Appeared in Proceedings of the Tenth International Symposium on Unmanned Untethered Submersible Technology, September
7-10, 1997, Durham NH. Published by Autonomous Undersea Systems Institute, 86 Old Concord Turnpike, Lee NH, 0382).

Cooperative Behavior in an
Autonomous Oceanographic Sampling Network:
MAUYV Project Update*

Steven G. Chappell
Autonomous Undersea Systems Institute
86 Old Concord Turnpike
Lee, NH 03824
(603) 868-3221
chappell@ausi.org

Roy M. Turner
Elise H. Turner
Department of Computer Science
5752 Neville Hall
University of Maine
Orono, ME 04469
(207) 581-3909

{rmt,eht }Oumcs.maine.edu

Charles Grunden
Department of Computer Science
5752 Neville Hall
University of Maine
Orono, ME 04469

charles_grunden@voyager.umeres.maine.edu

Abstract

The cooperative behavior of the participants in Au-
tonomous Ocean Sampling Networks (AOSNs) will be
critical to the systems’ success. The long term open
nature of such systems dictates that they must be able
to self-organize and reorganize in the face of change.
A two-level approach to coordinating multi-agent or-
ganization is discussed in this paper. In particular,
we present a collection of cooperative behavior proto-
cols which address many of the issues associated with
AOSN self-organization. These protocols have been im-
plemented and are being evaluated in a rule-based sim-
ulator. This simulator was designed to experiment with
the high level aggregate behavior of agents operating in
an AOSN. In this year’s work we have exploited the
simulator’s rule-based nature to increase its fidelity by
replacing broad scope rules with sets of finer granular-
ity rules. This provides the means for experimenting
with how agents contribute to the AOSN’s aggregate
behavior.

1 Introduction

The AOSN [Curtin et al., 1993] concept is an important
new tool for scientists to use in their efforts to better

*This work was funded by Office of Naval Research contract
number N0001-14-96-1-5009 and National Science Foundation
grant number NSF BES-9222146.

375

measure ocean processes and, thereby, improve their
understanding of how the oceans influence the plane-
tary ecosystem. Successful deployment of such systems
will rely on coordinated, flexible, and adaptive behav-
ior among the system’s various participants. We are
currently in the second year of work on a Multiple Au-
tonomous Unmanned Vehicle (MAUV) project [Turner
et al., 1996] directed at investigating such coordinated
behavior. This project has as its goal the development
of protocols and mechanisms for intelligently control-
ling AOSNs. We take a cooperative distributed prob-
lem solving (CDPS) approach that uses two kinds of
organizations: a meta-level organization (MLO) that
is responsible for self-organization of the AOSN, and
a task-level organization (TTO) that actually carries
out the mission. Our approach is being developed and
evaluated using a rule-based simulator that can model
the aggregate properties of an AOSN under the control
of various protocols. This approach has several bene-
fits, including: the rule-based methodology provides for
rapid development; simulating aggregate properties of
the protocols rather than individual participants and
their actions allows us to focus on the interaction pro-
tocols rather than lower-level control issues; and such
a simulator allows us to replace low-fidelity rules with
more specific rules as our understanding of the problem
and protocols develops.

This paper describes the current state of the project,
focusing in particular on the state of the protocols as
they are implemented in the simulator. In the next
section, we discuss the assumptions about AOSNs un-

derlying our work. Following that, we discuss the two-
level approach to AOSN organization and operation,
and then introduce our protocols for controlling it. Af-
ter that, we provide an overview of the simulator, with
subsections on protocol implementation and environ-
mental simulation. The paper ends with conclusions
and future directions.

2 Assumptions

We make several assumptions concerning the domain
of AOSN control. The following paragraphs introduce
these assumptions as well as the AOSN control require-
ments they generate.

Autonomous operation. The ultimate missions
envisioned for AOSN technology are those characterized
by a long-term presence in remote locations coupled
with adaptive sampling in response to environmental
events. This generates the requirement that the sys-
tem be able to maintain an effective organization of its
participants in the face of change. It should not re-
quire constant human intervention, although periodic

guidance will be beneficial.

