Reinforcement Learning<br/><br/> 4/25/19, 8:06 PM

Reinforcement Learning

UMaine COS 470/570 - Introduction to Al

Spring 2019

Created: 2019-04-23 Tue 13:56

t/Classes/COS4;

19/r119. Page 1 of 57 file:///Us

Reinforcement Learning<br/><br/> 4/25/19, 8:06 PM

Why reinforcement learning?

t/Classes/COS4’

Reinforcement Learning<br/><br/> 4/25/19, 8:06 PM

Why reinforcement learning?

e Supervised learning: need labeled examples

e Unsupervised learning: maybe learn structure, but...
e Often:

= Do not have labeled examples

= Have to do something - i.e., make some decision - before
training is complete

= But have some feedback about how agent is doing
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Framing the problem

e Reinforcement of agent's actions via rewards
e Current state = choose action = new state + reward
= Let R(s) = reward for state s
= Many states may have 0 reward:
So > ayp = 8§ > dy ™ et dy ™S,
R(so) = R(s1) =+ R(s,—1) =0
= E.g., games
= |nstance of credit assignment problem
¢ Instance of sequential decision problem
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Reinforcement learning
e Rewards

e But no a priori knowledge of rewards, model (transition function)
e Eg.
= Given an unfamiliar board and pieces, alternate moves with
opponent - only feedback is “you win” or “you lose”
= Robot has to move around campus delivering mail, but doesn’t

know anything about campus, or delivering mail, or people, or...
feedback: “good robot”, “ouch!”, falls over, etc.
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Learning approaches

e |earn utilities of states

= Use to select action to maximize expected outcome utility

= Needs model of environment, though to know s’ resulting from
taking actiona in s

e Policy learning (reflex agent):

= Directly learn z(s): which action to take in s, bypassing U(s)
e Q-learning:

= | earn an action-utility function Q

= ((a, s) is the value (utility) of action a in state s
= Model-less learning
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Learning approaches

e Passive learning:
= Policy is fixed

= Task: learn U(s) (or utility of state-action pairs)

= Maybe learn model
e Active learning:
= Has to learn what to do

= May not even know what its actions do

= [nvolves exploration
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Passive reinforcement learning

e Policy z(s) is fixed
e Task: See how good policy is by learning:

UT(s) = E | ) r'R(s))
=0

e Doesn't know:
= transition model P(s’|s, a)
= reward function R(s)

e Approach:
= Do series of trials
= Each: start at start, follow policy to terminal state
= Percepts = new state s, R(s")
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Passive reinforcement learning

e Policy z(s) is fixed
e Task: See how good policy is by learning:

(s3]
UT(s) = E | ) r'R(s))
=0
e Doesn't know:

= transition model P(s’|s, a)
= reward function R(s)

t/Classes/COS4’ 19/r119.

ement Learning<br/><br/>

Passive reinforcement learning

e Policy z(s) is fixed
e Task: See how good policy is by learning:
(oo}
UT(s) =E | ) r'R(s))
=0
e Doesn't know:
= transition model P(s’|s, a)
= reward function R(s)

e Approach:
= Do series of trials
= Each: start at start, follow policy to terminal state
= Percepts = new state s, R(s")
e Stochastic transitions = different histories from same 7
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Direct estimation of U”(s)

e Woodrow & Huff (1960 - adaptive control theory

U(s) = remaining reward = reward-to-go

° V'ie)[/v: each trial = one sample of reward-to-go for each visited Adaptive dynamic programming
state

Reduces reinforcement learning to supervised learning

But although R(s) and R(s") are independent...

