
4/25/19, 8*06 PMReinforcement Learning

Page 1 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Reinforcement Learning

UMaine COS 470/570 – Introduction to AI

Spring 2019

Created: 2019-04-23 Tue 13:56

1

4/25/19, 8*06 PMReinforcement Learning

Page 2 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Why reinforcement learning?

2 . 1

4/25/19, 8*06 PMReinforcement Learning

Page 3 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Why reinforcement learning?
Supervised learning: need labeled examples
Unsupervised learning: maybe learn structure, but…
Often:

Do not have labeled examples
Have to do something – i.e., make some decision – before
training is complete
But have some feedback about how agent is doing

2 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 4 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Framing the problem
Reinforcement of agent’s actions via rewards
Current state → choose action → new state + reward

Let = reward for state s
Many states may have 0 reward:

E.g., games
Instance of credit assignment problem

Instance of sequential decision problem

R(s)

→ → → → ⋯ →s0 a1 s1 a2 an sn
R() = R() = ⋯ R() = 0s0 s1 sn −1

2 . 3

4/25/19, 8*06 PMReinforcement Learning

Page 5 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Reinforcement learning
Rewards
But no a priori knowledge of rewards, model (transition function)
E.g.:

Given an unfamiliar board and pieces, alternate moves with
opponent – only feedback is “you win” or “you lose”
Robot has to move around campus delivering mail, but doesn’t
know anything about campus, or delivering mail, or people, or…
feedback: “good robot”, “ouch!”, falls over, etc.

2 . 4

4/25/19, 8*06 PMReinforcement Learning

Page 6 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Reinforcement learning

(From)https://icml.cc/2016/tutorials/deep_rl_tutorial.pdf

2 . 5

4/25/19, 8*06 PMReinforcement Learning

Page 7 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Learning approaches
Learn utilities of states

Use to select action to maximize expected outcome utility
Needs model of environment, though to know resulting from
taking action in

Policy learning (reflex agent):
Directly learn : which action to take in , bypassing

Q-learning:
Learn an action-utility function Q

 is the value (utility) of action in state
Model-less learning

s′

a s

π(s) s U(s)

Q(a, s) a s

2 . 6

4/25/19, 8*06 PMReinforcement Learning

Page 8 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Learning approaches
Passive learning:

Policy is fixed
Task: learn (or utility of state-action pairs)
Maybe learn model

Active learning:
Has to learn what to do
May not even know what its actions do
Involves exploration

U(s)

2 . 7

4/25/19, 8*06 PMReinforcement Learning

Page 9 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Passive reinforcement learning

3 . 1

4/25/19, 8*06 PMReinforcement Learning

Page 10 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Passive reinforcement learning
Policy is fixed
Task: See how good policy is by learning:

Doesn’t know:
transition model
reward function

π(s)

(s) = E [R()]U π ∑
t= 0

∞
γ t st

P(|s, a)s′

R(s)

3 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 11 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Passive reinforcement learning
Policy is fixed
Task: See how good policy is by learning:

Doesn’t know:
transition model
reward function

Approach:
Do series of trials
Each: start at start, follow policy to terminal state
Percepts ⇒ new state ,

π(s)

(s) = E [R()]U π ∑
t= 0

∞
γ t st

P(|s, a)s′

R(s)

s′ R()s′

3 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 12 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Passive reinforcement learning
Policy is fixed
Task: See how good policy is by learning:

Doesn’t know:
transition model
reward function

Approach:
Do series of trials
Each: start at start, follow policy to terminal state
Percepts ⇒ new state ,

Stochastic transitions ⇒ different histories from same

π(s)

(s) = E [R()]U π ∑
t= 0

∞
γ t st

P(|s, a)s′

R(s)

s′ R()s′

π
3 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 13 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Direct estimation of
Woodrow & Huff (1960 – adaptive control theory

 = remaining reward = reward-to-go
View: each trial ⇒ one sample of reward-to-go for each visited
state
Reduces reinforcement learning to supervised learning
But although and are independent…
… and are not independent – (cf. Bellman equation)
Misses opportunities for learning – e.g.,

