIM) MLO formed, contains members (VIP10 VIP13 VIP9).
[CLIPS] 00:01:05.05 (SIM) switching context -> MLO discovery

Figure 2: Output from the protocol level of simulation. (Edited slightly for clarity.)

destination and posts an event for that amount of time
in the future. At that time, the recipient will receive the
message. (For broadcasts, travel time is determined to
all agents and corresponding events are posted.)

As portions of the simulation proceed from the proto-
col level toward more high-fidelity simulations, more of
the simulation functionality will migrate out of CLIPS.
When CoDA is running completely in a high-fidelity
mode, then CLIPS will need do little.

As shown in Fig. 1, technique-level simulation can oc-
cur in two places in CoDA, within Lisp and external to
it. Currently, it is done within Lisp. In order to try out a
new technique, the protocol-level simulation of the agent
using the technique must be modified to request that
CoDA run the technique when it is needed. This entails
modifying a few rules and defining a request type, then
modifying a Lisp variable to link the request type to the
function to call when the request is made. For example,
the current simulator uses a technique that is a modified
version of constrained heuristic search (CHS) in order to
do task assignment. Requests were defined to transfer in-
formation from the CLIPS protocol-level simulation into
Lisp data structures (e.g., “add-task,” “add-alternative,”
etc.), and a request was added to invoke CHS (“solve-
problem”). CLIPS rules pertaining to task assignment
were modified to send Lisp these messages and wait for
Lisp’s reply. CoDA’s Lisp portion, when it receives the
message, calls the CHS top-level function, then sends the
results to CLIPS. Fig. 3 shows a portion of this process.

At the present time, we are working on an algorithm-
level simulation of the task-assignment mechanism. This
will be a distributed version of CHS. It will be added
to the simulator in much the same way as was sketched
above for the technique-level CHS.

Although Fig. 1 shows full-agent and hardware-level
simulation components as also being possible to include
within Lisp, most likely these will be external to the main
portion of the CoDA simulator. As shown, entities exter-
nal to CoDA can also be used to implement technique-
level and other levels of simulation. In the near future,
we will add a network communication module to CoDA.
This will communicate using sockets with simulated com-
ponents. This will allow the pieces of the simulation to
be written in virtually any language and run on multiple,
possibly remote, systems. For example, we anticipate us-
ing the Orca AUV mission controller [10] to control simu-
lated AUVs in CoDA. Orca will likely run in its own Lisp
process on another machine and communicate with the
agent “body” by exchanging messages with CoDA. CoDA
may simulate the body internally, or that, too, may be
external. For example, Orca’s commands to the AUV
may be passed along to another external simulator, such
as CADCON [2], which can provide high-fidelity AUV
simulation, or they may be passed along to actual robots
connected to CoDA via the Internet.

Experiment control, as well as data gathering and anal-
ysis facilities are also provided by CoDA. CoDA uses
CLIP/CLASP (Common Lisp Instrumentation Pack-
age/Common Lisp Analytical Statistics Package) [11].
This allows experiments to be defined in data files, then
run under the control of CoDA. Data are gathered based
on the experiment definitions and can be analyzed statis-
tically by CLASP or exported for use by other statistics
programs.

The current CoDA simulator is being extended in sev-
eral ways. The network server mentioned above will
soon be added. This will allow graphical user interfaces
(GUIs), for example, to be easily added to CoDA. One

Received request to start new TLO construction; deleting old problem(s).

New TLO problem will be referred to as ‘"genl099"’.

[CLIPS] 00:03:11.0 (MLO) VIP30: creating new search problem for assignments, gen1099
[CLIPS] 00:03:11.0 (MLO) VIP30: Assigning tasks.

Attempting to solve problem "genl099".
Problem "genl099" is solved.

Sending to CLIPS: problem status of "genl099" is SUCCESS.
[CLIPS] 00:03:11.0 (MLO) VIP30: status of problem gen1099 is SUCCESS.
[CLIPS] 00:03:11.0 (SIM) Creating object genl132 to represent the TLO.

[CLIPS] 00:03:11.0 (MLO) TLO created.

Figure 3: Output of a technique-level simulation.

A TLO is the task-level organization that conducts the

mission; MLO is the meta-level organization that designs the TLO.

subproject currently under way will create a Java/ VRML
(Virtual Reality Modeling Language) GUI that receives
information from CoDA and generates and maintains a
virtual reality model of the simulated system.

The addition of the network server will allow another
major extension, the addition of hardware and full-agent
simulation abilities. Our work is currently being ex-
tended to simulate a system of autonomous agents that
are either real robots (Pioneer land robots) or simulated
robots [12]. The real robots will be augmented with the
ability to simulate AUVs; for example, they will each
have a virtual depth that the simulator maintains for
them in addition to their real XY location. This simula-
tor connects the robots and simulated robots, as well as
their control software, via the network. With this exten-
sion, CoDA will have the ability to simulate an AOSN at
any of the levels of fidelity discussed above, from the pro-
tocol level to the full agent in hardware level, either with
all components at the same level or with components at
different levels.

