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Abstract

Establishing a useful presence in the ocean is be-
coming increasingly important to science, industry,
and the military, yet the undersea environment is hos-
tile to human presence. Autonomous underwater ve-
hicles (AUVs) offer a solution. Before widespread use
of AUVs is practical, however, mechanisms for intel-
ligent control must be developed. In this paper, we
report on the Orca project, which has the aim of cre-
ating a robust, intelligent, mission-level controller for
long-range ocean science AUVs. Orca is now being
built and tested in simulation; in the future, it will
undergo in-water tests aboard the Marine Systems
Engineering Laboratory’s EAVE-III vehicles. In this
paper, we discuss the motivation behind the project,
the Orca program, and our current status and future
work.

The next few decades will see humans striving to estab-
lish an increased presence in and on the oceans. Military
and industrial motivations for this are obvious, though
we will likely be surprised by the range of new applica-
tions developed. Global change monitoring and other en-
vironmental research dealing with the ocean is becoming
increasingly urgent, as is basic ocean science research, as
we strive to understand our global environment and, in
some cases, stave off or remediate environmental catas-
trophes. Mariculture is increasingly important, and the
future is even likely to see interest in floating or submerged
habitats, airports, or other large ocean structures.

Common to all of these is the need for tools to help
humans work in the challenging and dangerous under-
sea domain. Remotely-operated vehicles (ROVs) fill some
roles in this area, but suffer from problems of limited
range, tether entanglement, and the need for constant su-
pervision by human pilots. Many tasks could be better
and more efficiently performed by undersea vehicles that
can operate on their own power and use their own initia-
tive, free from tethers and the need for human supervi-
sors. Such vehicles, called autonomous underwater vehi-
cles (AUVs), could remain on-station for time-series stud-
ies, traverse long distances or work in teams to acquire
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simultaneous spatially-distributed data, perform routine
inspection and maintenance tasks on undersea structures,
an in general extend humanity’s reach into the ocean.

The current state of the necessary hardware and ba-
sic control theoretic technology is such that AUVs can
be built and fielded for simple tasks; indeed, many have
been [4]. However, complicated, under-specified, or long-
duration missions remain essentially out of reach. Unfor-
tunately, this covers most realistically-useful missions in
ocean science and ocean engineering. Missions cannot in
general be completely specified in detail up front, nor can
one expect the ocean environment or vehicle hardware to
cooperate with the goals of the mission. Instead, mis-
sions often can at best be defined in general terms (e.g.,
“sample data in regions of interest in the area,” “look
for leaks,” etc.); our knowledge of the ocean environment
is incomplete, sensors are imprecise, real hardware will
not perform ideally, and an AUV will encounter unknown
processes and other, unpredictable agents during its mis-
sions. What is required is an intelligent mission controller
for AUVs, one that can flesh out skeletal mission spec-
ifications, accept new commands, handle unanticipated
events, and in general adapt to the demands of its mis-
sion and environment.

Autonomous underwater vehicles have been under de-
velopment for many years (see [4] for a survey). The Ma-
rine Systems Engineering Laboratory (MSEL) has been
a pioneer in this effort, developing a line of AUVSs begin-
ning with the EAVE-EAST [12] vehicle and progressing
through our two current EAVE-III vehicles and our long-
range AUV that is under development. Our aim has been
twofold: to develop useful AUV technology for ocean sci-
ence and ocean engineering applications, and to extend
the state of the art in intelligent control. Our most re-
cent effort is the Orca project [22; 19], whose goal is to
create an intelligent, adaptive, robust mission controller
for long-range ocean science AUVs. Orca is an adaptive,
schema-based reasoner [19].

In this paper, we discuss Orca program and the current
status of the Orca project.

AUV CONTROL
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Aside from the pragmatic considerations of developing
an intelligent AUV controller, the task provides an inter-
esting and challenging domain for AI research. It is at
once a real-world domain without real-time constraints so
tight that a planning program could not reasonably be
expected to operate within them.

Real-world domains provide many challenges for AI
programs, including incomplete information, uncertainty,
and the possible presence of unpredictable processes and
agents in the world. The result is unpredictability and
lack of guarantees that plans or other commitments to
future actions will actually succeed.