Uncertain initial configuration. Since the system
will have to reorganize itself from time to time over any
mission, 1t makes sense to include the ability of ini-
tial self-organization in the list of AOSN requirements.
In fact, the initial self-organization is really a special
case of reorganization: creating an organization from
a situation where none exists. This ability will have
important side benefits. As AOSN participants gather
to begin an exercise, the overall system will be able to
adjust to deployment accidents, e.g., where air dropped
components are damaged or those that were supposed
to transit to the work site do not arrive. This means
that the AOSN must be able to discover its composition
and capabilities at run-time.

Heterogeneous agents. The AOSN participants
will cover a wide spectrum of physical and “cogni-
tive” capabilities. We use the term “agent” to refer
to any vehicle or instrument platform (VIP) that is ca-
pable of making decisions and/or taking independent
action. Thus, agents can range from sessile communi-
cations nodes to free swimming platforms of various ca-
pabilities. In particular, we differentiate between those
agents with the intelligence to actively plan, build, and
direct the organizing activity, and those agents who
generally follow the roles assigned to them.

376

Long-duration missions. AOSNs will be fielded
in order to gather data concerning long-duration ocean
processes. This has implications for the composition of
the system over time as well as for the need to track and
respond to environmental changes over time. In partic-
ular, agent organization will have to evolve in response
to these changes.

The AOSN is an open system. It is open in that
the composition of the set of AOSN agents will not be
constant over time. Given the long-term missions en-
visioned, agents will have to periodically drop out of
active service in order to replenish or conserve their
energy stores. Agents will also suffer failures or per-
haps be required elsewhere and, thus, exit the system.
Agents join the system when they finish an energy re-
plenishment cycle. Additionally, agents may be freshly
deployed into (and retired from) an operational AOSN
as scientists see fit. This open nature has profound im-
plications for AOSN organization and operation, since
the AOSN will need to reconfigure itself to respond to
its changed organization.

Changing environment and mission. Not only
will the AOSN have to operate with a changing agent
pool, its chief mission will likely involve adaptive sam-
pling, where the specifics of actions taken by each agent
will vary according to environmental change and cannot
be fully specified ahead of time. The long term nature
of AOSN deployment raises the probability that scien-
tists will redefine mission objectives sometime during
that mission. These sorts of changes will impact the
AOSN in that it may need to reorganize its agent con-
trol structure in order to meet the new situations.

Planning: commitment to future actions.
Agent rendezvous, specific spatial and temporal re-
quirements on data collection, known agent entry/exit
times, etc. all dictate that the AOSN be able to plan for
future actions and events. This argues against the se-
lection of control mechanisms that rely solely on local
control of agents, hoping that globally-coherent plans
and behaviors will emerge.

3 Organizing AOSN Agents

We take a two-level approach to the problem of con-
trolling AOSN organizations. One level is the TLO,
an organization structure composed of some or all of
the VIPs, which coordinates and controls the accom-
plishment of mission tasks. This organization is highly
tailored to the AOSN’s current situation and the mis-
sion at hand. At a higher level is the MLO (cf. [Durfee

and Lesser, 1987]), which is composed of a subset of the
VIPs—in particular, those with the capability to par-
ticipate in a CDPS system. The MLQO’s purpose is to
design an appropriate TLO for the current AOSN] its
situation, and its mission. It i1s also tasked to recover
from errors and TLO-task mismatches, which are too
severe for the TLO to accommodate.

This two-level approach, we believe, allows side-
stepping the usual generality—efficiency trade-off in-
volved in most problem solving. These levels operate
at either ends of that trade-off. The MLO is very gen-
eral and makes minimal assumptions about the AOSN
(e.g., which agents are present) and the mission. On
the other hand, the TLO can be efficient and inflexi-
ble, since any errors or mismatches beyond its ability
to handle can be dealt with by the more general MLO.

The two organizations are created and maintained
by the AOSN’s VIPs following rule-like or script-like
patterns of behavior called protocols. We are currently
experimenting with the following protocols:

e Meta-Level Organization Formation

e Meta-Level Organization Discovery of Re-
sources

Task-Level Organization Formation
Task-Level Organization Work Phase
Entering an Organization

Exiting an Organization
Reorganization

The first four flow more or less from one to another in a
sequence from an agent’s deployment to its integration
into the AOSN. The last three protocols handle “excep-
tions” to that sequence, which are a consequence of the
open quality of an AOSN.

In the following subsections, we discuss the current
set of protocols in some detail. In the next section, we
describe our rule-based simulator in which we are de-
veloping and evaluating these protocols. More detailed
descriptions of these protocols may be found in [Turner

and Turner, 1997].

