
This paper appeared in the Pro
eedings of the Conferen
e of the IEEE O
eani
 Engineering So
iety (OCEANS), Providen
e,RI, September, 2000. Copyright 

 2000 IEEE.Simulating an Autonomous O
eanographi
 Sampling Network:A Multi-Fidelity Approa
h to Simulating Systems of Systems�Roy M. TurnerElise H. TurnerDepartment of Computer S
ien
eUniversity of MaineOrono, ME 04469 USAfrmt,ehtg�um
s.maine.eduAbstra
t{Many useful o
ean engineering sys-tems, su
h as autonomous o
eanographi
 sam-pling networks (AOSNs) are a
tually systems ofsystems. Su
h systems are 
omplex and requiresimulation during design and development. How-ever, adequately simulating su
h systems is alsodiÆ
ult. We have developed an approa
h tomulti-�delity simulation that allows systems ofsystems to be simulated at several points alongthe spe
trum from high-level, low-�delity to low-level, high-�delity simulation. We have imple-mented this approa
h a simulator for the CoDA(Cooperative Distributed AOSN 
ontrol) proje
t.Su
h an approa
h provides simulation supportthroughout the lifetime of the proje
t, from de-sign through proof-of-
on
ept and beyond.Introdu
tionMany systems that are useful in o
ean engineering aresystems of systems. For example, an autonomous o
eano-graphi
 sampling network (AOSN) [1℄ is a system 
om-posed of autonomous underwater vehi
les (AUVs) andinstrument platforms, ea
h of whi
h is itself a system.Systems of systems are 
omplex, not only be
ause of the
omplexity of the individual systems, but also be
ause ofthe 
omplexity of the intera
tions between the 
ompo-nent systems.Be
ause of the 
omplexity, simulation is an importanttool in designing new systems of systems. However, it
an be diÆ
ult to 
reate an e�e
tive simulation for su
hsystems. Be
ause of the many 
omponents, it takes along time to 
reate a traditional, detailed simulation of�This work was funded in part by grants N0001-14-96-1-5009and N0001-14-98-1-0648 from the OÆ
e of Naval Resear
h. The
ontent of this paper does not ne
essarily re
e
t the position or thepoli
y of the U.S. government, and no oÆ
ial endorsement shouldbe inferred.

the entire system. In addition, a detailed simulation ofthe entire system may not allow designers to isolate spe-
i�
 me
hanisms for intera
tions that should be evalu-ated. On the other hand, this level of detail is not alwaysne
essary to get important feedba
k that 
an impa
t de-sign. However, detailed simulation is ultimately neededto truly evaluate the system.Our approa
h is to 
reate a multi-�delity simulationfor systems of systems. This approa
h in
ludes severalpossible levels of simulation �delity, ranging from a highlevel of abstra
tion to a high level of detail.Many approa
hes allow simulation at an abstra
t orat a detailed level, or both. For example, simulationsbased on Petri nets or �nite state ma
hines often modelthe intera
tion of systems without modeling more than ahighly abstra
t version of ea
h 
omponent's state. At theother extreme, simulators su
h as CADCON [2℄ modelthe systems and their intera
tions in a highly detailedmanner. Unfortunately, for these and most other sim-ulators, there is nothing in between: there is no routefrom abstra
t, high-level simulation of system propertiesto highly-detailed, low-level simulation of system 
ompo-nents.Our approa
h di�ers by being 
apable of simulationat several levels of �delity in a single simulator for thesystem. These levels are:Proto
ol level: The aggregate properties ofthe entire system are simulated by fo
usingon the intera
tion proto
ols and treating the
omponent systems as bla
k boxes.Te
hnique level: Te
hniques are developedthat 
arry out steps in the proto
ol level, butare not ne
essarily implemented as algorithmsthat will be exe
uted by the 
omponents.Algorithm level: Algorithms that a 
ompo-nent will use to implement the te
hniques aresele
ted and implemented.Full agent in software level: All algorithmsrequired to 
ontrol the 
omponent are im-