The AUV domain is more ornery than most real-world
domains. We have relatively little knowledge about the
undersea environment, so naturally the knowledge we can
give an AUV is limited. Compounding the usual uncer-
tainty and incomplete knowledge problems are the notori-
ously poor sensor modalities available to AUVs operating
in realistic settings. Vision is practically useless except
in the clearest of water, and most desirable locales for
AUV missions are far from having clear water—e.g., the
North Atlantic, with its high density of organisms and
particulate and organic matter in the water column. The
most usual sensor for AUVs is sonar, which has a wealth
of problems, including lack of spatial resolution at any
significant range and multipath errors.

On the other hand, AUVs are not cruise missiles. The
EAVE-III vehicles, for example, have a cruising speed of
roughly 2 knots. This, combined with the fact that things
happen slowly underwater in general, means that an AUV
controller is not bound by hard real-time constraints. On
vehicles such as EAVE that have lower-level control soft-
ware on board [3], the controller can reduce its time con-
straints further by intelligently presetting the low-level
software ahead of time to handle most situations that call
for quick responses.

The AUV control task imposes several requirements on
any approach seeking to solve it. First, the controller
needs the ability to create and execute plans of action.
This is a contentious statement in AI currently [e.g., 1];
however, it is unclear how any purely reactive approach
and/or any approach relying on emergent behavior to
achieve the users’ goals will succeed. Typical missions
for AUVs include such goals as: “collect data at location
z at time t”; “rendezvous with the support ship at = at t”;
“perform the set of steps S to construct the underwater
structure”; and so forth. These require commitments to
future actions; they require planning and resource man-
agement to ensure that these commitments can be met.
This is especially true in cooperative settings, for exam-
ple when several AUVs work together to sample or pho-
tograph an area or construct an underwater structure.

Though planning is required, “traditional” Al
planning—i.e., create a complete, detailed plan of action,
then execute it—simply won’t work. As in most realistic
domains, what is needed here is what has variously been
called reactive planning [e.g., 10] (though not the extreme
form that involves mo planning!) or adaptive reasoning
[19]. The basic idea is that proposed by McDermott [13]
many years ago: interleave planning and plan execution,
so that the planner does not over-commit to details of the

plan, only to be sabotaged by changes in the world or its
own ignorance.

The controller also needs to be interruptible—that is,
to be able to interrupt a plan it is working on to handle
unanticipated events or possibly to work on another mis-
sion, then perhaps later resume its original plan. The im-
portance of unanticipated events cannot be overestimated
in this domain. Due to the AUV controller’s incomplete,
uncertain knowledge, and the possible presence of other
agents, it will quite often be surprised, often unpleasantly.
Some of these events directly impact the mission plan and
can be handled by changing it. However, some only in-
directly impact the plan, though they may impact the
overall health (or survival) of the AUV; these may re-
quire interrupting the current plan, handling them, then
resuming it. A controller also needs to be interruptible
when working with others, for example, when on a coop-
erative sampling mission. In these cases, goals or requests
from other agents will arrive asynchronously and should
be handled.

Another requirement is that the AUV controller be
context-sensitive. This seems obvious: all reasoners need
to adjust their actions to the exigencies of the situation
they are in. How to get them to easily do this, however, is
problematic and has only recently become a research area
in its own right [e.g., 5; 6]. Below and elsewhere [18; 19],
we describe one approach to context-sensitive reasoning
that we believe holds promise for real-world systems.

RELATED WORK

Many others have also attacked problems similar to
AUV mission-level control. Purely reactive approaches,
such as Agre & Chapman’s [2] or Brooks’ [7], have the
drawback of not being able to commit to future plans or
actions; this complaint can also be made about rule-based
systems [9]. Hybrid architectures, employing both reac-
tive and planning modules [e.g., 8; 14], can suffer from
the incommensurability between “representations” used
by the pieces: what is the shared vocabulary of a reac-
tive module and a planning module, for instance, and how
are they to communicate their states and requests to the
other? Integrated approaches that seek to combine reac-
tive and deliberative elements in a seamless whole [e.g.,
10; 11] are much closer to our approach. We extend and
bring to these existing approaches increased attention to
event handling and context-sensitive reasoning. Other
schema-based approaches also exist that are related to
our approach, for example JULIANA [15] and JubIs [17].
These should be viewed as complementary rather than
competing; JULIANA, though not a real-world controller,
can serve as inspiration for how to autonomously build our
approach’s knowledge structures, and our research group
is beginning to investigate integrating ideas from JupIS
and Orca in the domain of cooperative distributed prob-
lem solving.