3.1 Meta-Level

tion

Organization Forma-

After initial deployment, AOSN agents will have to
self-organize into an effective problem solving system
based on the agents present, the mission, and the envi-
ronment. We argue that self-organizing agents will be
better equipped to handle the rigors of autonomous or

377

semi-autonomous operation (a primary AOSN require-
ment) than those that must be provided a priori with
organizational knowledge. We call the protocol for this
activity MLO formation. This protocol is carried out
by MLO capable-agents—that is, by agents capable of
planning, building, and directing the MLO. These are
the ones that have the requisite capabilities for coop-
erative distributed problem solving. MLO formation
involves two main steps. First, these MLO-agents must
determine whether or not an organization (of any kind)
already exists. Second, if no MLO is found, then one
of the MLLO-agents must initiate the creation of same.
This protocol overlaps significantly with the protocol
for AOSN reorganization, as discussed in a later sub-
section. The details of the MLO formation protocol are

agent
deployment

broadcast:

u . on received
organization-present? response from
received T organization
_________ i’
"organization-present?" E Kad

punEEREy,
. e

Enter
Organization

% received
: "initiate-MLO"
. with conflict

.

H
R s timeout
'
received
L B
"initiate-MLO"
no conflict

broadcast:
"initiate-MLO with
<MLO-agent-list>"
received
"initiate-MLO"
with conflict

0

.
.
.
.

PELLLT]
o® Ty

K OR
received
"organization-present?"

o

“
.....llllll‘-“
received
"initiate-MLO"
no conflict

timeout:
MLO
Discovery

Figure 1: Protocol for MLO Formation.

sgc mlo-formation.obj 22 Jul 1997

shown in Figure 1.

MLO formation starts when freshly deployed agents
interrogate their environment by broadcasting the mes-
sage organization-present?. This serves both to
identify each new agent and to probe for the existence
of some AOSN organization. After the broadcasts, each
agent sets a timer and enters a wait state. During
this wait, an MLO-agent will respond to three kinds
of messages. Receiving organization-present? mes-
sages indicates to it that there are other MLO-agents
out there in a state matching its own. It uses data

in the received messages (sender name, location, and
MLO capability) to build up its world view regarding
the presence and identity of those other MLO-agents.

Receiving an initiate-MLO message in this first wait
state indicates that another agent is further along in the
MLO formation protocol. The receiver must adjust to
this situation by moving its state forward within the
protocol. How it does this is determined by the match
between the receiving agent’s world view and the list of
MLO-agents it acquires from the initiate-MLO mes-
sage (see arcs labeled “1” and “2” in Figure 1). This
MLO-agents list specifies which agents are intended to
be the participants in a proposed MLO. If the agents
that the recipient already knows about are a subset of
those found in the proposed MLO-agent list, then the
recipient updates its own knowledge to include those
MLO-agents it has just learned about from the list.
While this is a conflict, it is one that can be corrected
locally, and, thus, it is treated as a non-conflict: the re-
cipient moves directly to wait state 2 (arc “1”). On the
other hand, if the recipient knows about agents that
are absent from the proposed MLO-agent list, then a
conflict exists that cannot be corrected locally. The
recipient moves along arc “2” to broadcast its own
initiate-MLO message with an updated MLO-agent-
list in order to correct the sender’s knowledge. Other-
wise, the recipient’s knowledge matches the proposed
MLO-agent list; there is no conflict, and it moves to
wait state 2 (arc “1”). Finally, receiving a response
from a pre-existing MLO or TLO in wait state 1 tells
the receiver that it should abandon the MLO formation
protocol altogether and enter another protocol in order
to join that organization (discussed below).

An agent simply timing out of wait state 1 assumes
that it is the first to do so and it broadcasts the
initiate-MLO message. This announces its unilateral
decision to build an MLO made up of the agents it
came to know about via the previous reception of the
organization-present? messages. After this sec-
ond broadcast, it enters a second wait state, during
which, it listens for responses of three types. Recep-
tion of initiate-MLO messages, which contain infor-
mation that conflicts with its internal knowledge (i.e.,
the received message does not contain all the VIPs that
this agent knows about), will cause it to attempt to
correct the problem by repeating the last broadcast
(with an updated agent-list, if necessary) and wait.
Reception of organization-present? messages will
cause the same cycling since they also indicate the pres-
ence of previously unknown MLO-agents. Reception
of initiate-MLO messages containing information that
does not conflict with its internal knowledge allows the

378

receiver to remain in the second wait-state until time-
out (possibly updating its local information as such
messages are received). Through this mechanism, all
MLO-agents arrive at world views which are in agree-
ment. They then pass through their wait 2 timeouts,
decide that the MLO has been formed, and enter the
next protocol.

