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Why reinforcement learning?
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Why reinforcement learning?
Supervised learning: need labeled examples
Unsupervised learning: maybe learn structure, but…
Often:

Do not have labeled examples
Have to do something – i.e., make some decision – before
training is complete
But have some feedback about how agent is doing
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Framing the problem
Reinforcement of agent’s actions via rewards
Current state → choose action → new state + reward

Let  = reward for state s
Many states may have 0 reward:

E.g., games
Instance of credit assignment problem

Instance of sequential decision problem

R(s)

→ → → → ⋯ →s0 a1 s1 a2 an sn
R( ) = R( ) = ⋯ R( ) = 0s0 s1 sn −1

2 . 3



4/25/19, 8*06 PMReinforcement Learning<br/><br/>

Page 5 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Reinforcement learning
Rewards
But no a priori knowledge of rewards, model (transition function)
E.g.:

Given an unfamiliar board and pieces, alternate moves with
opponent – only feedback is “you win” or “you lose”
Robot has to move around campus delivering mail, but doesn’t
know anything about campus, or delivering mail, or people, or…
feedback: “good robot”, “ouch!”, falls over, etc.
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Reinforcement learning

(From )https://icml.cc/2016/tutorials/deep_rl_tutorial.pdf
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Learning approaches
Learn utilities of states

Use to select action to maximize expected outcome utility
Needs model of environment, though to know  resulting from
taking action  in 

Policy learning (reflex agent):
Directly learn : which action to take in , bypassing 

Q-learning:
Learn an action-utility function Q

 is the value (utility) of action  in state 
Model-less learning

s′

a s

π(s) s U(s)

Q(a, s) a s
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Learning approaches
Passive learning:

Policy is fixed
Task: learn  (or utility of state-action pairs)
Maybe learn model

Active learning:
Has to learn what to do
May not even know what its actions do
Involves exploration

U(s)

2 . 7
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Passive reinforcement learning
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Passive reinforcement learning
Policy  is fixed
Task: See how good policy is by learning:

Doesn’t know:
transition model 
reward function  

π(s)

(s) = E [ R( )]U π ∑
t= 0

∞
γ t st

P( |s, a)s′

R(s)

3 . 2

4/25/19, 8*06 PMReinforcement Learning<br/><br/>

Page 11 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Passive reinforcement learning
Policy  is fixed
Task: See how good policy is by learning:

Doesn’t know:
transition model 
reward function  

Approach:
Do series of trials
Each: start at start, follow policy to terminal state
Percepts ⇒ new state , 

π(s)

(s) = E [ R( )]U π ∑
t= 0

∞
γ t st

P( |s, a)s′

R(s)

s′ R( )s′
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Passive reinforcement learning
Policy  is fixed
Task: See how good policy is by learning:

Doesn’t know:
transition model 
reward function  

Approach:
Do series of trials
Each: start at start, follow policy to terminal state
Percepts ⇒ new state , 

Stochastic transitions ⇒ different histories from same 

π(s)

(s) = E [ R( )]U π ∑
t= 0

∞
γ t st

P( |s, a)s′

R(s)

s′ R( )s′

π
3 . 2
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Direct estimation of 
Woodrow & Huff (1960 – adaptive control theory

 = remaining reward = reward-to-go
View: each trial ⇒ one sample of reward-to-go for each visited
state
Reduces reinforcement learning to supervised learning
But although  and  are independent…
…  and  are not independent – (cf. Bellman equation)
Misses opportunities for learning – e.g.,

See  for first time, it leads to known state  that is known
Bellman:  tells us something about 
Direct estimation: only  matters

Hypothesis space > needs to be

(s)U π

U(s)

R(s) R( )s′

U(s) U( )s′

s1 s2
U( )s2 U( )s1

R(s1)
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Adaptive dynamic programming
First learn model of transition function  from trials
Now you have an MDP
Solve it as per sequential decision process
Could use Bayesian approaches to make this better (see R&N,
21.2.2)

P( |s, a)s′
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Temporal difference learning
Use the Bellman equations directly:

General idea:
Start with no known 
Iterate:

Take step  to give 
If  is unknown state, use  as 
Use  to adjust  :

(s) = R(s) + γ (P( |s, π(s)) ( )U π ∑
s

′
s′ U π s′

U(⋅)

π(s) s′

s′ R( )s′ U( )s′

U( )s′ U(s)
(s) ← (s) + α(R(s) + γ ( ) − (s))U π U π U π s′ U π
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Temporal difference RL algorithm

3 . 6
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Active reinforcement learning
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Active reinforcement learning
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Active reinforcement learning

What if we not only don’t know:

…also don’t know ?