See for first time, it leads to known state that is known
Bellman: tells us something about
Direct estimation: only matters

Hypothesis space > needs to be

(s)U π

U(s)

R(s) R()s′

U(s) U()s′

s1 s2
U()s2 U()s1

R(s1)

3 . 3

4/25/19, 8*06 PMReinforcement Learning

Page 14 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Adaptive dynamic programming
First learn model of transition function from trials
Now you have an MDP
Solve it as per sequential decision process
Could use Bayesian approaches to make this better (see R&N,
21.2.2)

P(|s, a)s′

3 . 4

4/25/19, 8*06 PMReinforcement Learning

Page 15 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Temporal difference learning
Use the Bellman equations directly:

General idea:
Start with no known
Iterate:

Take step to give
If is unknown state, use as
Use to adjust :

(s) = R(s) + γ (P(|s, π(s)) ()U π ∑
s

′
s′ U π s′

U(⋅)

π(s) s′

s′ R()s′ U()s′

U()s′ U(s)
(s) ← (s) + α(R(s) + γ () − (s))U π U π U π s′ U π

3 . 5

4/25/19, 8*06 PMReinforcement Learning

Page 16 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Temporal difference RL algorithm

3 . 6

4/25/19, 8*06 PMReinforcement Learning

Page 17 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Active reinforcement learning

4 . 1

4/25/19, 8*06 PMReinforcement Learning

Page 18 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Active reinforcement learning

4 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 19 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Active reinforcement learning

What if we not only don’t know:

…also don’t know ?

P(|s, a)s′

R(s)
π(s)

4 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 20 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Active reinforcement learning

What if we not only don’t know:

…also don’t know ?

One approach: use passive learning, but for all possible actions
Use the adaptive dynamic programming agent, but for all

 at each state
This gives the transition model
Use value iteration or policy iteration ⇒

P(|s, a)s′

R(s)
π(s)

a ∈A(s)

U(s)

4 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 21 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Active reinforcement learning

What if we not only don’t know:

…also don’t know ?

One approach: use passive learning, but for all possible actions
Use the adaptive dynamic programming agent, but for all

 at each state
This gives the transition model
Use value iteration or policy iteration ⇒

Produces greedy agent:
Once good terminal state found, tends to keep using policy that
found it
Seldom in practice converges to optimal policy !

P(|s, a)s′

R(s)
π(s)

a ∈A(s)

U(s)

π∗
4 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 22 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Greedy agent
Why doesn’t greedy agent converge?
Only exploits known path – assumes model is good
But model created based on learned – leaves some states
unexplored
Actions leading to those states allow better learning of model
Which allows better estimation of ,
Have to balance exploitation with exploration

π

U(s) π∗

4 . 3

4/25/19, 8*06 PMReinforcement Learning

Page 23 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Incorporating exploration
Using value iteration to get
Now think of , the optimistic estimate of utility of
Design an exploration function where:

 - expected utility of some new state
 - number of times action (expected to lead to from) has

been tried in
New iteration function for (optimistic) utility:

where number of times has been tried in

U(s)
(s)U + s

f (u , n)
u s′

n a s′ s
s

(s) ← R(s) + γ f (P(|s, a) (), N(s, a))U + max
a ∑

s′

s′ U + s′

N(s, a) = s a
4 . 4

4/25/19, 8*06 PMReinforcement Learning

Page 24 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Q-learning
Instead of learning utilities, learn : utility of action in
Model-free: doesn’t have to know at all
Could do this:

A Bellman equation, but for \(\) pairs rather than
Could use in adaptive dynamic programming as iteration
method
But this isn’t really model-free – need

Instead, use temporal difference method:

Q(s, a) a s
U(s)