3.2 Meta-Level Organization Discovery
of Resources

Once the MLO has been formed, the system enters the
MLO discovery protocol, which is characterized by the
various agents (MLO and non-MLO alike) arriving at
an understanding of where the non-MLO-agents are lo-
cated, what all agents can do, and who controls whom.
The flow through this protocol is shown in Figure 2.

MLO
Formation

broadcast:
"has-capabilities"

broadcast:
wWwho’s-there?",

ask VIP
"capabilities?"

POTTTTTIN .
. te, ¢

:o - E
. L]
‘0. me:
ECTITT e not :
received . H

. HERARS *...me
"has-capabilities" ' RN
: receive;; decide who
timeouti "VIP location™ controls that VIP

TLO
Formation

Figure 2: Protocol for MLO Discovery.

sgc mio-discovery.obj 22 Jul 1997

MLO discovery 1s started by each MLO-agent broad-
casting a has-capabilities message listing what it
can do. They also broadcast a who’s-there?
sage, which will induce non-MLO-agents into making
their capabilities known. After the two broadcasts, the
agent enters a wait state to collect replies. During the

mes-

wait, the broadcaster can respond to either of two in-
puts. When it receives has-capabilities information

from other agents, it updates its own knowledge base so
that it can know which agents have what capabilities.
Reception of VIP-location messages causes it to de-
cide whether or not it should assume control over that
responding VIP (which is a non-MLO-agent).! Since
MLO-agents already have common knowledge of loca-
tions, this can be done without communication. If the
MLO-agent decides it does control the responding VIP,
it asks that VIP about its capabilities, and returns to
the wait state. Otherwise it ignores the VIP and reen-
ters the wait. This “capabilities of others” knowledge is
used later, when a planner needs to know what capabil-
ities the various MLO-agents have under their control.
When the wait times out, 1t is assumed that all VIPs in
the system that can answer have done so. This signals
the completion of the formation of the MLO.

3.3 Task-Level Organization Formation

With an MLO completely formed, the system can turn
its efforts to the details of TLO construction, in which
agents are assigned subtasks of the AOSN mission. This
is controlled by the TLO formation protocol, which is
shown in Figure 3. Note: unlike previous Figures, this
one shows two chains of state changing. The dashed
lines depict the transmission of a message from an agent
progressing through states in one chain to an agent pro-
gressing through states in the other.

Our TLO-formation protocol i1s based on a multi-
agent planning model (e.g., [Georgeff, 1984; Cam-
marata et al., 1983]) where a planner is chosen by
a simple convention.? This will evolve towards the
ability of the entire MLO functioning as a planner.
Once the planner is chosen, it determines the capa-
bilities required for the mission and then broadcasts
a controlled-capabilities? message. This is a re-
quest for other agents to declare the capabilities they
know about. While waiting, the planner responds to
any received controlled-capabilities messages by
building up its own knowledge base of agents’ capabil-
ities and the capabilities of agents that they, in turn,
control.

After a timeout, the next step is deciding which
agents will be working on which mission components.
Allocation of resources (agents) to the individual sub-
tasks making up an AOSN mission is complex enough to
warrant its own study. As a place-holder for the result

Y'We currently use the simple heuristic of the closest MLO-
agent acquiring control.

20ur current convention is “first known MLO-agent”, which
simulates arbitrary planner selection by name, or ability, etc.

379

MLO
Discovery
determine
planner

planner broadcast:

“controlled-capabilities?}) = received :
P "controlled- .
: S capabilties"

[o .

/

timeout .

receives
assignment

allocate agents'
to tasks

|

|

|

: |
|

|

|

create
management
structure

tell top Mgr
"slack resources"

planner
informs managers
of tasks

receive .