P( |s, a)s′

R(s)
π(s)

4 . 2

4/25/19, 8*06 PMReinforcement Learning<br/><br/>

Page 20 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Active reinforcement learning

What if we not only don’t know:

…also don’t know ?

One approach: use passive learning, but for all possible actions
Use the adaptive dynamic programming agent, but for all 

 at each state
This gives the transition model
Use value iteration or policy iteration ⇒ 

P( |s, a)s′

R(s)
π(s)

a ∈A(s)

U(s)

4 . 2
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Active reinforcement learning

What if we not only don’t know:

…also don’t know ?

One approach: use passive learning, but for all possible actions
Use the adaptive dynamic programming agent, but for all 

 at each state
This gives the transition model
Use value iteration or policy iteration ⇒ 

Produces greedy agent:
Once good terminal state found, tends to keep using policy that
found it
Seldom in practice converges to optimal policy !

P( |s, a)s′

R(s)
π(s)

a ∈A(s)

U(s)

π∗
4 . 2
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Greedy agent
Why doesn’t greedy agent converge?
Only exploits known path – assumes model is good
But model created based on learned  – leaves some states
unexplored
Actions leading to those states allow better learning of model
Which allows better estimation of , 
Have to balance exploitation with exploration

π

U(s) π∗
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Incorporating exploration
Using value iteration to get 
Now think of , the optimistic estimate of utility of 
Design an exploration function  where:

 - expected utility of some new state 
 - number of times action  (expected to lead to  from ) has

been tried in 
New iteration function for (optimistic) utility:

where  number of times  has been tried in 

U(s)
(s)U + s

f (u , n )
u s′

n a s′ s
s

(s) ← R(s) + γ f ( P( |s, a) ( ), N(s, a))U + max
a ∑

s′

s′ U + s′

N(s, a) = s a
4 . 4
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Q-learning
Instead of learning utilities, learn : utility of action  in 
Model-free: doesn’t have to know  at all
Could do this:

A Bellman equation, but for \(\) pairs rather than 
Could use in adaptive dynamic programming as iteration
method
But this isn’t really model-free – need 

Instead, use temporal difference method:

Q(s, a) a s
U(s)

Q(s, a) = R(s) + γ P( |s, a) Q( , )∑
s′

s′ max
a′

s′ a′

s

P( |s, a)s′

Q(s, a) ← Q(s, a) + α(R(s) + γ Q( , ) −Q(s, a)max
a′

s′ a′

4 . 5
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Q-learning agent
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SARSA
State-action-reward-state-action (SARSA) - similar to Q-learning

Here,  is action actually taken in 
Q-learning: uses best action from 
Still model-free, but have some policy that leads to choosing 
Off-policy vs on-policy algorithms

Off-policy algorithms pay no attention to any policy  – e.g., Q-
learning
On-policy: actions with respect to some policy

Off-policy more flexible…
…but if policy is constrained by others (e.g.), may be better to go
with realistic actions taken rather than best possible

Q(s, a) ← Q(s, a) + α(R(s) + γQ( , ) −Q(s, a)s′ a′

a′ s′

s′

a′

π
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So…Q-learning or model-learning?
R&N: “This is an issue at the foundations of artificial intelligence.”
More generally: do we need models to behave intelligently, or not?
Traditionally: model (most symbolic AI)
Lately: model-free (e.g., neural networks)

4 . 8
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Generalized RL
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Generalized RL
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Generalized RL
So far:
1. Learn 
2. Learn 

U(s)
Q(s, a)

5 . 2
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Generalized RL
So far:
1. Learn 
2. Learn 
But what if state space is very large or infinite?

U(s)
Q(s, a)

5 . 2
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Generalized RL
So far:
1. Learn 
2. Learn 
But what if state space is very large or infinite?
Instead: Learn function approximating  or  –  or 

U(s)
Q(s, a)

U(s) Q(s, a) (s)Û
(s, a)Q̂

5 . 2
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Generalized RL
So far:
1. Learn 
2. Learn 
But what if state space is very large or infinite?
Instead: Learn function approximating  or  –  or 

E.g., approximate  by linear combination of features
Static eval for chess, etc.