plemented, and these 
omponents intera
t to
arry out missions in a simulated world.Full agent in hardware level:Algorithms and intera
tions are tested usingrobots in the laboratory.At any given time, di�erent parts of the system to besimulated 
an be simulated at di�erent levels of �delity.For example, a robot in the laboratory may intera
t withanother agent implemented 
ompletely in software andstill others simulated at the proto
ol level or with only afew te
hniques implemented as algorithms. This providesa smooth path between an initial high-level, low-�delitysimulation and the ultimate low-level, high-�delity simu-lation of the system. The approa
h allows us to qui
klysimulate the overall system properties without requiring
ommitments to implementation details. More impor-tantly, it allows us to fo
us on an individual te
hniqueand evaluate it in the 
ontext of the full system withoutrequiring the full system to be implemented in detail.The approa
h also modularizes the development pro
essand allows in
remental development and testing.In the remainder of this paper, we will dis
uss thisapproa
h to simulation in more detail. We des
ribe the
hallenging issues 
onfronting su
h simulations and howour approa
h addresses them. We then present an im-plementation of our approa
h, the CoDA (CooperativeDistributed AOSN 
ontrol) simulator [3; 4℄, whi
h simu-lates autonomous o
eanographi
 sampling networks.Simulating Systems of SystemsApproa
hes to simulating systems of systems, whi
h wewill refer to hereafter as multiagent systems , have gener-ally taken one of two paths. The �rst path is to simulatethe aggregate properties of the system by 
on
entratingon the intera
tions between the 
omponents. In this ap-proa
h, the 
omponents themselves are treated as bla
kboxes. For example, a Petri net or other me
hanism maybe used to simulate the evolving state of the entire systemas a
tions are taken and messages are sent between 
om-ponents, but the a
tual de
ision-making pro
esses of theagents that would produ
e the a
tions or messages arenot simulated. This approa
h 
an give a very good ideaof what the overall system will do, and it is very qui
k toimplement, easy to use for simulation experiments, andeasy to 
hange as needed. However, it has the drawba
kof simulating the multiagent system at only a high levelof abstra
tion. Ultimately, the behavior of the systemwill depend on the de
ision-making pro
esses of its 
om-ponents as they intera
t with their lo
al environment andthe other 
omponents.The other path is to simulate to a high level of detailthe de
ision-making pro
esses of the agents 
omprisingthe multiagent system|in fa
t, the a
tual agent 
ontrol

programs, or something very 
lose to them, would likelythemselves be used in the simulation. This approa
h hasthe bene�t of yielding high-�delity simulations of whatthe behavior of the a
tual system will be. However, it hasits pri
e. It is mu
h more diÆ
ult to design and imple-ment the agent 
ontrol programs than it is to simply sim-ulate what they might plausibly do in various situations.This kind of simulator takes mu
h longer to implement.In 
ases where the agent 
ontrol programs are themselvesbeing designed, needed information about agent detailsmay not be known or implementation of the simulatormay be delayed waiting for the results of the 
ontrol pro-gram resear
h. Su
h a simulator takes longer to run, too,sin
e the agent 
ontrol programs may have to run in realtime, whereas an aggregate property simulation 
an oftenrun many times faster than real time.The �rst approa
h is often taken for systems in whi
hthe fo
us is the intera
tion, not the 
ontrol programs ofthe 
omponents and, generally, where the 
omponentsthemselves are rather simple. For example, this wouldbe an appropriate kind of simulation for designing anddebugging a new Internet proto
ol. The assumption forthis kind of simulation is that either: the 
omponentsbeing simulated 
an be adequately 
hara
terized by therules, state transitions, or other means used to repre-sent their a
tions; or that the 
omponents 
an be readilydesigned to some set of spe
i�
ations that are being sim-ulated. The se
ond approa
h is often taken for systemsin whi
h the fo
us is on the agent-level 
ontrol programs,the agents are seen to be very 
omplex, or both. For ex-ample, this kind of simulation is the norm in arti�
ialintelligen
e resear
h, where the agents are very 
omplex.The behavior of su
h agents generally 
annot be redu
edto a simple set of rules, nor 
an they be designed with
on�den
e to meet a set of spe
i�
ations without the aidof simulation.Neither approa
h by itself is suÆ
ient for a simula-tor supporting development of a multiagent system, su
has an AOSN, in whi
h attention has to be paid both tothe intera
tion between proto
ols and to the 
omplex na-ture of the 
omponents themselves. What is needed is amulti-�delity approa
h to simulating multiagent systems,where \multi-�delity" refers both to simultaneously sim-ulating di�erent 
omponents at di�erent levels of �delityas well as supporting di�erent levels of simulation �delityover time as development progresses.Multi-fidelity SimulationWe have taken an approa
h to simulating systemsof systems that 
alls for simulation of 
omponents andtheir intera
tions at several di�erent levels, both over the
ourse of the development of the multiagent system andsimultaneously, with di�erent 
omponents simulated at