. / "begin-work":

tell subordinate
"begin-work"

tell top Mgr
"begin-work"

broadcast
'dissolve MLO",

22 Jul 1997

sgc tio-formation.obj

Figure 3: Protocol for TLO Formation.

of that study, we have implemented a simple first-fit
algorithm to assign VIPs to tasks. A newer algorithm
based on Constrained Heuristic Search (CHS) is being
developed and is reported in [Turner, 1997].

After allocating agents to tasks, the planner builds
a management structure using a set of heuristics, for
example: “if M is working on task T and T has no
manager, then make M manager of T”. Once this is
done, the TLO’s organizational structure composed of
managers and a top manager has been designed. In
the future, we will explore other ways of choosing an

appropriate organizational structure for the situation
based on the situation’s features.

The planner then informs the managers of their as-
signments, the top-level manager is told to begin-work,
and then the planner broadcasts a dissolve-MLO mes-
sage to indicate that TLO formation has been com-
pleted and that it is time to begin the TLO work phase.

Upon receiving their task assignment messages, each
manager (right column in Figure 3) in the TLO hier-
archy determines what slack resources it has at its dis-
posal, then notifies the top manager of same, and then
waits for the begin-work message from the planner.
When that is received, managers tell their subordinates
to begin-work, and they begin their own work. This
ends the TLO formation protocol.

3.4 Task-Level
Phase

Organization = Work

The TLO work protocol has as yet received little at-
tention, as we are mostly concerned with the dynamics
of MLO and TLO organization/reorganization. Some
work has been done as a student class project to de-
velop rules to simulate simple tasks being performed by
agents in the TLO. The tasks simulated were movement
and data sampling tasks in which the simulated sensor
was a CTD (conductivity, temperature, and depth) in-
strument. Another student will work on simulating this
phase of AOSN operation in the near future. Again, the
goal of this will not be high-fidelity simulation of agent
behavior, but rather simulation to such a level that will
allow us to gather data about the impact on mission
goals of different organization /reorganization protocols.

3.5 Entering an Organization

Agents newly deployed within an operating AOSN will
have to follow certain steps in order to join it properly.
Likewise, agents that were once members of an AOSN
and have been for various reasons “disconnected” from
it (replenishing energy, honoring built in down-time
constraints, etc.), will have to follow similar steps in
order to rejoin. How the agent joins is dependent on
the state of the AOSN, as shown in Figure 4.

When deployed (or re-deployed), an agent an-
nounces its readiness to join by broadcasting the
organization-present? message. We have already
seen the inner workings of MLO Formation in Figure
1; they have been reduced to a single arc (labeled as

380

number 1) on the extreme left of Figure 4.

Arc number 2 shows what happens when an agent
attempts to join an MLO that is already in its dis-
covery phase. If the joiner is an MLO-agent, then the
MLO-agent closest to it notifies it that an MLO already
exists. Next, the joiner is asked about its capabilities
by that MLO-agent. Its has-capabilities response
allows other agents to discover it as shown by the wait
state in Figure 2. Newly joining non-MLO-agents are
simply requested to declare their capabilities.

When joining a forming TLO (arc number 3), the
nearest MLO-agent to the new agent asks it for its capa-
bilities. The new VIP will respond with its capabilities
to the MLO-agent, which will make that information
available to the planner when asked for the capabilities
it controls. If it has already been asked, then it will
immediately inform the planner of the existence of the
new capabilities. In either case, the planner uses this
new information about the joiner to possibly modify its
plans.

When joining a working TLO (arc number 4), the
new agent must be fit into the existing management
structure. This is accomplished via short dialogs with
a manager and the top manager. The state changing
traces of these two other agents are shown in Figure 4
to the top and right of arc number 4. Message travel be-
tween the traces is shown by dashed lines. Upon receiv-
ing the new agent’s organization-present? message,
the nearest manager to it will notify the joiner that a
TTLO already exists (see top trace). The manager will
then notify the top manager about the new agent. The
top manager will then request the new agent to report
its capabilities (see extreme right hand trace). When
that information becomes known to the top manager, it
can decide when to tell the new agent to begin-work.

3.6 Exiting an Organization

When an agent must leave an AOSN it should do so in
a graceful manner so that its absence does not become
detrimental to the AOSN, at least not catastrophically
so. An exiting protocol is shown in Figure 5.