Just learn  values
For chess,  states – now only learn  values, where 

U(s)
Q(s, a)

U(s) Q(s, a) (s)Û
(s, a)Q̂

U(s)

(s) = (s) + ⋯ (s)Û θ1f1 θn fn
θi
> 1040 n

n < < 1040

5 . 2
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Generalized RL
So far:
1. Learn 
2. Learn 
But what if state space is very large or infinite?
Instead: Learn function approximating  or  –  or 

E.g., approximate  by linear combination of features
Static eval for chess, etc.

Just learn  values
For chess,  states – now only learn  values, where 

Not just save space: allows generalization

U(s)
Q(s, a)

U(s) Q(s, a) (s)Û
(s, a)Q̂

U(s)

(s) = (s) + ⋯ (s)Û θ1f1 θn fn
θi
> 1040 n

n < < 1040
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Generalized RL
So far:
1. Learn 
2. Learn 
But what if state space is very large or infinite?
Instead: Learn function approximating  or  –  or 

E.g., approximate  by linear combination of features
Static eval for chess, etc.

Just learn  values
For chess,  states – now only learn  values, where 

Not just save space: allows generalization
On the other hand: maybe we choose wrong hypothesis space

U(s)
Q(s, a)

U(s) Q(s, a) (s)Û
(s, a)Q̂

U(s)

(s) = (s) + ⋯ (s)Û θ1f1 θn fn
θi
> 1040 n

n < < 1040

5 . 2

4/25/19, 8*06 PMReinforcement Learning<br/><br/>

Page 36 of 57file:///Users/rmt/Classes/COS470/2019-Spring/Slides/RL19/rl19.html?print-pdf

Generalized RL
So – how to approach?
One way:

Choose utility approximator
Run a series of trials
Find best fit of feature weights to data (min. squared error)
⇒ Supervised learning

5 . 3
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Generalized RL
Better to use online algorithm for RL

Estimate  (random to start)
Run trial
Adjust $\widehat{U(s)} accordingly

How to adjust?
Compute gradient with respect to each parameter
Move parameter down gradient
Sound familiar?

(s)Û

5 . 4
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Generalized RL: Delta rule

5 . 5
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Generalized RL: Delta rule
Widrow-Hoff rule (delta rule)

5 . 5
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Generalized RL: Delta rule
Widrow-Hoff rule (delta rule)
For trial , observed utility , and parameters , let error:
\begin{eqnarray*} Ej(s) &=& (\widehat{U}θ(s) - uj(s))2/2
∇ Eθi &= & ∂ Ej/∂θi

θi &←& θi - α\frac{\partial E_j(s)}{\partial \theta_i} 
&←& θi + α(uj(s) - \widehat{U}θ(s) ) \frac{∂ \widehat{U}θ(s)}{∂ θi}

j (s)u j θ

5 . 5
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Generalized RL: Delta rule
Widrow-Hoff rule (delta rule)
For trial , observed utility , and parameters , let error:
\begin{eqnarray*} Ej(s) &=& (\widehat{U}θ(s) - uj(s))2/2
∇ Eθi &= & ∂ Ej/∂θi

θi &←& θi - α\frac{\partial E_j(s)}{\partial \theta_i} 
&←& θi + α(uj(s) - \widehat{U}θ(s) ) \frac{∂ \widehat{U}θ(s)}{∂ θi}
The  parameters can also be the weights in a neural
network!

j (s)u j θ

θ

5 . 5
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Deep reinforcement learning
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Deep reinforcement learning
In RL, we can learn:

In generalized RL: learn parameters  of functions approximating 
, , 

Inputs: percepts
Outputs: actions
Have to know form of function (hypothesis space)
Deep learning: excels in learning nonlinear functions mapping
inputs to outputs
Maybe combine RL and DL ⇒ deep reinforcement learning

U(s)
Q(s, a)
π(s)

θ
U Q π

6 . 2
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Model learning
Need to learn , 
Either/both can be learned by DL
DL is responsible for understanding what the state s is given
percepts
E.g., for :

Weights 
Many trials
Each trial:

Compute  the target value via Monte Carlo method
Using policy, go from  to end to find utility
Average multiple trials

Or use Bellman equation, with temporal difference
Now, however: don’t store  – adjust the NN’s weights

