
A Constraint-Based Approach to Assigning
System Components to Tasks⋆

Elise H. Turner and Roy M. Turner

Department of Computer Science, University of Maine, Orono, ME 04469, USA
{eht, rmt}@umcs.maine.edu

Abstract. In multi-component systems, individual components must
be assigned to the tasks that they are to perform. In many applications,
there are several possible task decompositions that could be used to
achieve the task, and there are limited resources available throughout
the system. We present a technique for making task assignments under
these conditions. Constraint satisfaction is used to assign components to
particular tasks. The task decomposition is selected using heuristics to
suggest a decomposition for which an assignment can be found efficiently.
We have applied our technique to the problem of task assignment in
systems of underwater robots and instrument platforms working together
to collect data in the ocean.

1 Introduction

In this paper, we address the problem of assigning tasks to components of sys-
tems comprised of multiple robots and instruments. Our method views each com-
ponent as a collection of capabilities. Each component is also expected to have
limited resources which can be expended during the mission. The overall mission
of the system is decomposed into subtasks which are further decomposed into
the capabilities which are required to achieve them. Task assignment is viewed
as a constraint satisfaction problem in which the assignment of a component to
a particular task is constrained by the capabilities and resource limitations of
the component.
Our method has been developed specifically for Autonomous Oceanographic

Sampling Networks (AOSNs) [1]. AOSNs are multi-component systems that will
be deployed for long durations to collect data in the ocean. We will call specific
high-level tasks missions of the system to distinguish them from the subtasks
which will be assigned to individual components. Components of the AOSN in-
clude both underwater Vehicles and non-mobile Instrument Platforms (VIPs).
Because of the limited number of underwater vehicles in existence, and because
of the expense of developing new VIPs, the AOSN should be able to take advan-
tage of slack resources in the ocean engineering community. Consequently, the
configuration of the system will be driven by the availability of components.

⋆ This work was funded in part by contract N0001–14–96–1–5009 from the Office
of Naval Research. Thanks to Dick Blidberg, Steve Chappell, Jim Kadin, and the
UMaine CDPS group for many insightful comments on this work.

In Lecture Notes in Artificial Intelligence 1415: Methodology and Tools in Knowledge-
Based Systems, J. Mira, A.P. del Pobil, and M. Ali (eds.), Springer, New York,
1998. (Proceedings of the 11th International Conference on Industrial and Engi-
neering Applications of Artificial Intelligence and Expert Systems (IEA–98–AIE),
Benicàssim, Spain, June, 1998.) Vol. I, pp. 538–547. Copyright c⃝ 1998 Springer–Verlag
(http://www.springer.de/comp/lncs/index.html).

AOSNs share several important characteristics with other multi-component
systems. These include:

1. Each component will have a collection of capabilities, usually many more
than one. However, not all components have the capability to reason or to
act autonomously in the world.

2. Because of resource limitations, not all components will be able to contribute
all of their capabilities to the mission.

3. There may be some special-purpose components which have rare capabilities
that are needed for the mission.

4. The total number of resources and capabilities in the system may be close
to the total needed to perform the mission.

5. The task will have several known decompositions, each of which will require
a different combination of capabilities.

6. The system must be able to organize itself autonomously. This may be nec-
essary for the initial organization or for the system to respond to changes in
the user’s goals or in the environment.

In the next section, we describe our technique in more detail. We present
an example in Sect. 3. In Sect. 4, we compare our work to related systems. We
conclude with a discussion of our results and plans for future work.

2 Assigning Components to Tasks

We assume that each mission can be achieved using one of several task decom-
positions. A task decomposition breaks down a task into subtasks, then those
into their subtasks, etc. Each task decomposition requires different capabilities
and demands different levels of resources. The problem of task assignment can
be seen as having two parts: selecting the appropriate task decomposition and
assigning VIPs to the capabilities required for that alternative. Since the discus-
sion of selecting the decomposition requires an understanding of how assignment
is done, we present that first.

2.1 Assigning VIPs to Capabilities

The assignment of VIPs to capabilities can be represented as a constraint satis-
faction problem in a straightforward way. The variables in the constraint satis-
faction problem are the capabilities required. The value of each variable is the
VIP which is assigned to contribute that capability to the task. There are three
constraints on this assignment:

1. The VIP assigned to the variable must have the required capability.
2. The VIP must have the required resources available.
3. The total resources required by all of the capabilities to which the VIP is
assigned cannot exceed the VIP’s available resources.