Obviously, not all exits will be graceful. Agents can
suffer various levels of failure which would prevent them
from participating in the graceful exit protocol. In
those cases, the remaining AOSN must first detect the
agent’s exit and then adjust to it. Detection might be
effected by noticing the missing agent’s non-responses
to communication attempts, for example. Once this
absence i1s known, managers and planners can exam-

agent
deployment

il ‘o’é .
MLO discovery TLO formation

*+«. MLO-agent

nearest
MLO-agent -> agent:
"MLO exists"

0
D
0
0
x
x
"
x
.
X
.

non-
ML O-agent:'

nearest
MLO-agent -> agent:
"capabilities?"

nearest
MLO-agent -> agent:
"capabilities?"

g
0
0
0
0
0
"
¥
x
.
.
N
"
.
N
.
"
I
.
"
.
"
.
"
"
"
.
.
"
1
"
.
.
.

' new
H agent is part H
M M of MLO M
Follow usual Follow usual . Follow usual agent enters TLO
MLO formation MLO Discovery K TLO Formation when told to by
protocol protocol *""°°°C - protocol top-level manager
sgc agent-entry.obj 26 Jul 1997

\
| .
’. .
.. Mgr -> agent: 3
TLOwork ntjo-present”
s e,
\ R top Mgr receives
L]
s . H agent name
“‘ . ;
. g H

nearest
MLO-agent -> agent:
"capabilities?"

Planner takes new
agent into account
during assignment

annp “nnp

Mgr -> top Mgr:
agent name

Mgr -> agent:
"tlo-present"

Q

top Mgr -> agent:
"'capabilities?"

top Mgr -> agent:
"begin work"

ine their slack resources knowledge and develop replace-
ment strategies. Of course, failure recognition can be
more subtle than this, making this area a target for

future work.

Once the agent failure 1s known, the top level man-
ager will try to adapt the TLO to the new situation.
Failures of non-managers should result in “simple” re-
placement from the slack resources pool. Replacement
of managers is more involved in that the missing man-
agement functionality must be replaced as well as any
capabilities needed for the mission work itself.

3.7 Reorganization

In cases where managers cannot adapt the TLO to a
developing situation, it is time start the reorganiza-
tion protocol. Failure to adapt can be caused by many
things: failure of a top level manager, lack of a replace-
ment agent with the proper capabilities for a “must do”
mission task, arrival of new mission tasks, changes in
the environment, changes in situation that provide op-

Figure 4: Protocol for Entering an Organization.

portunities for a more efficient TLO, completion of one
or more mission tasks, and AOSN user intervention.

A simplified version of the reorganization protocol is
shown in Figure 6. When an MLO-agent believes that
reorganization is necessary, it enters into negotiation
with its peers. If the peers agree, then it initiates the
re-formation of the MLO to handle the reorganization.
If one or more peers do disagree, however, then (at the
present) it aborts the reorganization. This is not ideal,
and we are still working on protocols to handle peer

disagreement.

4 The Simulator

Our simulator was designed to focus on the top level as-
pects of organizing, managing, and performing AOSN
missions. We purposely avoided the problems associ-
ated with simulating the low level activities of the indi-
vidual AOSN agents. This has allowed us to simulate
the AOSN at a very high level, though at low fidelity,

381

VIP decides\ ___ ... NOT
to exit ttee.,, top-level
’~.{113nager

: top-level manager

.
Y
[y
[y
.

VIP -> Mgr
"leaving"

review slack
resources for
replacement

.~
no ‘..,
replacements*.

tell
replacement
what to do

give control
to replacement

v

26 Jul 1997

sgc agent-exit.obj

Figure 5: Protocol for Exiting an Organization.

to quickly get an idea of how the protocols are work-
ing. Since most of the simulator’s code is expressly for
protocol implementation, when something fails it is the
protocol failing and not some underlying agent simula-
tion, on which, the protocol might have been relying.
This allows us to focus on the protocols themselves.

The simulator has been implemented using NASA’s
C Language Integrated Production System (CLIPS) ex-
pert system language shell and environment [Giar-
ratano, 1993]. CLIPS’ portability allows us to run the
simulator on both SPARC/Solaris and Intel/Linux plat-
forms. The current simulator rule base contains approx-
imately 260 rules. In addition to supporting rule sets,
the CLIPS environment also allows for the inclusion of
custom functions written in the C language. These cus-
tom functions become part of the CLIPS inference en-
gine and are then callable by rule antecedents and con-
sequents. This feature provides a means for installing
algorithms that are not suitable to rule-based expres-
sion. We have used this feature to implement the pre-
viously mentioned simple first-fit algorithm for agent to
AOSN subtask allocation.