..U(s) and U(s") are not independent - (cf. Bellman equation) Solve it as per sequential decision process

Misses opportunities for learning - e.g., Could use Bayesian approaches to make this better (see R&N,

= See s; for first time, it leads to known state s, that is known 21.2.2)

= Bellman: U(s;) tells us something about U(s;)

= Direct estimation: only R(s1) matters

e Hypothesis space > needs to be

First learn model of transition function P(s’|s, a) from trials
Now you have an MDP
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Temporal difference RL algorithm

Temporal difference learning

function PASSIVE-TD-AGENT(percept) returns an action

; ) inputs: t, cept indicating th ! i 4
e Use the Bellman equations dlrectly: ;)nel::is‘eﬁi?“c?:zpa ﬁaxg(eirpolloic; icating the current state s’ and reward signal 7

i
U™(s) = R(s) + 7 Z (P(s' |5, 2(s))U™(s") U, atable of utilities, initially empty
- N;, a table of frequencies for states, initially zero

) s, a, r, the previous state, action, and reward, initially null
e General idea: ’ Y

® Start with no known U(+) :g ;’ii:nlm tm‘ Uls '
u en

= |terate: . increment N ,[s]
o Take step 7z(s) to give s _ ULsl=Uls] + o(N[s])(r + v U[s") — UJs))
o If s’ is unknown state, use R(s") as U(s") if s’ TERMINAL? then s, a, 7 —null else s, a, — s/, 7[s'], '

return a

o Use U(s") to adjust U(s) :
U™(s) < U™(s) + a(R(s) + yU"(s") = U”(s))
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Active reinforcement learning

Active reinforcement learning

file:///Us t/Classes/COS4; 19/r119. Page 17 of 57 file:///Us t/Classes/COS4; 19/r119. Page 18 of 57
Reinforcement Learning<br/><br/> 4/25/19, 8:06 PM Reinforcement Learning<br/><br/> 4/25/19, 8:06 PM
Active reinforcement learning Active reinforcement learning
e What if we not only don't know: e What if we not only don't know:

= P(s'|s, ) = P(s'|s, )
= R(s)

= R(s)

...also don't know 7(s)? ...also don't know 7(s)?

e One approach: use passive learning, but for all possible actions
= Use the adaptive dynamic programming agent, but for all
a € A(s) at each state
= This gives the transition model
= Use value iteration or policy iteration = U(s)

Page 20 of 57
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Active reinforcement learning

e What if we not only don't know:

= P(s'|s, a)
= R(s)

...also don't know 7(s)?

e One approach: use passive learning, but for all possible actions
= Use the adaptive dynamic programming agent, but for all
a € A(s) at each state
= This gives the transition model
= Use value iteration or policy iteration = U(s)
e Produces greedy agent:

= Once good terminal state found, tends to keep using policy that
found it

= Seldom in practice converges to optimal policy z*!
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Incorporating exploration

Using value iteration to get U(s)

Now think of U™ (s), the optimistic estimate of utility of s

Design an exploration function f(u, n) where:

= i - expected utility of some new state s’

= 5 - number of times action a (expected to lead to s’ from s) has
been tried in s

e New iteration function for (optimistic) utility:

U*(s) < R(s) + y max f Z P(s'|s, ) U™ (s"), N(s, a)
a !
A
where N(s, a) = number of times s has been tried in a
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Greedy agent

Why doesn't greedy agent converge?

Only exploits known path - assumes model is good

But model created based on learned r - leaves some states
unexplored

Actions leading to those states allow better learning of model
Which allows better estimation of U(s), 7*

Have to balance exploitation with exploration
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Q-learning

e Instead of learning utilities, learn Q(s, a): utility of action a in s
e Model-free: doesn't have to know U(s) at all
e Could do this:

O(s,a) = R(s) +y Z P(s|s, a) max o', ad)