di�erent levels.Early in the development of a multiagent system su
has an AOSN, it is important to qui
kly simulate aggre-gate properties of the system. We refer to this level asthe proto
ol level , sin
e what is being simulated here istypi
ally the proto
ols the 
omponents of the system useto 
ommuni
ate and 
ooperate with one another. Thisallows the resear
hers to qui
kly try di�erent high-levelapproa
hes to 
ontrolling the system without the needto 
ommit to or implement simulations of agent 
ontrolprogram details. Many dead-ends 
an be dete
ted andavoided by using this kind of simulator to predi
t generalproperties of the system, saving mu
h e�ort that wouldotherwise later be wasted.As work progresses, it is important to be able to tryout di�erent te
hniques for problems the agents mustsolve. For example, in an AOSN, mission tasks needto be mat
hed up with AUVs or instrument platformsthat will perform them. There are many ways of ap-proa
hing this task assignment problem. The simulatorshould support easily trying these di�erent te
hniquesin the 
ontext of the full system. It should not at thisstage, however, require a 
ommitment to how the te
h-nique will ultimately be implemented aboard an a
tualagent. Su
h a 
ommitment may not be possible at thisstage, and in any 
ase, it risks 
onfounding propertiesof the te
hnique with implementation details. We referto this level of simulation �delity as the te
hnique level .For example, 
onstrained heuristi
 sear
h (CHS) [5℄ is anattra
tive 
andidate for task assignment. A distributedversion, DCHS [6℄, exists and would likely be used inthe AOSN. Implementing the distributed version wouldrequire developing the algorithms to be used by parti
-ipating agents as well as knowledge of details of theseagents' pro
essing 
apabilities and means of 
ommuni
a-tion. We 
an avoid this overhead by �rst implementing aCHS-based task assignment me
hanism and testing it inthe 
ontext of the AOSN simulation. If the te
hnique issu

essful, DCHS 
an be implemented in the algorithmlevel.As te
hniques are sele
ted for various agent 
ontrolproblems, implementation 
ommitments will be made.It then will be possible to write the 
ode that will runaboard the agent in the real world. It is likely that thiswill o

ur for some te
hniques before others, and so itmay be desirable to test the implementations before thefull agent 
ontrol programs are ready to be tested. Thesimulator should support this, as well. This level of simu-lation, the algorithm level , entails some parts of the mul-tiagent system being simulated with an extremely highlevel of �delity to the ultimate system while the rest ofthe system is left at lower-�delity levels (i.e., proto
oland te
hnique levels). For example, a DCHS-based taskassignment me
hanism might be implemented and used