382

MLO-agent
determines
reorganization
necessary

broadcast:
"reorganize"

receive
"reorganization-nack"

----..__..
~
~
~

-
.
-

timeout:
broadcast:
'reform-MLO", .
v v
MLO continue
formation with
task

sgc reorganization.obj 26 Jul 1997

Figure 6: Protocol for Re-Organizing.

4.1 Simulating the Protocols

Protocol simulation is relatively straightforward in the
simulator, since our protocols have a rule-like flavor.
Each of the major protocols described above are simu-
lated using a set of rules comprising a “phase” of the
simulator’s operation by using one antecedent of each
rule to specify the phase. This is a typical context-
limiting mechanism in rule-based systems.

The original scope of the simulator was in the realm
of the abstract, high-level aspects of aggregate group
behavior, not the concrete, low-level details of individ-
ual agent behavior. Thus, the system started out being
a low-fidelity simulator dealing with organizing, reorga-
nizing, and managing AOSN missions. To achieve the
high-level simulation desired, we try to avoid rules hav-
ing to do with the internal decision-making processes
of the VIPs. Instead, we concentrate on simulating the
effects of the decision making. We can do this because
the simulator itself has a global perspective and because

we know what the protocols specify the VIPs” behavior
should be.

During this year’s development, we have been
exploiting the flexibility offered by the rule-based
paradigm to move the simulator toward a higher de-
gree of fidelity. This was done by replacing abstract
rules having broad scope with more concrete rules hav-
ing more specific effects. This moves us closer to the
next phase of simulation, in which the VIPs’ control

algorithms will be directly implemented in simulation.

4.2 Simulating the Environment and
Vehicle Motion

In addition to simulating the protocols, the simulator
also needs to simulate the AOSN’s environment and
the movement of its VIPs as they go about carrying
out the mission. This is done by adding environment
and motion rules to the simulator, as well as rules to
simulate the VIPs’ sensors. These rules make use of
the discrete-event simulation capabilities of our simula-
tor, as discussed below. In the future, we will explore
connecting the simulator to higher-fidelity environmen-
tal models written in other languages (e.g., C*¥) via
network connections.

The movement rules fire each time the simulator’s
time changes due to any event occurring. These rules
have a high priority, so that the vehicles’ positions are
updated before simulating any other actions or sensor
events that might be scheduled to occur at the current
time. There are three major types of rules for move-
ment: velocity, turning, and collision detection rules.
The velocity rules determine the next position of each
vehicle by first calculating the effect of its velocity vec-
tor on its position, then calculating the effects of the
yaw, pitch, and roll on that vector. Finally, the vector
is used together with the current position of the vehicle
to yield the next location. Due to the discrete nature
of the simulated time, smooth turning i1s not simulated.
Instead, the turning rules work by first changing the
vehicle’s heading halfway to the desired heading. Then
the velocity rules fire, moving the vehicle. Lastly, the
turning rules complete the vehicle turn. This is not an
accurate representation of the turn, but it is a close
enough approximation at this time. The collision de-
tection rules check the path of each moving vehicle for
possible intersection with another vehicle’s path.

Unlike the movement rules, which fire every time the
simulator’s time changes, sensor rules fire based on the
occurrence of events. This simulates the actual sen-

383

sors by only updating when the actual sensor normally
would update. When a sensor is turned on, an event
is posted for some future time when the sensor data
would be obtained, based on the sensor’s cycle rate.
When the event occurs, a sensor rule fires, which deter-
mines what the VIP’s sensor would “see” at the current
time and location and puts that fact in the simulator’s
working memory. Last, it posts another event to oc-
cur after the amount of time has passed that it nor-
mally takes that sensor to actually update. The sen-
sors that are currently implemented are: water tem-
perature, depth based on pressure, depth and altitude
based on an up-down sonar, magnetic compass, position
from long-baseline navigation, and velocity.

