
This paper appeared in the Proeedings of the Conferene of the IEEE Oeani Engineering Soiety (OCEANS), Providene,RI, September, 2000. Copyright 2000 IEEE.Simulating an Autonomous Oeanographi Sampling Network:A Multi-Fidelity Approah to Simulating Systems of Systems�Roy M. TurnerElise H. TurnerDepartment of Computer SieneUniversity of MaineOrono, ME 04469 USAfrmt,ehtg�ums.maine.eduAbstrat{Many useful oean engineering sys-tems, suh as autonomous oeanographi sam-pling networks (AOSNs) are atually systems ofsystems. Suh systems are omplex and requiresimulation during design and development. How-ever, adequately simulating suh systems is alsodiÆult. We have developed an approah tomulti-�delity simulation that allows systems ofsystems to be simulated at several points alongthe spetrum from high-level, low-�delity to low-level, high-�delity simulation. We have imple-mented this approah a simulator for the CoDA(Cooperative Distributed AOSN ontrol) projet.Suh an approah provides simulation supportthroughout the lifetime of the projet, from de-sign through proof-of-onept and beyond.IntrodutionMany systems that are useful in oean engineering aresystems of systems. For example, an autonomous oeano-graphi sampling network (AOSN) [1℄ is a system om-posed of autonomous underwater vehiles (AUVs) andinstrument platforms, eah of whih is itself a system.Systems of systems are omplex, not only beause of theomplexity of the individual systems, but also beause ofthe omplexity of the interations between the ompo-nent systems.Beause of the omplexity, simulation is an importanttool in designing new systems of systems. However, itan be diÆult to reate an e�etive simulation for suhsystems. Beause of the many omponents, it takes along time to reate a traditional, detailed simulation of�This work was funded in part by grants N0001-14-96-1-5009and N0001-14-98-1-0648 from the OÆe of Naval Researh. Theontent of this paper does not neessarily reet the position or thepoliy of the U.S. government, and no oÆial endorsement shouldbe inferred.

the entire system. In addition, a detailed simulation ofthe entire system may not allow designers to isolate spe-i� mehanisms for interations that should be evalu-ated. On the other hand, this level of detail is not alwaysneessary to get important feedbak that an impat de-sign. However, detailed simulation is ultimately neededto truly evaluate the system.Our approah is to reate a multi-�delity simulationfor systems of systems. This approah inludes severalpossible levels of simulation �delity, ranging from a highlevel of abstration to a high level of detail.Many approahes allow simulation at an abstrat orat a detailed level, or both. For example, simulationsbased on Petri nets or �nite state mahines often modelthe interation of systems without modeling more than ahighly abstrat version of eah omponent's state. At theother extreme, simulators suh as CADCON [2℄ modelthe systems and their interations in a highly detailedmanner. Unfortunately, for these and most other sim-ulators, there is nothing in between: there is no routefrom abstrat, high-level simulation of system propertiesto highly-detailed, low-level simulation of system ompo-nents.Our approah di�ers by being apable of simulationat several levels of �delity in a single simulator for thesystem. These levels are:Protool level: The aggregate properties ofthe entire system are simulated by fousingon the interation protools and treating theomponent systems as blak boxes.Tehnique level: Tehniques are developedthat arry out steps in the protool level, butare not neessarily implemented as algorithmsthat will be exeuted by the omponents.Algorithm level: Algorithms that a ompo-nent will use to implement the tehniques areseleted and implemented.Full agent in software level: All algorithmsrequired to ontrol the omponent are im-

