# **Utility-based Decisions**

# UMaine COS 470/570 - Introduction to AI

#### Spring 2019

#### Created: 2019-04-25 Thu 20:01

Utility-based reasoning

| flie:///Users/rmt/Classes/C0S470/2019-Spring/Sildes/RL19/seq-dec-making19.html?print-pdf | Page 1 of 37     | file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/seq-dec-making19.html?print-pdf | Page 2 of 37     |
|------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------|------------------|
|                                                                                          |                  |                                                                                          |                  |
|                                                                                          |                  |                                                                                          |                  |
| Utility-based Decisions<br>cbr/>cbr/>                                                    | 4/25/19, 8:05 PM | Utility-based Decisions<br>                                                              | 4/25/19, 8:05 PM |

# So far...

- We have explored reflex agents
- We have explored two types of goal-based agents:
  - Search agents

Utility-

- Planning agents
- What about finding the *best* solution to a goal?

# **Reflex-based utility agents**

# **Reflex-based utility agents**

• Agent must recognize state *s* it is in (or part of it)

# **Reflex-based utility agents**

- Agent must recognize state *s* it is in (or part of it)
- Approaches:

# **Reflex-based utility agents**

- Agent must recognize state *s* it is in (or part of it)
- Approaches:
- 1. Agent knows *utilities* U(s) and U(s') of each state s' reachable from s by some action a:

action = 
$$\underset{a}{\operatorname{argmax}} U(s')$$
, s.t.  $s \xrightarrow{a} s'$ )

# **Reflex-based utility agents**

- Agent must recognize state *s* it is in (or part of it)
- Approaches:
- 1. Agent knows *utilities* U(s) and U(s') of each state s' reachable from s by some action a:

action = argmax 
$$U(s')$$
, s.t.  $s \rightarrow s'$ 

2. Agent knows quality Q(a, s) of taking action a in state s: action = argmax Q(a, s)

file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/seq-dec-making19.html?print-pdf

4/25/19, 8:05 PM

# Utility-based, goal-directed agent

# Reflex-based utility agents

- Agent must recognize state *s* it is in (or part of it)
- Approaches:
  - 1. Agent knows *utilities* U(s) and U(s') of each state s' reachable from s by some action a:

action = argmax U(s'), s.t.  $s \xrightarrow{a} s'$ )

- 2. Agent knows quality Q(a, s) of taking action a in state s: action = argmax Q(a, s)
- But: where to get U(s) or Q(a, s)?

# Utility-based, goal-directed agent

• Concerned with reaching goal in best way

# Utility-based, goal-directed agent

- Concerned with reaching goal in best way
- Local decisions have global consequences

#### Utility-based, goal-directed agent

- Concerned with reaching goal in best way
- Local decisions have global consequences
- Could use planner:
  - Create all possible plans to achieve goal, pick best
  - But planning is NP-hard, so...

#### Utility-based, goal-directed agent

- Concerned with reaching goal in best way
- Local decisions have global consequences
- Could use planner:
  - Create all possible plans to achieve goal, pick best
- But planning is NP-hard, so...
- Directly using utilities:
  - For each state, determine U(s) such that overall plan is best
  - Or, for each <s,a> pair, determine Q(s, a) that leads to overall best plan

| file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/seq-dec-making19.html?print-pdf | Page 13 of 37    | flie:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/seq-dec-making19.html?print-pdf | Page 14 of 37    |
|------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------|------------------|
| Utility-based Decisions<br>/><br>b//>                                                    | 4/25/19, 8:05 PM | Utility-based Decisions<br>                                                              | 4/25/19, 8:05 PM |

### Utility-based, goal-directed agent

- Concerned with reaching goal in best way
- Local decisions have global consequences
- Could use planner:
  - Create all possible plans to achieve goal, pick best
  - But planning is NP-hard, so...
- Directly using utilities:
  - For each state, determine U(s) such that overall plan is best
  - Or, for each  $\langle s, a \rangle$  pair, determine Q(s, a) that leads to overall
- best plan
- But: where to get U(s) or Q(a, s)?