The first two are unary constraints. They are checked when VIPs are assigned
to the initial domains of the variables, which are created when the task decom-
position tree is formed. The third is an n-ary constraint between all variables
which have the given VIP in their domains. There will be one such constraint
for each VIP.
We use the constrained heuristic search (CHS) [2] formalism for solving

the constraint satisfaction problem. CHS combines constraint satisfaction and
heuristic search. Search states are constraint graphs. As in standard CSPs, vari-
ables are represented as nodes and their domains are their remaining potential
values. In CHS, constraints are also represented by nodes. Constraint nodes are
adjacent to the variable nodes whose values they restrict. This allows constraints
to be added to the constraint graph after some constraint propagation has taken
place. The topology of the constraint graph can be characterized by a set of
textures. Heuristics are developed to approximate these textures. The heuristics
can then be applied to select the operators used to generate the next search
state. Constraints are propagated within each newly created state. Any search
mechanism can be applied to the search space.
The heuristics that we apply during constraint propagation select the unas-

signed variable with the fewest values left in its domain and assign to it the
value that is a member of the fewest domains. The state space is searched using
a version of hill-climbing which allows backtracking to previous choice points.

2.2 Selecting the Task Decomposition

We assume that the VIPs, their capabilities and resource limitations, and the
task decomposition tree for the mission are known before task assignment begins
[3]. The task decomposition tree has the form shown in Fig. 1. The subtasks that
must be performed to accomplish a task are the ANDed children of that task.
In the figure, T1 and T2 must be performed in order to perform the mission.
Alternative methods for performing a task are the ORed children of the parent
task. For example, Alt-T1-1 and Alt-T1-2 are two alternatives for performing
T1. All of the children of the node are either ANDed or ORed together; there
are no mixed nodes. The children of the root can be either ANDed or ORed
together. The leaves of the task decomposition tree are variable nodes represent-
ing capabilities required to achieve the parent task. These nodes can be moved
to the constraint graph. The capabilities are shown in our figure by letters. We
have numbered the capabilities which appear more than once to indicate that
they are distinct usages of the same capability and to identify the node in our
discussion of the example. In addition to the capability, the number of “resource
units” required1 and the domain of the variable are associated with these nodes.
The task decomposition tree represents the ways in which the mission can be
performed. For our example, the mission can be performed using the following
collections of capabilities: {A, B1, D2}; {A, B1, B2, E}; {C, D1, D2}; and {C,
D1, B2, E}.

1 These correspond to time, energy, etc.

D1C

VIPs:
Resource units:

1,3,5
5

2,3
3

5
2

1,4,7
5

1,4,7
4

2,3
3

2
2

Mission

T2

Alt-
T2-2

B2 ED2

Alt-
T2-1

Alt-
T1-2

T1

Alt-
T1-1

A B1

Fig. 1. A task decomposition tree for a mission

To build the constraint graph as described above, we must add all of the
capabilities which constitute a decomposition to the constraint graph. Capabili-
ties are selected using textures from CHS so that the resulting constraint graph
can be solved efficiently. In particular, we focus on textures that increase the
likelihood that a solution can be found without backtracking.
Our algorithm starts with an empty constraint graph and the initial task

decomposition tree; this is the initial state. A new state is generated by selecting
a leaf node or ANDed leaf nodes to add to the graph. Each selection represents
a partial commitment to one particular task decomposition. Selections are made
by applying two recursive algorithms (Fig. 2), select-alternative at OR nodes and
select-subtask at AND nodes, starting at the root of the tree and ending when a
selection is made at the leaf level.

select-alternative(node):
 if node is leaf then
 return(size(domain),node);
 else
 call select-alternative on each child;
 if node is OR then
 return(max value, child with max value);
 else ;; it’s an AND node
 return(min value, child with min value);
 fi;
 fi;
end;

select-subtask(node):
 if node is leaf then
 return(size(domain),node);
 else
 call select-subtask on each child;
 if node is AND then
 return(min value, child with min value);
 else ;; it’s an OR node
 return(sum of values of children);
 fi;
 fi;
end;

Fig. 2. Algorithms used to select capabilities

Following the value goodness texture [2], in select-alternative we choose the

alternative that can be satisfied by the greatest number of values. This gives
the constraint algorithm the most flexibility. Since the VIPs that can perform
the task are the potential values for the variables, they provide the basis for
the selection. The values are propagated up the tree from the leaves so that the
interdependence of the ANDed siblings can be taken into account.
Following the constraint reliance texture [2] in select-subtask we choose the

subtask with the fewest possible alternatives. Since this subtask is the most
constrained, it needs to be added to the constraint graph early. This ensures
that these important constraints will be in the constraint graph, and will be
used to construct partial solutions, early in problem solving.
When a node is selected, its associated capabilities are added to the constraint

graph. The task decomposition tree is then pruned to remove the selected nodes
and other nodes which cannot be part of the same task decomposition. This
includes pruning alternatives to ancestors of the node.