Q(s, a) = R(s) + γ P(|s, a) Q(,)∑
s′

s′ max
a′

s′ a′

s

P(|s, a)s′

Q(s, a) ← Q(s, a) + α(R(s) + γ Q(,) −Q(s, a)max
a′

s′ a′

4 . 5

4/25/19, 8*06 PMReinforcement Learning

Page 25 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Q-learning agent

4 . 6

4/25/19, 8*06 PMReinforcement Learning

Page 26 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

SARSA
State-action-reward-state-action (SARSA) - similar to Q-learning

Here, is action actually taken in
Q-learning: uses best action from
Still model-free, but have some policy that leads to choosing
Off-policy vs on-policy algorithms

Off-policy algorithms pay no attention to any policy – e.g., Q-
learning
On-policy: actions with respect to some policy

Off-policy more flexible…
…but if policy is constrained by others (e.g.), may be better to go
with realistic actions taken rather than best possible

Q(s, a) ← Q(s, a) + α(R(s) + γQ(,) −Q(s, a)s′ a′

a′ s′

s′

a′

π

4 . 7

4/25/19, 8*06 PMReinforcement Learning

Page 27 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

So…Q-learning or model-learning?
R&N: “This is an issue at the foundations of artificial intelligence.”
More generally: do we need models to behave intelligently, or not?
Traditionally: model (most symbolic AI)
Lately: model-free (e.g., neural networks)

4 . 8

4/25/19, 8*06 PMReinforcement Learning

Page 28 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL

5 . 1

4/25/19, 8*06 PMReinforcement Learning

Page 29 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL

5 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 30 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL
So far:
1. Learn
2. Learn

U(s)
Q(s, a)

5 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 31 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL
So far:
1. Learn
2. Learn
But what if state space is very large or infinite?

U(s)
Q(s, a)

5 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 32 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL
So far:
1. Learn
2. Learn
But what if state space is very large or infinite?
Instead: Learn function approximating or – or

U(s)
Q(s, a)

U(s) Q(s, a) (s)Û
(s, a)Q̂

5 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 33 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL
So far:
1. Learn
2. Learn
But what if state space is very large or infinite?
Instead: Learn function approximating or – or

E.g., approximate by linear combination of features
Static eval for chess, etc.

Just learn values
For chess, states – now only learn values, where

U(s)
Q(s, a)

U(s) Q(s, a) (s)Û
(s, a)Q̂

U(s)

(s) = (s) + ⋯ (s)Û θ1f1 θn fn
θi
> 1040 n

n < < 1040

5 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 34 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL
So far:
1. Learn
2. Learn
But what if state space is very large or infinite?
Instead: Learn function approximating or – or

E.g., approximate by linear combination of features
Static eval for chess, etc.

Just learn values
For chess, states – now only learn values, where

Not just save space: allows generalization

U(s)
Q(s, a)

U(s) Q(s, a) (s)Û
(s, a)Q̂

U(s)

(s) = (s) + ⋯ (s)Û θ1f1 θn fn
θi
> 1040 n

n < < 1040

5 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 35 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL
So far:
1. Learn
2. Learn
But what if state space is very large or infinite?
Instead: Learn function approximating or – or

E.g., approximate by linear combination of features
Static eval for chess, etc.

Just learn values
For chess, states – now only learn values, where

Not just save space: allows generalization
On the other hand: maybe we choose wrong hypothesis space

U(s)
Q(s, a)

U(s) Q(s, a) (s)Û
(s, a)Q̂

U(s)

(s) = (s) + ⋯ (s)Û θ1f1 θn fn
θi
> 1040 n

n < < 1040

5 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 36 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL
So – how to approach?
One way:

Choose utility approximator
Run a series of trials
Find best fit of feature weights to data (min. squared error)
⇒ Supervised learning

5 . 3

4/25/19, 8*06 PMReinforcement Learning

Page 37 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL
Better to use online algorithm for RL

Estimate (random to start)
Run trial
Adjust $\widehat{U(s)} accordingly

How to adjust?
Compute gradient with respect to each parameter
Move parameter down gradient
Sound familiar?