# Sequential decision problems

file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/seq-dec-making19.html?print-pdf

Page 15 of 37

4/25/19, 8:05 PM

### Sequential decision problems

- Make sequence of action choices → goal state
- Planning is sequential decision problem
- But here:
  - Take (or find) sequence of actions → goal
  - Pick the *best* action in any state with respect to goal

#### Sequential decision problems

- What information can we use?
- Let *R*(*s*) = reward for state *s*
- May be able to find *R*, since it's local
- Many states may have 0 reward:
  - $s_0 \to a_1 \to s_1 \to a_2 \to \cdots \to a_n \to s_n$  $R(s_0) = R(s_1) = \cdots R(s_{n-1}) = 0$
  - E.g., games, sometimes real world

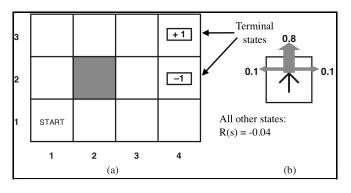
#### Markov decision processes

- Formulate SDP as <S,A,T>:
  - S = states; distinguished state  $S_0$
  - *A* = actions; *A*(*s*) = all actions available in *s*
  - *T* = transition model
- Markov decision process (MDP):
  - Fully-observable environment (for now)
  - Transitions are Markovian
  - Stochastic action outcomes: P(s'|s, a)
  - Rewards additive over sequence of states (environment history)

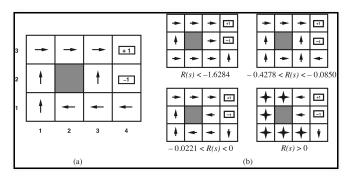
#### Policies

- What is solution to an MDP?
- Not just sequence of actions:
  - S<sub>0</sub> could be any s
  - Stochastic environment could  $\Rightarrow$  not reaching goal state
- Solution is a *policy*  $\pi$ :
  - $\pi(s) =$ action to take in state *s*
  - Agent always knows what to do next
  - Policy  $\pi \Rightarrow$  different environment histories (stochastic env.) • *Expected utility* of  $\pi$
- Optimal policy  $\pi^* \Rightarrow$  highest expected utility
- $\pi$  (or  $\pi^*$ ):
  - is description of simple reflex agent
  - computed from info used by utility-based agent

### Example world



# Some optimal policies





# Utilities

- Reward R(s): just depends on s
- Utility U(s) of state depends on environment history h  $U_h([s_0, s_1, s_2, \cdots]) = R(s_0) + \gamma R(s_1) + \gamma R(s_2) + \cdots$ for discount factor  $0 \le \gamma \le 1$
- Discount factor:
  - $\gamma < 1 \Rightarrow$  future rewards not as important as immediate ones
  - $\gamma = 1$ : additive rewards

#### Utilities

- Finite or infinite *horizon*?
- Finite: game over after some time
  - Optimal policy: *nonstationary* with respect to different horizon
    Short horizon: may choose shorter, but less optimal (or riskier)
  - paths
  - Longer horizon: maybe more time to take longer, better paths
- Infinite: game could go on forever
  - Optimal policy is stationary
  - Optimal action depends only on state
  - Simpler to compute

### Utilities

• Given a policy, can define utility of a state

$$U^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^{t} R(S_{t})]$$

where:

- $S_t$  is state reached at time t• Expected value  $E(X) = \sum_{i}^{t} x_i P(X = x_i)$
- Here, expectation is over prob. dist. of state sequences

•  $\pi^* = \operatorname{argmax} U^{\pi}(s)$ 

• True utility of *s* is  $U^{\pi}(s) = U(s)$ 

# **Optimal policy**

- Kind of backward what we want is  $\pi^*$
- Can compute  $\pi^*$  if know U(s) for all states
  - $\pi^*(s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) U(s')$
- But we said  $U(s) = U^{\pi}(s)$  which depends on  $\pi$ !
- How to compute?

Page 25 of 37 Page 26 of 37 file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/seq-dec-making19.html?print-pdf file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/seq-dec-making19.html?print-pd 4/25/19, 8:05 PM Utility-based Decisions<br/> Utility-based Decisions<br/> 4/25/19, 8:05 PM

3.10

### **Bellman equation**

- U(s) = R(s)+ expected discounted utility of next state  $U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a)U(s')$
- This is the Bellman equation
- *n* states  $\Rightarrow$  *n* Bellman equations (one per state)
- Also *n* unknowns utilities for states
- Can we solve via linear algebra?
  - Problem: max is nonlinear
  - So no...