plemented, and these omponents interat toarry out missions in a simulated world.Full agent in hardware level:Algorithms and interations are tested usingrobots in the laboratory.At any given time, di�erent parts of the system to besimulated an be simulated at di�erent levels of �delity.For example, a robot in the laboratory may interat withanother agent implemented ompletely in software andstill others simulated at the protool level or with only afew tehniques implemented as algorithms. This providesa smooth path between an initial high-level, low-�delitysimulation and the ultimate low-level, high-�delity simu-lation of the system. The approah allows us to quiklysimulate the overall system properties without requiringommitments to implementation details. More impor-tantly, it allows us to fous on an individual tehniqueand evaluate it in the ontext of the full system withoutrequiring the full system to be implemented in detail.The approah also modularizes the development proessand allows inremental development and testing.In the remainder of this paper, we will disuss thisapproah to simulation in more detail. We desribe thehallenging issues onfronting suh simulations and howour approah addresses them. We then present an im-plementation of our approah, the CoDA (CooperativeDistributed AOSN ontrol) simulator [3; 4℄, whih simu-lates autonomous oeanographi sampling networks.Simulating Systems of SystemsApproahes to simulating systems of systems, whih wewill refer to hereafter as multiagent systems , have gener-ally taken one of two paths. The �rst path is to simulatethe aggregate properties of the system by onentratingon the interations between the omponents. In this ap-proah, the omponents themselves are treated as blakboxes. For example, a Petri net or other mehanism maybe used to simulate the evolving state of the entire systemas ations are taken and messages are sent between om-ponents, but the atual deision-making proesses of theagents that would produe the ations or messages arenot simulated. This approah an give a very good ideaof what the overall system will do, and it is very quik toimplement, easy to use for simulation experiments, andeasy to hange as needed. However, it has the drawbakof simulating the multiagent system at only a high levelof abstration. Ultimately, the behavior of the systemwill depend on the deision-making proesses of its om-ponents as they interat with their loal environment andthe other omponents.The other path is to simulate to a high level of detailthe deision-making proesses of the agents omprisingthe multiagent system|in fat, the atual agent ontrol

programs, or something very lose to them, would likelythemselves be used in the simulation. This approah hasthe bene�t of yielding high-�delity simulations of whatthe behavior of the atual system will be. However, it hasits prie. It is muh more diÆult to design and imple-ment the agent ontrol programs than it is to simply sim-ulate what they might plausibly do in various situations.This kind of simulator takes muh longer to implement.In ases where the agent ontrol programs are themselvesbeing designed, needed information about agent detailsmay not be known or implementation of the simulatormay be delayed waiting for the results of the ontrol pro-gram researh. Suh a simulator takes longer to run, too,sine the agent ontrol programs may have to run in realtime, whereas an aggregate property simulation an oftenrun many times faster than real time.The �rst approah is often taken for systems in whihthe fous is the interation, not the ontrol programs ofthe omponents and, generally, where the omponentsthemselves are rather simple. For example, this wouldbe an appropriate kind of simulation for designing anddebugging a new Internet protool. The assumption forthis kind of simulation is that either: the omponentsbeing simulated an be adequately haraterized by therules, state transitions, or other means used to repre-sent their ations; or that the omponents an be readilydesigned to some set of spei�ations that are being sim-ulated. The seond approah is often taken for systemsin whih the fous is on the agent-level ontrol programs,the agents are seen to be very omplex, or both. For ex-ample, this kind of simulation is the norm in arti�ialintelligene researh, where the agents are very omplex.The behavior of suh agents generally annot be reduedto a simple set of rules, nor an they be designed withon�dene to meet a set of spei�ations without the aidof simulation.Neither approah by itself is suÆient for a simula-tor supporting development of a multiagent system, suhas an AOSN, in whih attention has to be paid both tothe interation between protools and to the omplex na-ture of the omponents themselves. What is needed is amulti-�delity approah to simulating multiagent systems,where \multi-�delity" refers both to simultaneously sim-ulating di�erent omponents at di�erent levels of �delityas well as supporting di�erent levels of simulation �delityover time as development progresses.Multi-fidelity SimulationWe have taken an approah to simulating systemsof systems that alls for simulation of omponents andtheir interations at several di�erent levels, both over theourse of the development of the multiagent system andsimultaneously, with di�erent omponents simulated at