in the simulation while the rest of the agent is being sim-ulated at the proto
ol level.As work progresses, more and more of the agent 
on-trol programs will be fully spe
i�ed and implementable.This leads to the next level of simulation, the full agentin software level . This level is equivalent to the se
ondtraditional simulation approa
h mentioned at the startof this se
tion; it 
an give very good predi
tions of theperforman
e of the a
tual multiagent system. One agentmay be implemented at this level while others are imple-mented at other levels, thus allowing this level to 
o-existwith others in the multi-�delity simulator.A simulator will ideally support yet another level. Thehighest-�delity level of simulation is the full agent inhardware level. At this level, the agent 
ontrol programis 
ontrolling portions of the a
tual hardware that will be�elded, ideally the entire agent hardware, while still re-maining in a simulation setting. For example, one 
ouldimagine an AOSN simulator in whi
h some AUVs arebeing simulated, while others are a
tually in the o
ean,with their positions and and other data being integratedinto the ongoing simulation.It is important to note that a multi-�delity simulatorshould not require all 
omponents to progress throughthese levels at the same rate. Indeed, not all 
omponentsneed to progress at all. For example, the simulator shouldallow resear
hers 
on
entrating on task assignment oragent organization te
hniques to try out their solutionsin the simulator before other pie
es, su
h as 
ommuni
a-tion modules or mission planners, are ready. Some agentsmay never be simulated at high �delity. For example, thismight o

ur when the system is to in
lude 
omponentsto whose internals the resear
hers do not have a

ess, orwhen testing how the system would behave in the pres-en
e of agents that do not yet exist.A multi-�delity simulator provides a smooth migrationpath for resear
h on multiagent system 
ontrol from theearliest design phases, supported by simulation at theproto
ol level, through implementation and full proof-of-
on
ept, supported by simulation at the full agent inhardware level. In order to support this, the simulatormust have a 
exible skeleton that the simulated 
om-ponents, regardless of their level of simulation, 
an \pluginto." At the aggregate level, this may mean adding rulesto simulate what the 
omponent would do under given
onditions. At higher levels of �delity, it will require wellworked-out 
ommuni
ation proto
ols and languages forthe pie
es to use to talk to the rest of the simulator,either dire
tly, or more likely, via wrappers around thesimulated 
omponents.Whether a 
omponent is simulated at a high or a lowlevel of �delity should be transparent to the user. Theonly di�eren
e noti
eable to the user of the simulationshould be that the higher the overall �delity, the better



CLIPS LISP

Rules for
Aggregate
Simulation

Rules for
Environmental

Simulation

Discrete Event
Simulator

System
Time

CLIPS<->Lisp
Communication

Lisp<->CLIPS
Communication

Algorithm-Level
Simulation Code

Hardware &
Interface Code

Other Simulators
(e.g., CADCON)Technique-Level

Simulation Code

Network
Server
(future)