= A Bellman equation, but for \(\) pairs rather than s

= Could use in adaptive dynamic programming as iteration
method

= But this isn't really model-free - need P(s’|s, a)
¢ Instead, use temporal difference method:
0(s,a) < Q(s,a) + a(R(s) + y max O(s', @) — Q(s, @)
a
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Q-learning agent
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function Q-LEARNING-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s’ and reward signal r’
persistent: (), a table of action values indexed by state and action, initially zero
Niaq, atable of frequencies for state—action pairs, initially zero
s, a, 7, the previous state, action, and reward, initially null

if TERMINAL?(s) then Q[s, None] — 1’
if s is not null then
increment Ng,[s, a]
Q[s,a] — Q[s,a] + a(Nsa[s,a])(r + v maxer Q[¢',a’] — Q[s,al])
s,a,r—s',argmax,, f(Q[s',a’], Ny[s',a']), 7’
return a
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So...Q-learning or model-learning?
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R&N: “This is an issue at the foundations of artificial intelligence.”
More generally: do we need models to behave intelligently, or not?
Traditionally: model (most symbolic Al)
Lately: model-free (e.g., neural networks)
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State-action-reward-state-action (SARSA) - similar to Q-learning

O(s,a) < O(s,a) + a(R(s) +yQ(s', a’) = O(s, a)

Here, a’ is action actually taken in s’
Q-learning: uses best action from s’

Still model-free, but have some policy that leads to choosing a’

Off-policy vs on-policy algorithms

= Off-policy algorithms pay no attention to any policy 7 - e.g., Q-

learning
= On-policy: actions with respect to some policy
Off-policy more flexible...

...butif policy is constrained by others (e.g.), may be better to go

with realistic actions taken rather than best possible
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Generalized RL
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Generalized RL
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Generalized RL
e So far:
1. Learn U(s)
2. Learn Q(s, a)
e But what if state space is very large or infinite?
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Generalized RL
e So far:
1. Learn U(s)
2. Learn Q(s, a)
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Generalized RL
e So far:
1. Learn U(s)
2. Learn Q(s, a)
e But what if state space is very large or infinite?
e Instead: Learn function approximating U(s) or Q(s, a) - /(7(5) or

0(s,a)
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Generalized RL Generalized RL

e So far: e So far:
1. Learn U(s) 1. Learn U(s)
2. Learn Q(s, a) 2. Learn Q(s, a)
e But what if state space is very large or infinite? e But what if state space is very large or infinite?
e Instead: Learn function approximating U(s) or Q(s, a) - U (s) or e Instead: Learn function approximating U(s) or Q(s, a) - U (s) or
(s, a) (s, a)
e E.g., approximate U(s) by linear combination of features e E.g., approximate U(s) by linear combination of features
= Static eval for chess, etc. = Static eval for chess, etc.
= U(s) = 01f1(s) + -+ Oufu(s) = U(s) = 01f1(s) + -+ Oufu(s)
= Just learn 6; values = Just learn 6; values
= For chess, > 10% states - now only learn n values, where = For chess, > 10% states - now only learn n values, where
n << 10% n << 10%
e Not just save space: allows generalization
file:///Us t/Classes/COS4; 19/r119. P Page 33 of 57 file:///Us t/Classes/COS4; 19/rl19. P Page 34 of 57
Reinforcement Learning<br/><br/> 4/25/19, 8:06 PM Reinforcement Learning<br/><br/> 4/25/19, 8:06 PM
Generalized RL
e So far:

1. Learn U(s)

2. Learn Q(s, a)
e But what if state space is very large or infinite?
e Instead: Learn function approximating U(s) or Q(s, a) - ﬁ(s) or ® S0 - how to approach?