CONCLUSION

Systems of systems, such as autonomous oceano-
graphic sampling networks, are important in ocean sci-
ence and engineering. Such systems are complex and dif-
ficult to design and implement without simulation. Un-
fortunately, adequately simulating such systems is itself
difficult. High-level, low-fidelity simulators do not pre-
dict the system’s behavior in detail, yet low-level, high-
fidelity simulators are labor intensive and require a long
time to build.

We have here argued for multi-fidelity simulation for
systems of systems. Such a simulator can provide a
smooth transition path from high-level, low-fidelity sim-
ulations to low-level, high-fidelity simulations, thus sup-
porting the development process from design through
proof-of-concept and beyond. We have found several lev-
els of simulation useful. Protocol level simulation concen-

trates on the aggregate properties of the components of
the system as they interact using their cooperation pro-
tocols, but does not make any commitments to how they
follow the protocols. Technique level simulation makes
some commitment to the techniques to be used by the
components, but does not commit to the actual imple-
mentation. Algorithm level simulation commits to the al-
gorithms that will actually carry out the techniques and
uses implementations of those algorithms in the simula-
tion. Full agent in software level simulation simulates the
decision-making processes of complete agents. Full agent
in hardware level simulation makes use of actual hard-
ware implementations of the agents (e.g., robots). At
any given time, the various simulated components may
be in different levels of simulation.

We have implemented a multi-fidelity simulator for the
CoDA project to simulate AOSNs. So far, this simulator
incorporates the protocol and technique levels, and the
algorithm level is currently being worked on. An exten-
sion will add functionality to bring the full agent in soft-
ware and full agent in hardware levels into CoDA. The
CoDA simulator allowed us to rapidly prototype cooper-
ation protocols for AOSN self-organization and reorgani-
zation as well as techniques for task assignment. In the
near future, we will be using the simulator to develop and
test algorithms for task assignment and techniques and
algorithms for organizational structure selection. With
the extension, we will be able to test and further develop
our AOSN control approach using full agent simulation,
both in software and in hardware, as a final step before
in-water testing.

ACKNOWLEDGMENTS

The authors thank the other members of the Coop-
erative Distributed Problem Solving (CDPS) Research
Group, part the Maine Software Agents and Artificial
Intelligence Laboratory (MaineSAIL), and our colleagues
at the Autonomous Undersea Systems Institute (AUSI)

for their insightful comments and other help over the
course of this work.

[1]

2]

[4]

[5]

[10]

[11]

[12]

REFERENCES

T. B. Curtin, J. G. Bellingham, J. Catipovic, and
D. Webb. Autonomous oceanographic sampling net-
works. Oceanography, 6(3), 1993.

S. G. Chappell, R. J. Komerska, L. Peng, and
Y. Lu. Cooperative AUV Development Concept
(CADCON) — an environment for high-level multiple
AUV simulation. In Proceedings of the 11th Inter-
national Symposium on Unmanned Untethered Sub-
mersible Technology (UUST99), Durham, NH, Au-
gust 1999. The Autonomous Undersea Systems In-
stitute, Lee, NH.

R. M. Turner and E. H. Turner. Organization and
reorganization of autonomous oceanographic sam-
pling networks. In Proceedings of the 1998 IEEE
International Conference on Robotics and Automa-
tion (ICRA’98), pages 2060-2067, Leuven, Belgium,
May 1998.

E. H. Turner and R. M. Turner. A constraint-
based approach to assigning system components to
tasks. International Journal of Applied Intelligence,
10(2/3):155-172, 1999.

M. S. Fox, N. Sadeh, and C. Baykan. Constrained
heuristic search. In Proceedings of the Eleventh Inter-

national Joint Conference on Artificial Intelligence
(IJCAI-89), 1989.

K. Sycara, S. Roth, N. Sadeh, and M. Fox. Dis-
tributed constrained heuristic search. IEEE Transac-
tions on Systems, Man, and Cybernetics, 21(6):1446—
1461, 1991.

R. Turner, E. Turner, and D. Blidberg. Organi-
zation and reorganization of autonomous oceano-
graphic sampling networks. In Proceedings of the
1996 IEEE Symposium on Autonomous Underwater
Vehicle Technology, pages 407-413, Monterey, CA,
June 1996.

R. M. Turner and E. H. Turner. A two-level, protocol-
based approach to controlling autonomous oceano-
graphic sampling networks. Unpublished; submitted
to the IEEE Journal of Oceanic Engineering.

J. C. Giarratano. CLIPS User’s Guide. NASA, In-
formation Systems Directorate, Software Technology
Branch, Lyndon B. Johnson Space Center, Houston,
TX, 1993.

R. M. Turner. Intelligent control of autonomous un-
derwater vehicles: The Orca project. In Proceed-
ings of the 1995 IEEE International Conference on
Systems, Man, and Cybernetics. Vancouver, Canada,
1995.

S. D. Anderson, D. L. Westbrook, M. Schmill,
A. Carlson, D. M. Hart, and P. R. Cohen. Com-
mon Lisp Analytical Statistics Package: User Man-
wal. Department of Computer Science, University of
Massachusetts, 1995.

C. Grunden. Master’s thesis. Unpublished; to be
completed August, 2000.