CLIP/CLASP

Agent Control
Software

Simulation
Control

Full-Agent
Simulation Code

Algorithm-Level
Simulation Code

Hardware &
Interface Code

Technique-Level
Simulation Code

Full-Agent
Simulation Code

STDIN

STDOUT

FIFOs net

Figure 1: CoDA simulator.the system's behavior mat
hes the real-world behavior ofthe simulated system. The level of simulation of a 
ompo-nent should be transparent as well to the other simulated
omponents. For example, a full-agent simulation of anAUV mission 
ontroller should not need to know thata mooring is being simulated at the aggregate propertylevel. Similarly, an AUV deployed in the o
ean and 
om-muni
ating with the rest of the simulation should needonly 
hanges in the way it 
ommuni
ates (i.e., throughthe simulator rather than dire
tly to other 
omponents)and 
hanges to allow it to \see" other AUVs and instru-ment platforms.It is also important to allow the user to spe
ify at whatlevel he or she would like the simulation to run. Although
omponents 
annot be simulated at higher �delity thantheir development stage allows, it will often be useful torun the simulation at lower �delity, for example, to runexperiments faster than real time.Finally, it is important that, at all levels, the simu-lator provide data 
olle
tion and simulation monitoringservi
es to the user.A Multi-Fidelity SimulatorIn this se
tion, we dis
uss an example multi-�delitysimulator, the CoDA simulator. The CoDA (CooperativeDistributed AOSN 
ontrol) proje
t [7; 3; 8℄ has as its goaldeveloping intelligent 
ontrol te
hniques for autonomouso
eanographi
 sampling networks. The 
urrent phase ofthe proje
t fo
uses on autonomous organization and re-organization of the AOSN as well as the problem of taskassignment. Our ideas about multi-�delity simulationgrew out of this proje
t's need for a way to rapidly pro-totype 
ommuni
ation and 
ooperation proto
ols thatwould also allow the organization and task assignmentwork to be folded into the simulator as it matured.The ar
hite
ture of the 
urrent simulator, herein just


alled CoDA, is shown in Fig. 1. The skeleton of CoDA,in
luding the simulation 
ontroller, is written in Lisp andruns under Unix (Linux and Solaris). Proto
ol-level sim-ulation is 
urrently done in the rule-based expert systemlanguage CLIPS [9℄. CLIPS also maintains the simulatedsystem time, and it provides dis
rete event simulationand simple environmental simulation. CLIPS is startedand 
ontrolled by the Lisp-based simulation 
ontroller.Communi
ation between CLIPS and Lisp is done intwo ways. First, CLIPS' standard input and standardoutput streams are written and read by Lisp to send
ommands and re
eive information, respe
tively. Se
-ond, Unix FIFOs (named pipes) are used to transfer in-formation between Lisp and CLIPS. For example, pipesare used when CLIPS requests that Lisp 
arry out somehigher-�delity simulation su
h as running a task assign-ment algorithm.Proto
ol-level simulation is done by CLIPS. Rules areused to represent what agents would do under di�erentsituations. The rules' a
tions simulate what the agentsdo when following the 
ooperation proto
ols, but not howthey arrived at the de
isions ne
essary to do follow them.Fig. 2 shows a portion of the output from this level of thesimulator as the AOSN self-organizes. (A more 
ompletedes
ription of this pro
ess 
an be found elsewhere [3℄.)As long as the simulator has any portion that is beingsimulated at the proto
ol level, CLIPS performs othersimulation fun
tions, su
h as maintaining the systemtime. This is done by using the dis
rete event simu-lator (DES), implemented as CLIPS rules and obje
ts.Proto
ol-level simulation rules post events that shouldo

ur at some time in the future. When the rules rea
hquies
en
e, DES moves the system time to the next eventand runs the event. For example, 
ommuni
ation viaa
ousti
 link is 
urrently modeled this way. When anagent sends a message, rules determine the travel timefor the message through the water before it arrives at its