di�erent levels.Early in the development of a multiagent system suhas an AOSN, it is important to quikly simulate aggre-gate properties of the system. We refer to this level asthe protool level , sine what is being simulated here istypially the protools the omponents of the system useto ommuniate and ooperate with one another. Thisallows the researhers to quikly try di�erent high-levelapproahes to ontrolling the system without the needto ommit to or implement simulations of agent ontrolprogram details. Many dead-ends an be deteted andavoided by using this kind of simulator to predit generalproperties of the system, saving muh e�ort that wouldotherwise later be wasted.As work progresses, it is important to be able to tryout di�erent tehniques for problems the agents mustsolve. For example, in an AOSN, mission tasks needto be mathed up with AUVs or instrument platformsthat will perform them. There are many ways of ap-proahing this task assignment problem. The simulatorshould support easily trying these di�erent tehniquesin the ontext of the full system. It should not at thisstage, however, require a ommitment to how the teh-nique will ultimately be implemented aboard an atualagent. Suh a ommitment may not be possible at thisstage, and in any ase, it risks onfounding propertiesof the tehnique with implementation details. We referto this level of simulation �delity as the tehnique level .For example, onstrained heuristi searh (CHS) [5℄ is anattrative andidate for task assignment. A distributedversion, DCHS [6℄, exists and would likely be used inthe AOSN. Implementing the distributed version wouldrequire developing the algorithms to be used by parti-ipating agents as well as knowledge of details of theseagents' proessing apabilities and means of ommunia-tion. We an avoid this overhead by �rst implementing aCHS-based task assignment mehanism and testing it inthe ontext of the AOSN simulation. If the tehnique issuessful, DCHS an be implemented in the algorithmlevel.As tehniques are seleted for various agent ontrolproblems, implementation ommitments will be made.It then will be possible to write the ode that will runaboard the agent in the real world. It is likely that thiswill our for some tehniques before others, and so itmay be desirable to test the implementations before thefull agent ontrol programs are ready to be tested. Thesimulator should support this, as well. This level of simu-lation, the algorithm level , entails some parts of the mul-tiagent system being simulated with an extremely highlevel of �delity to the ultimate system while the rest ofthe system is left at lower-�delity levels (i.e., protooland tehnique levels). For example, a DCHS-based taskassignment mehanism might be implemented and used

in the simulation while the rest of the agent is being sim-ulated at the protool level.As work progresses, more and more of the agent on-trol programs will be fully spei�ed and implementable.This leads to the next level of simulation, the full agentin software level . This level is equivalent to the seondtraditional simulation approah mentioned at the startof this setion; it an give very good preditions of theperformane of the atual multiagent system. One agentmay be implemented at this level while others are imple-mented at other levels, thus allowing this level to o-existwith others in the multi-�delity simulator.A simulator will ideally support yet another level. Thehighest-�delity level of simulation is the full agent inhardware level. At this level, the agent ontrol programis ontrolling portions of the atual hardware that will be�elded, ideally the entire agent hardware, while still re-maining in a simulation setting. For example, one ouldimagine an AOSN simulator in whih some AUVs arebeing simulated, while others are atually in the oean,with their positions and and other data being integratedinto the ongoing simulation.It is important to note that a multi-�delity simulatorshould not require all omponents to progress throughthese levels at the same rate. Indeed, not all omponentsneed to progress at all. For example, the simulator shouldallow researhers onentrating on task assignment oragent organization tehniques to try out their solutionsin the simulator before other piees, suh as ommunia-tion modules or mission planners, are ready. Some agentsmay never be simulated at high �delity. For example, thismight our when the system is to inlude omponentsto whose internals the researhers do not have aess, orwhen testing how the system would behave in the pres-ene of agents that do not yet exist.A multi-�delity simulator provides a smooth migrationpath for researh on multiagent system ontrol from theearliest design phases, supported by simulation at theprotool level, through implementation and full proof-of-onept, supported by simulation at the full agent inhardware level. In order to support this, the simulatormust have a exible skeleton that the simulated om-ponents, regardless of their level of simulation, an \pluginto." At the aggregate level, this may mean adding rulesto simulate what the omponent would do under givenonditions. At higher levels of �delity, it will require wellworked-out ommuniation protools and languages forthe piees to use to talk to the rest of the simulator,either diretly, or more likely, via wrappers around thesimulated omponents.Whether a omponent is simulated at a high or a lowlevel of �delity should be transparent to the user. Theonly di�erene notieable to the user of the simulationshould be that the higher the overall �delity, the better