/Q\(s, a) e One way: N .
e E.g., approximate U(s) by linear combination of features = Choose utility approximator

= Static eval for chess, etc. : I?:]r(; é;JZ(:triifiEts c())fffter;atljre weights to data (min. squared error)
= U(s) = 0.1fi(s) + - Opfu(s) . '

= Supervised learning

Generalized RL

= Just learn 6; values
= For chess, > 10% states - now only learn n values, where
n << 10%
e Not just save space: allows generalization
On the other hand: maybe we choose wrong hypothesis space
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Generalized RL Generalized RL: Delta rule

e Better to use online algorithm for RL
= Estimate /U\(s) (random to start)
= Run trial
= Adjust $\widehat{U(s)} accordingly
e How to adjust?
= Compute gradient with respect to each parameter
= Move parameter down gradient
= Sound familiar?
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Generalized RL: Delta rule Generalized RL: Delta rule
e Widrow-Hoff rule (delta rule)
e For trial j, observed utility u;(s), and parameters 0, let error:
\begin{egnarray*} Ej(s) &=& (\widehat{U}g(s) - uj(s))2/2
\Y Eei &= &9 Ej/aei
0; &+ & 6 - a\frac{\partial E_j(s)}{\partial \theta_i}
&<& 0;+ q(uj(s) -\widehat{U}g(s) ) \frac{o \widehat{U}g(s)}{d 6;}

e Widrow-Hoff rule (delta rule)
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Generalized RL: Delta rule

e Widrow-Hoff rule (delta rule)

For trial j, observed utility u;(s), and parameters , let error:
\begin{egnarray*} Ej(s) &=& (\widehat{U}g(s) - uj(s))2/2

\Y Eei &= &9 Ej/aei

0; &+ & B - a\frac{\partial E_j(s)}{\partial \theta_i}

&<& O;+ q(uj(s) -\widehat{U}g(s) ) \frac{o \widehat{U}g(s)}{d 6;}
The 0 parameters can also be the weights in a neural
network!
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Deep reinforcement learning

In RL, we can learn:

= U(s)

= O(s,a)

= 7(s)

In generalized RL: learn parameters € of functions approximating
U QO rx

Inputs: percepts

Outputs: actions

Have to know form of function (hypothesis space)

Deep learning: excels in learning nonlinear functions mapping
inputs to outputs

Maybe combine RL and DL = deep reinforcement learning
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Deep reinforcement learning
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Model learning

e Need to learn U(s), P(s'|s, a)
e Either/both can be learned by DL
e DL is responsible for understanding what the state s is given
percepts
e E.g., for U(s):
= Weights 6
= Many trials
= Each trial:

1 2
6 < argmin - Z UZ(si) = yill

= Compute y the target value via Monte Carlo method
o Using policy, go from s to end to find utility
o Average multiple trials
e Or use Bellman equation, with temporal difference
m Now however: dan't ctare /(<) - adinict the NIN'< weioht<

Page 44 of 57
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Deep Q-learning

e Can we use deep learning to do model-free Q-learning?
e Deep Q-network (DQN):

= Function approximating Q(s, a): Q(s, a; 6)
= Here, 6 are the parameters: the weights of NN

e Problem: Can't just treat as supervised learning problem

Q-learning isn't stable w/ DL

Q-learning balances exploitation with exploration

= Input space, actions - changing as we explore more

As these change, target value for Q changes

So net's input space, output space changing rapidly as explore

(Some material from here, also Mnih et al., 2013)
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DQN

e As implemented by Mnih et al. (2013) at DeepMind

e Use past experience, past weights to slow down changes in input,
output space

o Allows gradual learning of Q

e Experience replay:

Keep last million or so <s, a, r>in replay buffer
Train using batches from here

e Target network:

Use two networks

Update one constantly

Other (target net): synchronize with other occasionally

Target network provides Q values instead of using the rapidly-
changing one

So: Q from old weights trains new weights, then new becomes
old occasionally
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DQN
e Train by minimizing sequence of loss functions:
Li(6) = E [(vi = Q(s. a:6))*]
where y; is the target:
yi=E|r+ ymax 0, a's0-ls.al
a

e s here is a sequence of states here (so not Markovian?)
Expected value for L based on probability function over
sequences of states

Target determined from emulator/world + previous 6

iteration 0;_; held fixed
Target depends on weights - not like supervised learning
e Gradient