[CLIPS℄ 00:00:04.0 (MLO) new agent VIP10 broad
asting organization-present?.[CLIPS℄ 00:00:04.0 (MLO) new agent VIP10 setting timer 1 to wait for replies.[CLIPS℄ 00:00:04.0 (MLO) new agent VIP11 broad
asting (non-CDPS) organization-present?.[...DES moves time ahead to simulate a
ousti
 link message transit time...℄[CLIPS℄ 00:00:05.05 (MLO) VIP11: re
eived organization-present? message from VIP10[CLIPS℄ 00:00:33.01 (MLO) VIP16: re
eived organization-present? message from VIP13[CLIPS℄ 00:00:33.02 (MLO) VIP14: re
eived organization-present? message from VIP13[...℄[CLIPS℄ 00:00:34.0 (MLO) VIP10: waited long enough for organization-present? replies.[CLIPS℄ 00:00:34.0 (MLO) VIP10: initiating MLO formation with agents = (VIP10 VIP13)[CLIPS℄ 00:00:34.0 (MLO) VIP10: broad
asting first initiate-MLO message.[...℄[CLIPS℄ 00:01:05.05 (MLO) VIP13: 
ompleted MLO formation.[CLIPS℄ 00:01:05.05 (SIM) MLO formed, 
ontains members (VIP10 VIP13 VIP9).[CLIPS℄ 00:01:05.05 (SIM) swit
hing 
ontext -> MLO dis
overyFigure 2: Output from the proto
ol level of simulation. (Edited slightly for 
larity.)destination and posts an event for that amount of timein the future. At that time, the re
ipient will re
eive themessage. (For broad
asts, travel time is determined toall agents and 
orresponding events are posted.)As portions of the simulation pro
eed from the proto-
ol level toward more high-�delity simulations, more ofthe simulation fun
tionality will migrate out of CLIPS.When CoDA is running 
ompletely in a high-�delitymode, then CLIPS will need do little.As shown in Fig. 1, te
hnique-level simulation 
an o
-
ur in two pla
es in CoDA, within Lisp and external toit. Currently, it is done within Lisp. In order to try out anew te
hnique, the proto
ol-level simulation of the agentusing the te
hnique must be modi�ed to request thatCoDA run the te
hnique when it is needed. This entailsmodifying a few rules and de�ning a request type, thenmodifying a Lisp variable to link the request type to thefun
tion to 
all when the request is made. For example,the 
urrent simulator uses a te
hnique that is a modi�edversion of 
onstrained heuristi
 sear
h (CHS) in order todo task assignment. Requests were de�ned to transfer in-formation from the CLIPS proto
ol-level simulation intoLisp data stru
tures (e.g., \add-task," \add-alternative,"et
.), and a request was added to invoke CHS (\solve-problem"). CLIPS rules pertaining to task assignmentwere modi�ed to send Lisp these messages and wait forLisp's reply. CoDA's Lisp portion, when it re
eives themessage, 
alls the CHS top-level fun
tion, then sends theresults to CLIPS. Fig. 3 shows a portion of this pro
ess.At the present time, we are working on an algorithm-level simulation of the task-assignment me
hanism. Thiswill be a distributed version of CHS. It will be addedto the simulator in mu
h the same way as was sket
hedabove for the te
hnique-level CHS.

Although Fig. 1 shows full-agent and hardware-levelsimulation 
omponents as also being possible to in
ludewithin Lisp, most likely these will be external to the mainportion of the CoDA simulator. As shown, entities exter-nal to CoDA 
an also be used to implement te
hnique-level and other levels of simulation. In the near future,we will add a network 
ommuni
ation module to CoDA.This will 
ommuni
ate using so
kets with simulated 
om-ponents. This will allow the pie
es of the simulation tobe written in virtually any language and run on multiple,possibly remote, systems. For example, we anti
ipate us-ing the Or
a AUV mission 
ontroller [10℄ to 
ontrol simu-lated AUVs in CoDA. Or
a will likely run in its own Lisppro
ess on another ma
hine and 
ommuni
ate with theagent \body" by ex
hanging messages with CoDA. CoDAmay simulate the body internally, or that, too, may beexternal. For example, Or
a's 
ommands to the AUVmay be passed along to another external simulator, su
has CADCON [2℄, whi
h 
an provide high-�delity AUVsimulation, or they may be passed along to a
tual robots
onne
ted to CoDA via the Internet.Experiment 
ontrol, as well as data gathering and anal-ysis fa
ilities are also provided by CoDA. CoDA usesCLIP/CLASP (Common Lisp Instrumentation Pa
k-age/Common Lisp Analyti
al Statisti
s Pa
kage) [11℄.This allows experiments to be de�ned in data �les, thenrun under the 
ontrol of CoDA. Data are gathered basedon the experiment de�nitions and 
an be analyzed statis-ti
ally by CLASP or exported for use by other statisti
sprograms.The 
urrent CoDA simulator is being extended in sev-eral ways. The network server mentioned above willsoon be added. This will allow graphi
al user interfa
es(GUIs), for example, to be easily added to CoDA. One