(s)Û

5 . 4

4/25/19, 8*06 PMReinforcement Learning

Page 38 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL: Delta rule

5 . 5

4/25/19, 8*06 PMReinforcement Learning

Page 39 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL: Delta rule
Widrow-Hoff rule (delta rule)

5 . 5

4/25/19, 8*06 PMReinforcement Learning

Page 40 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL: Delta rule
Widrow-Hoff rule (delta rule)
For trial , observed utility , and parameters , let error:
\begin{eqnarray*} Ej(s) &=& (\widehat{U}θ(s) - uj(s))2/2
∇ Eθi &= & ∂ Ej/∂θi

θi &←& θi - α\frac{\partial E_j(s)}{\partial \theta_i}
&←& θi + α(uj(s) - \widehat{U}θ(s)) \frac{∂ \widehat{U}θ(s)}{∂ θi}

j (s)u j θ

5 . 5

4/25/19, 8*06 PMReinforcement Learning

Page 41 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL: Delta rule
Widrow-Hoff rule (delta rule)
For trial , observed utility , and parameters , let error:
\begin{eqnarray*} Ej(s) &=& (\widehat{U}θ(s) - uj(s))2/2
∇ Eθi &= & ∂ Ej/∂θi

θi &←& θi - α\frac{\partial E_j(s)}{\partial \theta_i}
&←& θi + α(uj(s) - \widehat{U}θ(s)) \frac{∂ \widehat{U}θ(s)}{∂ θi}
The parameters can also be the weights in a neural
network!

j (s)u j θ

θ

5 . 5

4/25/19, 8*06 PMReinforcement Learning

Page 42 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Deep reinforcement learning

6 . 1

4/25/19, 8*06 PMReinforcement Learning

Page 43 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Deep reinforcement learning
In RL, we can learn:

In generalized RL: learn parameters of functions approximating
, ,

Inputs: percepts
Outputs: actions
Have to know form of function (hypothesis space)
Deep learning: excels in learning nonlinear functions mapping
inputs to outputs
Maybe combine RL and DL ⇒ deep reinforcement learning

U(s)
Q(s, a)
π(s)

θ
U Q π

6 . 2

4/25/19, 8*06 PMReinforcement Learning

Page 44 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Model learning
Need to learn ,
Either/both can be learned by DL
DL is responsible for understanding what the state s is given
percepts
E.g., for :

Weights
Many trials
Each trial:

Compute the target value via Monte Carlo method
Using policy, go from to end to find utility
Average multiple trials

Or use Bellman equation, with temporal difference
Now, however: don’t store – adjust the NN’s weights

U(s) P(|s, a)s′

U(s)
θ

θ ← arg || () − |min
θ

1
2 ∑

i
U π

θ si yi |2

y
s

U(s) 6 . 3

4/25/19, 8*06 PMReinforcement Learning

Page 45 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Deep Q-learning
Can we use deep learning to do model-free Q-learning?
Deep Q-network (DQN):

Function approximating :
Here, are the parameters: the weights of NN

Problem: Can’t just treat as supervised learning problem
Q-learning isn’t stable w/ DL
Q-learning balances exploitation with exploration
⇒ Input space, actions – changing as we explore more
As these change, target value for changes
So net’s input space, output space changing rapidly as explore

(Some material from , also Mnih et al., 2013)

Q(s, a) Q(s, a; θ)
θ

Q

here

6 . 4

4/25/19, 8*06 PMReinforcement Learning

Page 46 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

DQN
Train by minimizing sequence of loss functions:

where is the target:

 here is a sequence of states here (so not Markovian?)
Expected value for based on probability function over
sequences of states
Target determined from emulator/world + previous
Optimize loss function with parameters from previous
iteration held fixed
Target depends on weights – not like supervised learning
Gradient