ORCA

Orca is a schema-based adaptive reasoner. It is de-
signed to reside in the top-most level of the MSEL/EAVE
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Figure 1: The EAVE-IIT AUV.

software architecture [3], a hierarchical architecture for
controlling AUVs. The initial target AUV is the EAVE
vehicle, a diagram of which is shown in Figure 1; the ul-
timate target is MSEL’s planned long-range AUV, which
will be a hydrodynamic vehicle capable of extended mis-
sions that require diving to full (average) ocean depth.

Orca’s knowledge structures are schemas, explicitly-
represented packets of related problem-solving knowledge.
Procedural schemas (p-schemas) control how Orca takes
actions to achieve its goals; they are capable of repre-
senting plans, scripts, or rules. Contezrtual schemas (c-
schemas) represent kinds of situations Orca might rea-
sonably expect to find itself in; they provide information
to the various pieces of Orca to ensure that the program’s
behavior is always appropriate for its context.
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Figure 2: Orca.

Figure 2 shows Orca’s internal modular structure.
Agenda Manager is the module responsible for selecting
what goal or goals Orca will work on at each point dur-
ing a mission. Schema Applier is responsible for finding a
p-schema fitting the current goal, then interpreting (ap-
plying) it to take actions directed at achieving the goal.
Actions can be internal (e.g., inferences), commands to
the low-level software (e.g., “move to (x,y,z)”), or mes-
sages to others sent via the communication module. All
incoming information enters Orca via the Event Handler,
which is responsible for assessing the state of the evolv-
ing problem-solving situation and detecting and handling

any events. Context Manager is responsible for maintain-
ing Orca’s view of what its current context is (via its c-
schemas) and for coordinating with Orca’s other modules
to ensure context-appropriate behavior. It builds a knowl-
edge structure, the current c-schema, that represents the
current situation; as the figure is intended to suggest, this
structure provides a backdrop for all of Orca’s reason-
ing. Long-Term (schema) Memory holds and organizes
Orca’s schemas, and Working Memory contains informa-
tion about the current situation.

SCHEMAS

Orca’s primary knowledge structures are schemas. Pro-
cedural schemas (p-schemas) are hierarchical plan-like in
nature. They contain a description of the situation and
goal they are appropriate for, a set of steps, and a set of or-
dering constraints or directives. The steps of a p-schema
can be either goals, other p-schemas, or executable ac-
tions (“xacts”), providing a range of commitment to plan
details from low to high, respectively. Steps are orga-
nized by the ordering information. This takes the form
of directives specifying how steps should be sequenced,
or constraints that relate one step to others. The or-
dering vocabulary is sufficiently rich to allow sequential,
parallel, and non-deterministic execution of steps; it also
provides if-then—else and looping structures, as well as
mechanisms to suspend p-schema application, to explic-
itly handle some plan failures, and, in future, to represent
resource- and time-related inter-step constraints.
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Figure 3: The schema application process.

Contextual schemas contain both descriptive and pre-
scriptive information about the contexts they represent.
The descriptive information can be used as a source of
top-down expectations about unseen features the agent’s
situation and to help it make sense of those features it has
observed. The prescriptive information is used to ensure
that the agent’s behavior is appropriate for its current sit-
uation. Such information includes: event-handling infor-



mation; attention-focusing information; schema-selection
information; and “standing orders”, suggestions for things
that should automatically be done when entering a new
situation. These latter take the form of goals to activate
and behavioral parameter settings to put in force.

Both types of schemas are organized in a content-
addressable memory so that features of the situation in
effect at the time a schema is needed can directly index
the schema; this kind of memory has been used in other
schema-based [19] and case-based [e.g., 16] reasoning pro-
grams. The memory is organized such that more general
schemas organize, or “index”, more specific ones. This
has the salubrious effect that the most specific schema
possible is always found for a given situation. If a highly-
specialized schema is available (e.g., a p-schema for coop-
erative adaptive sampling missions), then that will be re-
turned; however, if not, the agent is not paralyzed. Other,
more general schemas will always be available (e.g., a p-
schema to perform cooperative missions, or one to per-
form adaptive sampling) that can likely be made to fit the
situation. In the worst case, highly general schemas for
from-scratch problem solving—i.e., that compose other p-
schemas—may be found and used, though this has yet to
be implemented. The result is the reasoner gains access
to strong methods where possible, but has the ability to
fall back on increasingly weak methods as needed.