Re
eived request to start new TLO 
onstru
tion; deleting old problem(s).New TLO problem will be referred to as `"gen1099"'.[CLIPS℄ 00:03:11.0 (MLO) VIP30: 
reating new sear
h problem for assignments, gen1099[CLIPS℄ 00:03:11.0 (MLO) VIP30: Assigning tasks.Attempting to solve problem "gen1099".Problem "gen1099" is solved.Sending to CLIPS: problem status of "gen1099" is SUCCESS.[CLIPS℄ 00:03:11.0 (MLO) VIP30: status of problem gen1099 is SUCCESS.[CLIPS℄ 00:03:11.0 (SIM) Creating obje
t gen1132 to represent the TLO.[CLIPS℄ 00:03:11.0 (MLO) TLO 
reated.Figure 3: Output of a te
hnique-level simulation. A TLO is the task-level organization that 
ondu
ts themission; MLO is the meta-level organization that designs the TLO.subproje
t 
urrently under way will 
reate a Java/VRML(Virtual Reality Modeling Language) GUI that re
eivesinformation from CoDA and generates and maintains avirtual reality model of the simulated system.The addition of the network server will allow anothermajor extension, the addition of hardware and full-agentsimulation abilities. Our work is 
urrently being ex-tended to simulate a system of autonomous agents thatare either real robots (Pioneer land robots) or simulatedrobots [12℄. The real robots will be augmented with theability to simulate AUVs; for example, they will ea
hhave a virtual depth that the simulator maintains forthem in addition to their real XY lo
ation. This simula-tor 
onne
ts the robots and simulated robots, as well astheir 
ontrol software, via the network. With this exten-sion, CoDA will have the ability to simulate an AOSN atany of the levels of �delity dis
ussed above, from the pro-to
ol level to the full agent in hardware level, either withall 
omponents at the same level or with 
omponents atdi�erent levels. Con
lusionSystems of systems, su
h as autonomous o
eano-graphi
 sampling networks, are important in o
ean s
i-en
e and engineering. Su
h systems are 
omplex and dif-�
ult to design and implement without simulation. Un-fortunately, adequately simulating su
h systems is itselfdiÆ
ult. High-level, low-�delity simulators do not pre-di
t the system's behavior in detail, yet low-level, high-�delity simulators are labor intensive and require a longtime to build.We have here argued for multi-�delity simulation forsystems of systems. Su
h a simulator 
an provide asmooth transition path from high-level, low-�delity sim-ulations to low-level, high-�delity simulations, thus sup-porting the development pro
ess from design throughproof-of-
on
ept and beyond. We have found several lev-els of simulation useful. Proto
ol level simulation 
on
en-

trates on the aggregate properties of the 
omponents ofthe system as they intera
t using their 
ooperation pro-to
ols, but does not make any 
ommitments to how theyfollow the proto
ols. Te
hnique level simulation makessome 
ommitment to the te
hniques to be used by the
omponents, but does not 
ommit to the a
tual imple-mentation. Algorithm level simulation 
ommits to the al-gorithms that will a
tually 
arry out the te
hniques anduses implementations of those algorithms in the simula-tion. Full agent in software level simulation simulates thede
ision-making pro
esses of 
omplete agents. Full agentin hardware level simulation makes use of a
tual hard-ware implementations of the agents (e.g., robots). Atany given time, the various simulated 
omponents maybe in di�erent levels of simulation.We have implemented a multi-�delity simulator for theCoDA proje
t to simulate AOSNs. So far, this simulatorin
orporates the proto
ol and te
hnique levels, and thealgorithm level is 
urrently being worked on. An exten-sion will add fun
tionality to bring the full agent in soft-ware and full agent in hardware levels into CoDA. TheCoDA simulator allowed us to rapidly prototype 
ooper-ation proto
ols for AOSN self-organization and reorgani-zation as well as te
hniques for task assignment. In thenear future, we will be using the simulator to develop andtest algorithms for task assignment and te
hniques andalgorithms for organizational stru
ture sele
tion. Withthe extension, we will be able to test and further developour AOSN 
ontrol approa
h using full agent simulation,both in software and in hardware, as a �nal step beforein-water testing. A
knowledgmentsThe authors thank the other members of the Coop-erative Distributed Problem Solving (CDPS) Resear
hGroup, part the Maine Software Agents and Arti�
ialIntelligen
e Laboratory (MaineSAIL), and our 
olleaguesat the Autonomous Undersea Systems Institute (AUSI)