CLIPS LISP

Rules for
Aggregate
Simulation

Rules for
Environmental

Simulation

Discrete Event
Simulator

System
Time

CLIPS<->Lisp
Communication

Lisp<->CLIPS
Communication

Algorithm-Level
Simulation Code

Hardware &
Interface Code

Other Simulators
(e.g., CADCON)Technique-Level

Simulation Code

Network
Server
(future)

CLIP/CLASP

Agent Control
Software

Simulation
Control

Full-Agent
Simulation Code

Algorithm-Level
Simulation Code

Hardware &
Interface Code

Technique-Level
Simulation Code

Full-Agent
Simulation Code

STDIN

STDOUT

FIFOs net

Figure 1: CoDA simulator.the system's behavior mathes the real-world behavior ofthe simulated system. The level of simulation of a ompo-nent should be transparent as well to the other simulatedomponents. For example, a full-agent simulation of anAUV mission ontroller should not need to know thata mooring is being simulated at the aggregate propertylevel. Similarly, an AUV deployed in the oean and om-muniating with the rest of the simulation should needonly hanges in the way it ommuniates (i.e., throughthe simulator rather than diretly to other omponents)and hanges to allow it to \see" other AUVs and instru-ment platforms.It is also important to allow the user to speify at whatlevel he or she would like the simulation to run. Althoughomponents annot be simulated at higher �delity thantheir development stage allows, it will often be useful torun the simulation at lower �delity, for example, to runexperiments faster than real time.Finally, it is important that, at all levels, the simu-lator provide data olletion and simulation monitoringservies to the user.A Multi-Fidelity SimulatorIn this setion, we disuss an example multi-�delitysimulator, the CoDA simulator. The CoDA (CooperativeDistributed AOSN ontrol) projet [7; 3; 8℄ has as its goaldeveloping intelligent ontrol tehniques for autonomousoeanographi sampling networks. The urrent phase ofthe projet fouses on autonomous organization and re-organization of the AOSN as well as the problem of taskassignment. Our ideas about multi-�delity simulationgrew out of this projet's need for a way to rapidly pro-totype ommuniation and ooperation protools thatwould also allow the organization and task assignmentwork to be folded into the simulator as it matured.The arhiteture of the urrent simulator, herein just

alled CoDA, is shown in Fig. 1. The skeleton of CoDA,inluding the simulation ontroller, is written in Lisp andruns under Unix (Linux and Solaris). Protool-level sim-ulation is urrently done in the rule-based expert systemlanguage CLIPS [9℄. CLIPS also maintains the simulatedsystem time, and it provides disrete event simulationand simple environmental simulation. CLIPS is startedand ontrolled by the Lisp-based simulation ontroller.Communiation between CLIPS and Lisp is done intwo ways. First, CLIPS' standard input and standardoutput streams are written and read by Lisp to sendommands and reeive information, respetively. Se-ond, Unix FIFOs (named pipes) are used to transfer in-formation between Lisp and CLIPS. For example, pipesare used when CLIPS requests that Lisp arry out somehigher-�delity simulation suh as running a task assign-ment algorithm.Protool-level simulation is done by CLIPS. Rules areused to represent what agents would do under di�erentsituations. The rules' ations simulate what the agentsdo when following the ooperation protools, but not howthey arrived at the deisions neessary to do follow them.Fig. 2 shows a portion of the output from this level of thesimulator as the AOSN self-organizes. (A more ompletedesription of this proess an be found elsewhere [3℄.)As long as the simulator has any portion that is beingsimulated at the protool level, CLIPS performs othersimulation funtions, suh as maintaining the systemtime. This is done by using the disrete event simu-lator (DES), implemented as CLIPS rules and objets.Protool-level simulation rules post events that shouldour at some time in the future. When the rules reahquiesene, DES moves the system time to the next eventand runs the event. For example, ommuniation viaaousti link is urrently modeled this way. When anagent sends a message, rules determine the travel timefor the message through the water before it arrives at its