Use stochastic gradient descent

() = E [(−Q(s, a;)]Li θi yi θi)2

yi

= E [r + γ Q(, ;)|s, a]yi max
a′

s′ a′ θi−1

s
L

θ
()Li θi

θi−1

() = E [(r + γQ(, ;) −Q(s, a;) Q(s, a;)]∇θi Li θi s′ a′ θi−1 θi ∇θi θi
6 . 5

4/25/19, 8*06 PMReinforcement Learning

Page 47 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

DQN
As implemented by Mnih et al. (2013) at DeepMind
Use past experience, past weights to slow down changes in input,
output space
Allows gradual learning of
Experience replay:

Keep last million or so < > in replay buffer
Train using batches from here

Target network:
Use two networks
Update one constantly
Other (target net): synchronize with other occasionally
Target network provides values instead of using the rapidly-
changing one
So: from old weights trains new weights, then new becomes
old occasionally

Q

s, a, r

Q

Q
6 . 6

4/25/19, 8*06 PMReinforcement Learning

Page 48 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

DQN algorithm

(From Mnih et al., 2013)

6 . 7

4/25/19, 8*06 PMReinforcement Learning

Page 49 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

DQN results
DeepMind’s early work:Atari games
Played most better than any other RL program, some better than
humans
Input: raw frames (201 × 160 pixels, 128 colors)
Output: actions
Pre-processing: convert to grayscale, downsample + crop to rough
game area
Convolutional neural network

First layer: 16 8 × 8 filters, stride 4, ReLu
Second layer: 32 4 × 4 filters, stride 2, ReLu
Last hidden layer: fully-connected, 256 ReLu units
Output: Fully connected linear layer, single output per valid
action

6 . 8

4/25/19, 8*06 PMReinforcement Learning

Page 50 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Example: ConvNetJS
From Karpathy @ Stanford’s Deep Learning in Your Browser site

6 . 9

4/25/19, 8*06 PMReinforcement Learning

Page 51 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Double DQN
Q-learning problem: can be overly optimistic on value of due to
approximation error
Update function for Q-learning

where:

For DQN:

 portion: target weights select and evaluate best action it
would take
May not be action that online net selects ⇒ possible overestimate

(From van Hasselt et al. (2016): Deep Reinforcement Learning with Double Q-Learning, AAAI-16.)

Q

= + α(−Q(, ;)) Q(, ;)θt+ 1 θt Yt st at θt ∇θt st at θt

≡ R() + γ Q(, a;)Yt st+ 1 max
a

st+ 1 θt

≡ R() + γ Q(, a,)Yt st+ 1 max
a

st+ 1 θ−
t

maxa

6 . 10

4/25/19, 8*06 PMReinforcement Learning

Page 52 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Double DQN
Best if “best action” is one online net would choose…
…but estimated target is per target net
⇒ Double DQN target:

Much better learning due to fewer overestimates

≡ R(+ γQ(, arg Q(, a;);)Yt st+ 1 st+ 1 max
a

st+ 1 θt θ−
t

6 . 11

4/25/19, 8*06 PMReinforcement Learning

Page 53 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Dueling DQN
Sometimes:

No action is necessary in a state; or
It doesn’t matter much which action is done; or
One action is better than another in a range of states.

 conflates assessing states and assessing values (as would
, then picking action)

What if split
Value of state is basically
Advantage of action in state is state-dependent
action worth

(From)

Q(s, a)
U(S)

Q(s, a) = V(s) + A(s, a)
s V(s) U(s)

a s A(s, a)

Wang et al., Dueling network architectures for deep reinforcement learning, 2016

6 . 12

4/25/19, 8*06 PMReinforcement Learning

Page 54 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Dueling DQN

Learn and separately, then recombine to give
:

V(S) A(s, a)
Q(s, a)

6 . 13

4/25/19, 8*06 PMReinforcement Learning

Page 55 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Dueling DQN

6 . 14

4/25/19, 8*06 PMReinforcement Learning

Page 56 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Dueling DQN advantage
Learn values of states when actions don’t matter

Don’t worry about choosing an action when it doesn’t matter

(Source: .)here

4/25/19, 8*06 PMReinforcement Learning

Page 57 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

6 . 15