for their insightful 
omments and other help over the
ourse of this work. Referen
es[1℄ T. B. Curtin, J. G. Bellingham, J. Catipovi
, andD. Webb. Autonomous o
eanographi
 sampling net-works. O
eanography, 6(3), 1993.[2℄ S. G. Chappell, R. J. Komerska, L. Peng, andY. Lu. Cooperative AUV Development Con
ept(CADCON) { an environment for high-level multipleAUV simulation. In Pro
eedings of the 11th Inter-national Symposium on Unmanned Untethered Sub-mersible Te
hnology (UUST99), Durham, NH, Au-gust 1999. The Autonomous Undersea Systems In-stitute, Lee, NH.[3℄ R. M. Turner and E. H. Turner. Organization andreorganization of autonomous o
eanographi
 sam-pling networks. In Pro
eedings of the 1998 IEEEInternational Conferen
e on Roboti
s and Automa-tion (ICRA'98), pages 2060{2067, Leuven, Belgium,May 1998.[4℄ E. H. Turner and R. M. Turner. A 
onstraint-based approa
h to assigning system 
omponents totasks. International Journal of Applied Intelligen
e,10(2/3):155{172, 1999.[5℄ M. S. Fox, N. Sadeh, and C. Baykan. Constrainedheuristi
 sear
h. In Pro
eedings of the Eleventh Inter-national Joint Conferen
e on Arti�
ial Intelligen
e(IJCAI-89), 1989.[6℄ K. Sy
ara, S. Roth, N. Sadeh, and M. Fox. Dis-tributed 
onstrained heuristi
 sear
h. IEEE Transa
-tions on Systems, Man, and Cyberneti
s, 21(6):1446{1461, 1991.[7℄ R. Turner, E. Turner, and D. Blidberg. Organi-zation and reorganization of autonomous o
eano-graphi
 sampling networks. In Pro
eedings of the1996 IEEE Symposium on Autonomous UnderwaterVehi
le Te
hnology, pages 407{413, Monterey, CA,June 1996.[8℄ R. M. Turner and E. H. Turner. A two-level, proto
ol-based approa
h to 
ontrolling autonomous o
eano-graphi
 sampling networks. Unpublished; submittedto the IEEE Journal of O
eani
 Engineering.[9℄ J. C. Giarratano. CLIPS User's Guide. NASA, In-formation Systems Dire
torate, Software Te
hnologyBran
h, Lyndon B. Johnson Spa
e Center, Houston,TX, 1993.[10℄ R. M. Turner. Intelligent 
ontrol of autonomous un-derwater vehi
les: The Or
a proje
t. In Pro
eed-ings of the 1995 IEEE International Conferen
e onSystems, Man, and Cyberneti
s. Van
ouver, Canada,1995.[11℄ S. D. Anderson, D. L. Westbrook, M. S
hmill,A. Carlson, D. M. Hart, and P. R. Cohen. Com-mon Lisp Analyti
al Statisti
s Pa
kage: User Man-ual. Department of Computer S
ien
e, University ofMassa
husetts, 1995.[12℄ C. Grunden. Master's thesis. Unpublished; to be
ompleted August, 2000.