[CLIPS℄ 00:00:04.0 (MLO) new agent VIP10 broadasting organization-present?.[CLIPS℄ 00:00:04.0 (MLO) new agent VIP10 setting timer 1 to wait for replies.[CLIPS℄ 00:00:04.0 (MLO) new agent VIP11 broadasting (non-CDPS) organization-present?.[...DES moves time ahead to simulate aousti link message transit time...℄[CLIPS℄ 00:00:05.05 (MLO) VIP11: reeived organization-present? message from VIP10[CLIPS℄ 00:00:33.01 (MLO) VIP16: reeived organization-present? message from VIP13[CLIPS℄ 00:00:33.02 (MLO) VIP14: reeived organization-present? message from VIP13[...℄[CLIPS℄ 00:00:34.0 (MLO) VIP10: waited long enough for organization-present? replies.[CLIPS℄ 00:00:34.0 (MLO) VIP10: initiating MLO formation with agents = (VIP10 VIP13)[CLIPS℄ 00:00:34.0 (MLO) VIP10: broadasting first initiate-MLO message.[...℄[CLIPS℄ 00:01:05.05 (MLO) VIP13: ompleted MLO formation.[CLIPS℄ 00:01:05.05 (SIM) MLO formed, ontains members (VIP10 VIP13 VIP9).[CLIPS℄ 00:01:05.05 (SIM) swithing ontext -> MLO disoveryFigure 2: Output from the protool level of simulation. (Edited slightly for larity.)destination and posts an event for that amount of timein the future. At that time, the reipient will reeive themessage. (For broadasts, travel time is determined toall agents and orresponding events are posted.)As portions of the simulation proeed from the proto-ol level toward more high-�delity simulations, more ofthe simulation funtionality will migrate out of CLIPS.When CoDA is running ompletely in a high-�delitymode, then CLIPS will need do little.As shown in Fig. 1, tehnique-level simulation an o-ur in two plaes in CoDA, within Lisp and external toit. Currently, it is done within Lisp. In order to try out anew tehnique, the protool-level simulation of the agentusing the tehnique must be modi�ed to request thatCoDA run the tehnique when it is needed. This entailsmodifying a few rules and de�ning a request type, thenmodifying a Lisp variable to link the request type to thefuntion to all when the request is made. For example,the urrent simulator uses a tehnique that is a modi�edversion of onstrained heuristi searh (CHS) in order todo task assignment. Requests were de�ned to transfer in-formation from the CLIPS protool-level simulation intoLisp data strutures (e.g., \add-task," \add-alternative,"et.), and a request was added to invoke CHS (\solve-problem"). CLIPS rules pertaining to task assignmentwere modi�ed to send Lisp these messages and wait forLisp's reply. CoDA's Lisp portion, when it reeives themessage, alls the CHS top-level funtion, then sends theresults to CLIPS. Fig. 3 shows a portion of this proess.At the present time, we are working on an algorithm-level simulation of the task-assignment mehanism. Thiswill be a distributed version of CHS. It will be addedto the simulator in muh the same way as was skethedabove for the tehnique-level CHS.