SCHEMA APPLICATION

The process of schema application is shown in Figure 3.
When new goal arrives from the user, another agent, or
Orca itself (e.g., as a result of handling unanticipated
events), it is placed on the agenda. When Agenda Man-
ager focuses attention on that goal, Schema Applier (SA)
begins by finding an appropriate p-schema for the goal.
It may be aided in this by suggestions from the current
c-schema about what p-schemas are appropriate in this
context; these suggestions allow SA to short-cut some or
all of the memory search that would otherwise be neces-
sary.

Once a p-schema is found, then application begins. SA
creates a knowledge structure to hold the instantiated p-
schema and expands the p-schema by creating a plan net-
work to represent its steps. The first step is then identi-
fied. If it is an xact, then SA takes the action specified
in its representation (at the current time, by executing
a Lisp function). This will result either in some inter-
nal action (e.g., an inference being made), a command
to the low-level architecture (e.g., “move to (x,y,z)”), or
a message sent to another agent via the communication
module.

If the step is not an xact, however, then additional work
must be done. If the step is a goal, then a p-schema is
found with which to achieve it, and that p-schema be-
comes the current step. If it is a p-schema, then SA seeks
first to find a specialization of the p-schema better fit-
ting the current situation, then the process of application
is begun recursively by expanding that p-schema into its
steps, etc., until an xact is ultimately found.

Specialization at run-time of steps is done to tailor the
schema more closely to the actual current problem-solving

situation. Also, by not expanding those portions of plans
it does not have to, SA puts off committing to future
details that may be obviated by changes in the world
or caused by its own actions. It will likely make better
choices for how to expand future steps by waiting, since
it will have more current information at that time. All
of these aspects of the schema application process help
to ensure that Orca’s behavior will be well adapted to its
current situation.

The schema application process can be interrupted as
needed to allow Orca to respond to changes in the situa-
tion or new goals that arise. After each step is executed,
SA checks a semaphore associated with the agenda to see
if Agenda Manager wishes control of the agenda, e.g., to
refocus attention. If so, SA suspends what it is doing; a
record of the state of application of the current p-schema
is always kept, so later execution can pick up where it left
off.

Work on a goal can also be interrupted when the execu-
tion of an xact extends over a significant amount of time.
Orca can suspend the action’s parent p-schema! until the
action is done or until predictions about the results of
the action are met. P-schemas can also explicitly call for
their application to be suspended for some period of time
or until some condition is met. Both of these interrup-
tion mechanisms allow interleaving of actions in service
of multiple goals.

ATTENTION FOCUSING

Attention focusing is done by Agenda Manager (AM).
Upon any significant change to the world or the agenda,
or when requested by another module, AM assesses the
relative importance of all goals currently on the agenda,
assigning them a priority measure. It then selects the one
with the highest priority as the current focus of attention.

The assessment process is done? in the current version
of Orca by a fuzzy rule-based system (RBS) whose rules
come from both a default set and from the current c-
schema. Thus the assessment process is strongly colored
by the context Orca finds itself in.

All actions Orca takes apart from simple things such as
setting parameters are mediated by goals on the agenda.
This includes response to unanticipated events, even very
high-priority responses such as “abort mission”. The ma-
jor benefit of this is that all potential activity is compared
using the same criteria by the same module, thus assur-
ing that the measures of importance for doing one thing
rather than another are commensurate and correspond to
what is appropriate in the current context.

EVENT HANDLING

In any real-world system, events will occur that are
unpredicted, or at least that cannot be so thoroughly
planned for that they do not need to be handled as they
arise. Event Handler (EH) is the Orca module respon-

L Actually, only the portion of the p-schema that depends
on the outcome of the action is suspended.
20r will be, by the time of publication.
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sible for assessing the current state of the world and for
detecting and handling all events. Figure 4 diagrams EH’s
event-handling process.

Two kinds of events are handled by EH. Anticipated
events are those that SA predicted based on its activi-
ties, either by a p-schema explicitly posting a prediction
to the Working Memory (WM) or by an xact’s antici-
pated results being posted as predictions. When an an-
ticipated event is detected, a message to that effect is sent
to Agenda Manager, which then does whatever has been
requested by Schema Applier.