3 Example

Returning to the task decomposition in Fig. 1, we will now consider how the
technique described above would select a task assignment. This tree is repro-
duced in Fig. 3 showing the domain of each variable and resource units required.
Suppose that there is the following situation with respect to VIPs: VIP1 has
capabilities A and D, with 6 resource units total; VIP2 has B and E, with 3
units; VIP3 has A and B, with 5 units; VIP4 has D, with 5 units; VIP5 has A
and C, with 5 units; VIP6 has no capabilities needed for this task; and VIP7 has
D, with 5 units.

D1C

VIPs:
Resource units:

1,3,5
5

2,3
3

5
2

1,4,7
5

1,4,7
4

2,3
3

2
2

Mission

T2

B2 ED2

Alt-
T2-1

Alt-
T1-2

T1

Alt-
T1-1

A B1

Alt-
T2-2

A 3
O 3

A 2
O 2

A 1
O 1

A 3
O 3

A 3
O 3

A 2
O 2

A 1
O 1

A 2
O 2

A 1
O 1 A 3

O 3

A 1
O 1

A 3
O 2

A 4
O 3

A 3
O 2

8

7

6

5

3

1

2 4

Fig. 3. Annotated task decomposition tree

The numbers beside the nodes labeled with “A” and “O” show the and- and
or-ratings of the node, respectively, as computed by select-alternative and select-

subtask.2 The progress of the capability selection algorithm is shown on the tree.
Arrows indicate selections of children and slashes indicate branches that have
been pruned. These marks are numbered and the corresponding number appears
in parentheses after the text describing that step.
Starting with the root of the marked tree, select-subtask chooses the subtask

to consider first. It selects the subtask with the lowest and-rating, T1 (1). From
there, select-alternative will select the child of T1 with the highest or-rating,
Alt-T1-1 (2). This alternative has only ANDed children, so they become the
first variables added to the constraint graph (3). The first part of Fig. 4 shows
the constraint graph after A and B1 are added. Double circles show the n-
ary resource constraints, labeled with the VIP concerned and resource limit.
Constraints are checked at this point, but since no commitment has yet been
made to a value for either variable, no values are eliminated from either domain.
The tree is now pruned (4) to eliminate non-chosen OR branches in the ancestors.
At this point, a new search state has been created.

2 3

2,3
A

1

5

1,5,3

3 5 6

5After selecting A & B1 After selecting D2

5 6
2 3

B1

2,3
A

1

5

1,5,3

3

5

4

7

D2

5

5

Select B1=2

1,4,7

5 6
2 3

B1

2,3
A

1

5

1,5,3

3

5

4

7

D2

5

5

1,4,7

5 6
2 3

B1

2,3
A

1

5

1,5,3

3

5

4

7

D2

5

5

1,4,7

Select A=1

Final assignment: B=2, A=1, D2=4

B1

Fig. 4. Evolution of the constraint graph in succeeding states

From this state, the algorithm returns to the top of the tree and selects the
only remaining subtask, T2 (5). Select-alternative now selects Alt-T2-1, and D2
is added to the constraint graph, as shown in the upper right of Fig. 4. The
constraint graph is consistent, the tree is pruned (7), and another search state
is created.

2 An optimization is done in the program to record the markings at the nodes so that
select-subtask/-alternative do no unnecessary work.

At this point, there are no more subtasks at the top level, so a complete
possible configuration is represented in the constraint graph. The normal CHS
algorithm now takes over. As shown in the bottom of Fig. 4, CHS selects the
variable (B2) with the fewest values in its domain, then assigns to it the value
(VIP2) that appears in the fewest domains. Constraint propagation does not
prune any other domains. From this state, CHS assigns VIP1 to A. Constraint
propagation prunes D2’s domain in this case. Our heuristics evaluate all remain-
ing values for D2 as equal, so VIP4 is arbitrarily chosen for the value of D2. This
yields a goal state, A=VIP1, B1=VIP2, D2=VIP4.
Although space does not permit us to include backtracking in our example,

backtracking could occur under two circumstances. The system can backtrack
during constraint satisfaction to try different choices for assigning values to VIPs.
If the constraint graph cannot be satisfied, the system can backtrack to states
created during capability selection to try a different task decomposition.