Although Fig. 1 shows full-agent and hardware-levelsimulation omponents as also being possible to inludewithin Lisp, most likely these will be external to the mainportion of the CoDA simulator. As shown, entities exter-nal to CoDA an also be used to implement tehnique-level and other levels of simulation. In the near future,we will add a network ommuniation module to CoDA.This will ommuniate using sokets with simulated om-ponents. This will allow the piees of the simulation tobe written in virtually any language and run on multiple,possibly remote, systems. For example, we antiipate us-ing the Ora AUV mission ontroller [10℄ to ontrol simu-lated AUVs in CoDA. Ora will likely run in its own Lispproess on another mahine and ommuniate with theagent \body" by exhanging messages with CoDA. CoDAmay simulate the body internally, or that, too, may beexternal. For example, Ora's ommands to the AUVmay be passed along to another external simulator, suhas CADCON [2℄, whih an provide high-�delity AUVsimulation, or they may be passed along to atual robotsonneted to CoDA via the Internet.Experiment ontrol, as well as data gathering and anal-ysis failities are also provided by CoDA. CoDA usesCLIP/CLASP (Common Lisp Instrumentation Pak-age/Common Lisp Analytial Statistis Pakage) [11℄.This allows experiments to be de�ned in data �les, thenrun under the ontrol of CoDA. Data are gathered basedon the experiment de�nitions and an be analyzed statis-tially by CLASP or exported for use by other statistisprograms.The urrent CoDA simulator is being extended in sev-eral ways. The network server mentioned above willsoon be added. This will allow graphial user interfaes(GUIs), for example, to be easily added to CoDA. One

Reeived request to start new TLO onstrution; deleting old problem(s).New TLO problem will be referred to as `"gen1099"'.[CLIPS℄ 00:03:11.0 (MLO) VIP30: reating new searh problem for assignments, gen1099[CLIPS℄ 00:03:11.0 (MLO) VIP30: Assigning tasks.Attempting to solve problem "gen1099".Problem "gen1099" is solved.Sending to CLIPS: problem status of "gen1099" is SUCCESS.[CLIPS℄ 00:03:11.0 (MLO) VIP30: status of problem gen1099 is SUCCESS.[CLIPS℄ 00:03:11.0 (SIM) Creating objet gen1132 to represent the TLO.[CLIPS℄ 00:03:11.0 (MLO) TLO reated.Figure 3: Output of a tehnique-level simulation. A TLO is the task-level organization that onduts themission; MLO is the meta-level organization that designs the TLO.subprojet urrently under way will reate a Java/VRML(Virtual Reality Modeling Language) GUI that reeivesinformation from CoDA and generates and maintains avirtual reality model of the simulated system.The addition of the network server will allow anothermajor extension, the addition of hardware and full-agentsimulation abilities. Our work is urrently being ex-tended to simulate a system of autonomous agents thatare either real robots (Pioneer land robots) or simulatedrobots [12℄. The real robots will be augmented with theability to simulate AUVs; for example, they will eahhave a virtual depth that the simulator maintains forthem in addition to their real XY loation. This simula-tor onnets the robots and simulated robots, as well astheir ontrol software, via the network. With this exten-sion, CoDA will have the ability to simulate an AOSN atany of the levels of �delity disussed above, from the pro-tool level to the full agent in hardware level, either withall omponents at the same level or with omponents atdi�erent levels. ConlusionSystems of systems, suh as autonomous oeano-graphi sampling networks, are important in oean si-ene and engineering. Suh systems are omplex and dif-�ult to design and implement without simulation. Un-fortunately, adequately simulating suh systems is itselfdiÆult. High-level, low-�delity simulators do not pre-dit the system's behavior in detail, yet low-level, high-�delity simulators are labor intensive and require a longtime to build.We have here argued for multi-�delity simulation forsystems of systems. Suh a simulator an provide asmooth transition path from high-level, low-�delity sim-ulations to low-level, high-�delity simulations, thus sup-porting the development proess from design throughproof-of-onept and beyond. We have found several lev-els of simulation useful. Protool level simulation onen-