Unanticipated events are not necessarily novel, just un-
predictable. For example, an AUV controller can to some
extent expect to run out of power, however, when and
where are in general unknowable.

An unanticipated event requires more processing than
one that was anticipated. First, it is more difficult to de-
tect, since EH does not know what to look for in advance.
Second, it must be diagnosed to arrive at its meaning,
that is, the underlying cause. For example, the surface
form of an event might be “motion stopped”; this could
be caused by many things, including: caught in a net, en-
tangled in kelp, aground, loss of power, or thruster mal-
function. Third, the importance of the underlying event
is assessed to determine if a response should be taken. If
so, the the fourth aspect of event handling is to select
and activate a response. In our approach, all responses
are couched in terms of goals that are then sent to AM
for activation; this way, whether or not a response is im-
mediately taken depends not only on EH’s view of the
situation, but on AM’s knowledge of the entire context of
the mission, including other goals.

Most of EH’s work is done by instances of fuzzy rule-
based systems. As with AM’s RBS, these get their rules
both from a default ruleset as well as from the current
c-schema.

We recognize the limitations imposed on Orca’s event-
handling abilities due to the linear nature of EH’s process-
ing. Elsewhere, we have proposed a different approach,
drawing on work in AI in medicine, that is less linear and
that has provision for tentative diagnosis of, assessment
of, and response to events [20]. This will be a topic of
future research.
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CONTEXT MANAGEMENT

Throughout this paper, we have stressed the impor-
tance of context-sensitive behavior. Context Manager
(CM) is the Orca module responsible for this. Figure 5 is
a diagram of CM’s operation.

When CM notices a change in the situation, it asks
the schema memory (LTM) to find all c-schemas that
are good matches for the changed situation. These are
then merged to form the current c-schema, a compos-
ite knowledge structure that in essence represents Orca’s
commitment to what the current situation is. By merg-
ing c-schemas, Orca avoids an explosion in the number
of c-schemas needed to represent all situations in which
it might find itself. Instead, only those contexts need
be represented whose implications for behavior cannot be
captured by combining existing schemas. For example,
suppose an AUV is operating in Puget Sound during an
incoming tide on a search mission when power becomes
low; this exact situation is not likely to have ever oc-
curred in the past. However, the context can be captured
by retrieving and merging schemas representing the con-
texts of: being in Puget Sound, operating in the presence
of currents, being on a search mission, and having low
power.

Once the current c-schema is formed, CM can parcel
out information from it to help Orca’s other modules. For
example, predictions and an assessment of the situation
based on the contextual knowledge are sent to EH, as are
rules for event handling; rules are sent to AM for attention
focusing; and suggestions for p-schemas appropriate for
the current context are sent to SA. “Standing orders”,
that is, goals to activate and parameters to set based on
the context, are activated directly by CM.

We anticipate work on implementing CM to be well un-
derway by the time of publication. An earlier implemen-
tation of context management has given us insight into
many of the problems and requirements [19], and context



merging will be a promising area of near-future research.

CONCLUSIONS AND FUTURE WORK

AUV control, like other real-world tasks, requires an
adaptive reasoner, one whose behavior is always in close
congruence with its context, and one that can plan, yet
not over-commit, and that can react to changes in the
problem-solving situation. The Orca project is aimed
at creating such a program for controlling ocean science
AUVs.

When complete, Orca will be a context-sensitive, ro-
bust, adaptive problem solver capable of controlling AUVs
on useful missions. At the time of writing, an initial
version of Orca, with simple EH and AM modules and
no CM, is being used in simulation by another research
group. Orca 2.0 is under construction; this version will
have a Context Manager and more competent versions of
EH and AM that make use of fuzzy rule-based systems to
do their jobs. A future version of Orca, to be completed
within a year, will focus on uncertainty management and
spatiotemporal and resource-based reasoning.

During this phase of the project, all development and
evaluation is being done in our simulation testbed, SMART
[21]. In a future phase of the project, Orca will be ported
to vehicle computers to control actual AUVs during in-
water tests and missions.

Simultaneously, we will be exploring the applicability
of the schema-based reasoning mechanism for other in-
telligent agents, in particular intelligent Internet agents
(“softbots”). We believe that our past experience with
SBR in MEDIC, our current experience in Orca, and our
future experience in the softbot area will allow us to eval-
uate SBR’s usefulness and applicability as a general ap-
proach to intelligent agent research.
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