4/25/19, 8:06 PM

Optimize loss function L;(6;) with parameters from previous

Vo, Li(0;) = E [(V +70(s",d';0,_1) — Q(s, a; 0,)V, O(s, a; 6,)|

e |lce stnrhactic sradient decrent
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DQN algorithm
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Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
Initialise sequence s, = {x} and preprocessed sequenced ¢ = ¢(s1)

fort = 1,7 do
With probability € select a random action a;
otherwise select a; = max, Q*(4(s;).a:0)
Execute action a, in emulator and observe reward r, and image x4,
Set sy41 = S, a4, T4 and preprocess ¢y = O(s441)
Store transition (¢¢, a;, 74, ¢y41) in D
Sample random minibatch of transitions (¢;, a;, 7;, ;1) from D
s o for terminal ¢,
ety; = ;i 4+ ymax, Q(¢;41.0a';0) for non-terminal ¢;
Perform a gradient descent step on (y; — Q(¢;, a;; 0))? according to equation 3
end for
end for

(From Mnih et al., 2013)
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DQN results

e DeepMind's early work:Atari games

e Played most better than any other RL program, some better than
humans

e Input: raw frames (201 x 160 pixels, 128 colors)

« Output: actions Example: ConvNetJS
* Pre-processing: convert to grayscale, downsample + crop to rough From Karpathy @ Stanford’s Deep Learning in Your Browser site
game area
e Convolutional neural network
= First layer: 16 8 x 8 filters, stride 4, ReLu
= Second layer: 32 4 x 4 filters, stride 2, ReLu
= | ast hidden layer: fully-connected, 256 RelLu units
= Qutput: Fully connected linear layer, single output per valid
action
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Double DQN
e Q-learning problem: can be overly optimistic on value of Q due to
approximation error
e Update function for Q-learning Double DQN
_ Ore1 = 0, + (¥ — Qsi, a3 0)) Vo, st ar 6) * Best if “best action” is one online net would choose...
where: _ e ..but estimated target is per target net
Y = R(sp1) + y max O(sr+1,a;0,) e = Double DQN target:
e For DQN: Y, = R(si+1 + yQ(si41, argmax O(spv1, a5 6,); 6;)
—_ a
Yi = R(si41) + ym;lx OCsi+1,a,0;) e Much better learning due to fewer overestimates

e max, portion: target weights select and evaluate best action it
would take
e May not be action that online net selects = possible overestimate

(From van Hasselt et al. (2016): Deep Reinforcement Learning with Double Q-Learning, AAAI-16.)
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Dueling DQN

e Sometimes:
= No action is necessary in a state; or
= |t doesn't matter much which action is done; or
= One action is better than another in a range of states.
e (s, a) conflates assessing states and assessing values (as would
U(S), then picking action)
e What if split O(s, a) = V(s) + A(s, a)
= Value of state s V(s) is basically U(s)
= Advantage of action a in state s A(s, @) is state-dependent
action worth

(From Wang et al., Dueling network architectures for deep reinforcement learning, 2016)
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Dueling DQN

Q(s,a;0,,B) =V(s:0,3) +

(A(s,a; 0,a) — ﬁ ZA(S. a’; 6’.(1)) .9
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Dueling DQN

e Learn V(S) and A(s, a) separately, then recombine to give

0(s, a):

\ l
Figure 1. A popular single stream Q-network (top) and the duel-
ing Q-network (bottom). The dueling network has two streams

1o sej ely estimate (scalar) state-value and the advantages for
each action; the green output module implements equation (9) to
combine them. Both networks output Q-values for each action.
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Dueling DQN advantage
e Learn values of states when actions don’t matter

e Don't worry about choosing an action when it doesn't matter

Figure 2. See, attend and drive: Value and advantage saliency
maps (red-tinted overlay) on the Atari game Endu trained
ducling architecture. The value stream learns (o pay attention o
the road. The advantage stream learns to pay attention only when
there are cars immediately in front, s0 as to avoid collisions.

(Source: here.)
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