# Value iteration algorithm

- Can't directly solve the Bellman equations
- Instead:
  - Start with arbitrary values for  $U(\cdot)$
  - For each *s*, do a *Bellman update*: calculate RHS  $\rightarrow U(s)$
  - Repeat until reach equilibrium (or change < some  $\delta$ )
- Bellman update step:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U_i(s')$$

file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/seq-dec-making19.html?print-pdf

Page 27 of 37

#### Example

# Algorithm

| $ \begin{array}{l} \textbf{function VALUE-ITERATION}(mdp, \epsilon) \textbf{ returns a utility function} \\ \textbf{inputs: } mdp, \textbf{ an MDP with states } S, actions A(s), transition model P(s'   s, a), \\ rewards R(s), discount \gamma \\ e, the maximum error allowed in the utility of any state \\ \textbf{local variables: } U, U', vectors of utilities for states in S, initially zero \\ \delta, the maximum change in the utility of any state in an iteration \\ \end{array} $ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{l} \text{repeat} \\ U \leftarrow U'; \delta \leftarrow 0 \\ \text{for each state $s$ in $S$ do} \\ U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \; U[s'] \\ \text{if }  U'[s] - U[s]  > \delta \; \text{then } \delta \leftarrow  U'[s] - U[s]  \\ \text{until } \delta < \epsilon(1 - \gamma)/\gamma \\ \text{return } U \end{array} $                                                                                                              |

| 3 | 0.812 | 0.868 | 0.918 | +1    |
|---|-------|-------|-------|-------|
| 2 | 0.762 |       | 0.660 | _1    |
| 1 | 0.705 | 0.655 | 0.611 | 0.388 |
|   | 1     | 2     | 3     | 4     |



3.15

• Show how POP would solve this problem (the Sussman anomaly):

|     | A |     |
|-----|---|-----|
| С   | в |     |
| BA  | с | 7   |
| / L |   | ¥., |

Initial state: on(B,table), on(A, table), stacked(C,A)

- Goal state: stacked(A,B), stacked(B,C)
- Operators:
  - unstack(x,y) take x off y (and arm will be holding it afteward)
  - $\,\circ\,$  stack(x,y) put x (which the arm is holding) on y
  - $\circ$  pickup(x) pick up x from the table
  - putdown(x) put s (which the arm is holding) on the table

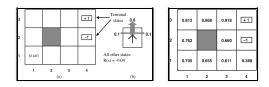
file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/seq-dec-making19.html?print-pdf

Page 31 of 37

3.18

#### In-class exercise: MDPs

#### 1. Given the example world:



- Use value iteration to find the utilities of the states stop after 2 iterations
- How do your values compare with those gotten by R&N (above)?

3.17

#### In-class exercise: MDPs

- 1. Draw a transition diagram for the Sussman anomaly
  - Use only the actions stack, unstack, putdown, pickup
  - Assume that with P(0.1), the arm drops the block when it's trying to stack it
  - Assume with P(0.2), the arm drops the block when it picks it up off the table or off another block

| flie:///Users//mt/Classes/C05470/2019-Spring/Sildes/RL19/seq-dec-making19.html?print-pdf | Page 33 of 37    | flie:///Users/rmi/Classes/COS470/2019-Spring/Sildes/RL19/seq-dec-making19.html?print-pdf | Page 34 of 37    |
|------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------|------------------|
|                                                                                          |                  |                                                                                          |                  |
| Utility-based Decisions<br><br><br>cbr/>                                                 | 4/25/19, 8:05 PM | Utility-based Decisions<br><br>ch/><br>                                                  | 4/25/19, 8:05 PM |

#### **POMDPs**

- Assumed environment was fully-observable but not always the case
- Environment *partially-observable* ⇒ not sure which state we're in!
   Sensor uncertainty, sensor incompleteness, incomplete
  - knowledge about interpretation
  - Hidden properties of world ("hidden variables") percept  $\Rightarrow s_a |s_b| \cdots$
- ⇒ Partially-observable Markov decision process (POMDP): much harder
- Real world is a POMDP

### POMDPs

- Action in POMDP  $\Rightarrow$  belief state
- Can reason over belief states
- In fact: POMDP  $\Rightarrow$  MDP of belief states
- Can do value iteration to find optimal policy for POMDPs

3.19

# Summary

- MDP: If we have a model of the environment and reward function, we can learn the optimal policy
- POMDP: Can still do it, using belief state MDP
- But what if we *don't* have an environment model or reward function?
  - $\Rightarrow$  reinforcement learning

3.21

file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/seq-dec-making19.html?print-pdf

Page 37 of 37