As an example, suppose a vehicle named EAVE-
Arista is traveling at a speed of 1.5 meters per second.
It is also changing its heading at a rate of 10 degrees
per second and its altitude sensor 1s turned on. Suppose
that the next scheduled event is for EAVE-Arista’s alti-
tude sensor to update in one second. Since there are no
more events, the simulator selects this one and incre-
ments the time by one second. Before the sensor rules
that update the sensor fire, the movement rules trigger
due to the change of system time. The turning rules
change EAVE-Arista’s heading halfway; by 5 degrees.
Next, the velocity rules move the vehicle forward by
1.5 meters, and the turning rules change the heading
again by 5 degrees. The collision detection rules then
fire, checking to see if it hit the bottom or any other
agent. Finally, the altitude sensor is updated according
to EAVE-Arista’s new location.

5 Conclusions and Future Work

Intelligent control of an AOSN is a difficult task. Tt
requires that the AOSN be capable of organizing itself
and reorganizing as its environment, mission, or com-
position changes.

In the MAUYV project, we are developing protocols
to implement a CDPS approach to this problem. In
this phase of the project, we have developed proto-
cols for: formation of a meta-level organization, discov-
ery of resources, design and creation of an appropriate
task-level organization, and reorganization of the sys-
tem when needed. We are developing and evaluating
our approach in the context of a rule-based, aggregate
level simulator. This allows us to simulate the gross
properties of an AOSN following our protocols without
getting bogged down in the details of how each VIP in
the system decides what to do next. This simulator has

proven to be useful for rapid development of protocols
and for quickly evaluating different ideas.

In the near future, we will continue developing the
current set of protocols and continue their evaluation
via empirical studies in the simulator. In the next year,
we will begin to move toward the next major phase of
this simulator’s development. This involves simulating
the AOSN at the level of individual agent decision mak-
ing. In addition to augmenting the simulator’s abilities
with new rules (where appropriate), we plan to add
network interfacing functions as well. This will allow
it to communicate with other simulation facilities un-
der development at the University of Maine and the
Autonomous Undersea Systems Institute. At the mo-
ment, we are experimenting with using the Knowledge
Query and Manipulation Language (KQML) [Finin
et al., 1995] as the language for communication between
the various simulators. We will also continue develop-
ment of the TLO work phase to support the simulation
experiments.

References

Cammarata, S.;, McArthur, D., and Steeb, R.
(1983). Strategies of cooperation in dis-
tributed problem solving. In Proceedings of
the 1983 International Joint Conference on
Artificarl Intelligence, pages 767-770.

Curtin, T. B., Bellingham, J. G., Catipovic, J.,
and Webb, D. (1993). Autonomous oceano-
graphic sampling networks. Oceanography,
6(3):86-94.

Durfee, E. H. and Lesser, V. R. (1987). Using
partial global plans to coordinate distributed
problem solving. In Proceedings of the 1987
International Joint Conference on Artificail
Intelligence, pages 875H—883.

Finin, T., Labrou, Y., and Mayfield, J.
(1995). KQML as an agent commu-
nication language. Available at URL
http://www.cs.umbc.edu/lait /papers/kqml-
acl.ps (1 May 1997). Also: “to appear (1995)
in Jeff Bradshaw (Ed.), Software Agents,
MIT Press, Cambridge”.

Georgeff, M. P. (1984). A theory of action for
multi-agent planning. In Proceedings AAAI-
1984, pages 121-125.

Giarratano, J. C. (1993). CLIPS User’s
Guide. NASA, Information Systems Direc-
torate, Software Tehcnology Branch, Lyndon
B. Johnson Space Center, Houston, TX.

Turner, E. H. (1997). Task assignment
in AOSNs: A constraint-based approach.
In Tenth International Symposium on Un-
manned Untethered Submersible Technology,
September 1997, Durham, NH. Autonomous

384

86 Concord

Undersea Systems Institute,
Turnpike, Lee, NH 03824.

Turner, R. M. and Turner, E. H. (Submitted
April 1997). Adaptive organization and re-
organization of autonomous oceanographic
sampling networks. Journal of Applied In-
telligence.

Turner, R. M., Turner, E. H., and Blidberg,
D. R. (1996). Organization and reorganiza-
tion of autonomous oceanographic sampling
networks. In Proceedings of the 1996 Sym-
posium on Autonomous Underwater Vehicle
Technology, pages 407-413, June 1996, Mon-
terey, CA. IEEE Ocean Engineering Society,
IEEE Publishing Services.