trates on the aggregate properties of the omponents ofthe system as they interat using their ooperation pro-tools, but does not make any ommitments to how theyfollow the protools. Tehnique level simulation makessome ommitment to the tehniques to be used by theomponents, but does not ommit to the atual imple-mentation. Algorithm level simulation ommits to the al-gorithms that will atually arry out the tehniques anduses implementations of those algorithms in the simula-tion. Full agent in software level simulation simulates thedeision-making proesses of omplete agents. Full agentin hardware level simulation makes use of atual hard-ware implementations of the agents (e.g., robots). Atany given time, the various simulated omponents maybe in di�erent levels of simulation.We have implemented a multi-�delity simulator for theCoDA projet to simulate AOSNs. So far, this simulatorinorporates the protool and tehnique levels, and thealgorithm level is urrently being worked on. An exten-sion will add funtionality to bring the full agent in soft-ware and full agent in hardware levels into CoDA. TheCoDA simulator allowed us to rapidly prototype ooper-ation protools for AOSN self-organization and reorgani-zation as well as tehniques for task assignment. In thenear future, we will be using the simulator to develop andtest algorithms for task assignment and tehniques andalgorithms for organizational struture seletion. Withthe extension, we will be able to test and further developour AOSN ontrol approah using full agent simulation,both in software and in hardware, as a �nal step beforein-water testing. AknowledgmentsThe authors thank the other members of the Coop-erative Distributed Problem Solving (CDPS) ResearhGroup, part the Maine Software Agents and Arti�ialIntelligene Laboratory (MaineSAIL), and our olleaguesat the Autonomous Undersea Systems Institute (AUSI)

for their insightful omments and other help over theourse of this work. Referenes[1℄ T. B. Curtin, J. G. Bellingham, J. Catipovi, andD. Webb. Autonomous oeanographi sampling net-works. Oeanography, 6(3), 1993.[2℄ S. G. Chappell, R. J. Komerska, L. Peng, andY. Lu. Cooperative AUV Development Conept(CADCON) { an environment for high-level multipleAUV simulation. In Proeedings of the 11th Inter-national Symposium on Unmanned Untethered Sub-mersible Tehnology (UUST99), Durham, NH, Au-gust 1999. The Autonomous Undersea Systems In-stitute, Lee, NH.[3℄ R. M. Turner and E. H. Turner. Organization andreorganization of autonomous oeanographi sam-pling networks. In Proeedings of the 1998 IEEEInternational Conferene on Robotis and Automa-tion (ICRA'98), pages 2060{2067, Leuven, Belgium,May 1998.[4℄ E. H. Turner and R. M. Turner. A onstraint-based approah to assigning system omponents totasks. International Journal of Applied Intelligene,10(2/3):155{172, 1999.[5℄ M. S. Fox, N. Sadeh, and C. Baykan. Constrainedheuristi searh. In Proeedings of the Eleventh Inter-national Joint Conferene on Arti�ial Intelligene(IJCAI-89), 1989.[6℄ K. Syara, S. Roth, N. Sadeh, and M. Fox. Dis-tributed onstrained heuristi searh. IEEE Transa-tions on Systems, Man, and Cybernetis, 21(6):1446{1461, 1991.[7℄ R. Turner, E. Turner, and D. Blidberg. Organi-zation and reorganization of autonomous oeano-graphi sampling networks. In Proeedings of the1996 IEEE Symposium on Autonomous UnderwaterVehile Tehnology, pages 407{413, Monterey, CA,June 1996.[8℄ R. M. Turner and E. H. Turner. A two-level, protool-based approah to ontrolling autonomous oeano-graphi sampling networks. Unpublished; submittedto the IEEE Journal of Oeani Engineering.[9℄ J. C. Giarratano. CLIPS User's Guide. NASA, In-formation Systems Diretorate, Software TehnologyBranh, Lyndon B. Johnson Spae Center, Houston,TX, 1993.[10℄ R. M. Turner. Intelligent ontrol of autonomous un-derwater vehiles: The Ora projet. In Proeed-ings of the 1995 IEEE International Conferene onSystems, Man, and Cybernetis. Vanouver, Canada,1995.[11℄ S. D. Anderson, D. L. Westbrook, M. Shmill,A. Carlson, D. M. Hart, and P. R. Cohen. Com-mon Lisp Analytial Statistis Pakage: User Man-ual. Department of Computer Siene, University ofMassahusetts, 1995.[12℄ C. Grunden. Master's thesis. Unpublished; to beompleted August, 2000.