U(s) P( |s, a)s′

U(s)
θ

θ ← arg || ( ) − |min
θ

1
2 ∑

i
U π

θ si yi |2

y
s

U(s) 6 . 3
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Deep Q-learning
Can we use deep learning to do model-free Q-learning?
Deep Q-network (DQN):

Function approximating : 
Here,  are the parameters: the weights of NN

Problem: Can’t just treat as supervised learning problem
Q-learning isn’t stable w/ DL
Q-learning balances exploitation with exploration
⇒ Input space, actions – changing as we explore more
As these change, target value for  changes
So net’s input space, output space changing rapidly as explore

(Some material from , also Mnih et al., 2013)

Q(s, a) Q(s, a; θ)
θ

Q

here

6 . 4
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DQN
Train by minimizing sequence of loss functions:

where  is the target:

 here is a sequence of states here (so not Markovian?)
Expected value for  based on probability function over
sequences of states
Target determined from emulator/world + previous 
Optimize loss function  with parameters from previous
iteration  held fixed
Target depends on weights – not like supervised learning
Gradient

Use stochastic gradient descent

( ) = E [( −Q(s, a; ) ]Li θi yi θi )2

yi

= E [r + γ Q( , ; )|s, a]yi max
a′

s′ a′ θi−1

s
L

θ
( )Li θi

θi−1

( ) = E [(r + γQ( , ; ) −Q(s, a; ) Q(s, a; )]∇θi Li θi s′ a′ θi−1 θi ∇θi θi
6 . 5
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DQN
As implemented by Mnih et al. (2013) at DeepMind
Use past experience, past weights to slow down changes in input,
output space
Allows gradual learning of 
Experience replay:

Keep last million or so < > in replay buffer
Train using batches from here

Target network:
Use two networks
Update one constantly
Other (target net): synchronize with other occasionally
Target network provides  values instead of using the rapidly-
changing one
So:  from old weights trains new weights, then new becomes
old occasionally

Q

s, a, r

Q

Q
6 . 6
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DQN algorithm

(From Mnih et al., 2013)

6 . 7
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DQN results
DeepMind’s early work:Atari games
Played most better than any other RL program, some better than
humans
Input: raw frames (201 × 160 pixels, 128 colors)
Output: actions
Pre-processing: convert to grayscale, downsample + crop to rough
game area
Convolutional neural network

First layer: 16 8 × 8 filters, stride 4, ReLu
Second layer: 32 4 × 4 filters, stride 2, ReLu
Last hidden layer: fully-connected, 256 ReLu units
Output: Fully connected linear layer, single output per valid
action

6 . 8
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Example: ConvNetJS
From Karpathy @ Stanford’s Deep Learning in Your Browser site
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Double DQN
Q-learning problem: can be overly optimistic on value of  due to
approximation error
Update function for Q-learning

where:

For DQN:

 portion: target weights select and evaluate best action it
would take
May not be action that online net selects ⇒ possible overestimate

(From van Hasselt et al. (2016): Deep Reinforcement Learning with Double Q-Learning, AAAI-16.)

Q

= + α( −Q( , ; )) Q( , ; )θt+ 1 θt Yt st at θt ∇θt st at θt

≡ R( ) + γ Q( , a; )Yt st+ 1 max
a

st+ 1 θt

≡ R( ) + γ Q( , a, )Yt st+ 1 max
a

st+ 1 θ−
t

maxa
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Double DQN
Best if “best action” is one online net would choose…
…but estimated target is per target net
⇒ Double DQN target:

Much better learning due to fewer overestimates

≡ R( + γQ( , arg Q( , a; ); )Yt st+ 1 st+ 1 max
a

st+ 1 θt θ−
t

6 . 11
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Dueling DQN
Sometimes:

No action is necessary in a state; or
It doesn’t matter much which action is done; or
One action is better than another in a range of states.

 conflates assessing states and assessing values (as would 
, then picking action)

What if split 
Value of state   is basically 
Advantage of action  in state   is state-dependent
action worth

(From )

Q(s, a)
U(S)

Q(s, a) = V(s) + A(s, a)
s V(s) U(s)

a s A(s, a)

Wang et al., Dueling network architectures for deep reinforcement learning, 2016
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Dueling DQN

Learn  and  separately, then recombine to give 
:

V(S) A(s, a)
Q(s, a)
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Dueling DQN
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Dueling DQN advantage
Learn values of states when actions don’t matter

Don’t worry about choosing an action when it doesn’t matter

(Source: .)here
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