4 Related Work

Several techniques from distributed artificial intelligence can be used to do task
assignment (e.g., [4], [5]). However, most of them rely on local decisions, often
made by local negotiation between agents, to produce global solutions. This can
lead to sub-optimal solutions or even to no solution at all, since there is no
global perspective and no possibility to coerce an agent into doing a locally-
unacceptable, but globally-necessary, task. It is difficult to see how a technique
such as the Contract Net Protocol [4] or Partial Global Planning [5] can han-
dle selecting between alternative configurations; this requires a global notion
of what the possible configurations are. The local contracts or agreements in
those systems would also over-commit to alternatives that are tentative. Some
approaches also require sophisticated agents [5], which we cannot guarantee in
our application.
Our technique is also related to applications of CHS in other domains. At first

glance, job-shop scheduling [6] appears to be the most closely-related application
because it is concerned with scheduling resources to perform tasks. However, it
differs from our domain because there are no alternative decompositions for
performing the task.
Other applications of CHS have considered alternative constraint graphs. Of

these, Wright [7] and CORAL [8] are most closely related to our work. Wright
uses texture-based heuristics to select alternative layouts for spatial planning
problems. However, Wright relies on representing possible alternatives in the
CHS formalism for constraint graphs instead of in a standard task decomposition
tree. The CHS formalism is difficult to use in our domain and is less than ideal
for any application in which the task decomposition tree will be provided by
some other planner.
CORAL works in the domain of configuring and allocating available com-

ponents to assist inventory managers. It represents possible configurations in a
standard task decomposition tree, selects a feasible configuration, and assigns

resources from its inventory to the configuration. CORAL is very similar to our
work. First, selections are made from the task decomposition tree, propagating
constraints when relevant. After a complete configuration is selected, assign-
ments are made to actual components.
CORAL differs from our work in two significant ways. First, CORAL does

not take advantage of texture-based heuristics when selecting its configuration.
We have found that using such heuristics increases the overall efficiency for
task assignment [9]. Second, CORAL selects a particular type of part that will
be used in a configuration from the task decomposition tree. In our domain,
it is analogous to selecting the VIP that will be used to perform a task as
part of choosing the alternative. In other words, this would be analogous to
binding a variable to a value before adding the variable to the constraint graph.
The technique works in CORAL’s domain because there are usually enough
parts available to make any configuration. However, in our application, texture
heuristics must be used to help select VIPs for task assignment because not all
assignments will be possible. Consequently, the resource limitations of the VIPs
must be taken into account when a VIP is assigned to a task.
We have implemented a version of CORAL, adapting it to our application by

assigning a VIP when a capability is selected from the task decomposition tree.
This version of CORAL was used to collect the data described below. Our early
experiements with CORAL suggest that our technique reduces backtracking for
our application.

5 Conclusion

Our system was used to produce task assignments for 100 randomly-generated,
solvable task decomposition trees. Examples in this set had a mean of 2574
configurations (possible task decompositions) per mission. The median time of
solution was 50 ms.3 The median number of backtracks per runs in which the
system backtracked was 1. Our version of CORAL was run on the same set
of task decomposition trees as above. It had a median run time of 70 ms and
backtracked a median of 1.5 times per run with backtracks.
Our technique will be used in our AOSN to make task assignments. In the

future, we plan to run additional experiments to test our heuristics for select-
ing task decompositions. We also plan to integrate our operator for selecting
capabilities with the other CHS operators.

References

1. Curtin, T.B., Bellingham, J.G., Catipovic, J., Webb, D.: Autonomous oceanographic
sampling networks. Oceanography. 6 (1993)

3 Since there was an outlier that skewed the mean, we are using median values. The
constraint graph produced for the outlier had a high number of backtracks. A mech-
anism for identifying constraint graphs which will have high numbers of backtracks
and selecting values early on to avoid backtracking is discussed in [9].

2. Fox, M.S., Sadeh, N., Bayken, C.: Constrained heuristic search. In: Eleventh Inter-
national Joint Conference on Artificial Intelligence. (1989) 309 – 315

3. Turner, R.M., Turner, E.H.: Organization and reorganization of autonomous oceano-
graphic sampling networks. In: International Conference on Robotics and Auton-
mation. (to appear)

4. Smith, R.G.: The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Transactions on Computers. 12 (1980) 1104 –
1113

5. Durfee, E.H., Lesser V.R.: Negotiating task decomposition and allocation using
partial global planning. In: Gasser, L., Huhns, M. N. (eds.): Distributed Artificial
Intelligence. Morgan Kaufmann Publishers, Inc., San Mateo, CA (1989) 229 – 243

6. Sadeh, N., Fox, M.S.: Variable and value ordering heuristics for the job shop schedul-
ing constraint satisfaction problem. Artificial Intelligence. 86 (1996) 1 – 41

7. Baykan, C.A., Fox, M.S.: Constraint techniques for spatial planning. In: ten Hagen,
P.J. W., Veerkamp, P. J. (eds.): Intelligent CAD Systems III: Practical Experience
and Evaluation. Springer-Verlag, New York (1991) 187 – 204

8. Sathi, N., Fox, M.S., Goyal, R., Kott, A.S.: Resource configuration and allocation:
A case study of constrained heuristic search. IEEE Expert. 7 (1992) 26 – 35

9. Turner, E.H., Turner, R.M.: Selecting task decompositions for constrained heuristic
search (in preparation)

This article was processed using the LaTEX macro package with LLNCS style

