
AI
rtificial
ntelligence

POP

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 8 / 23

AI
rtificial
ntelligence

Partial Order, Nonlinear Planning

Overview

• Least commitment

• Plan space

• History

• NOAH Example

• More history

• Solution?

POP

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 2 / 23

• Two major ideas: least commitment and plan-space search

• Least commitment:

◦ Don’t commit until you have to

◦ Commit to what?

AI
rtificial
ntelligence

Partial Order, Nonlinear Planning

Overview

• Least commitment

• Plan space

• History

• NOAH Example

• More history

• Solution?

POP

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 3 / 23

• Plan-space search:

◦ Search through space of partial plans, not states at domain

level

◦ “States” in this space ≡ partial plans – may be missing steps,

ordering constraints, etc.

◦ Not state1 −→ state2, but

partialP lan1 −→ partialP lan2

◦ Allows planner to focus on what makes sense during planning

– may switch from one goal to another, e.g.

◦ Operators: add domain-level operator, impose order on the

steps, instantiate a variable (or separate variables)

AI
rtificial
ntelligence

What Constitutes a Solution?

Overview

• Least commitment

• Plan space

• History

• NOAH Example

• More history

• Solution?

POP

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 7 / 23

• Complete – every precondition for every operator is achieved and

no operator removes the precondition required for some operator

• Consistent – no contradictions in ordering or binding constraints

• Order does not need to be complete

◦ partial ordering allows operators to be executed in parallel

◦ agent may have better information for ordering at execution

time

◦ can produce a total ordering through linearization

AI
rtificial
ntelligence

Partial-Order Planner (POP)

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 9 / 23

1. Begin with initial (dummy) plan

2. While open precondition:

(a) Choose open precondition

(b) Choose action to achieve precondition (fail if cannot)

(c) If any causal links are threatened then resolve conflicts

3. If no open preconditions, then success, else fail

AI
rtificial
ntelligence

Partial-Order Planner (POP)

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 9 / 23

1. Begin with initial (dummy) plan

2. While open precondition:

(a) Choose open precondition

(b) Choose action to achieve precondition (fail if cannot)

(c) If any causal links are threatened then resolve conflicts

3. If no open preconditions, then success, else fail

Where are the backtrack points?

AI
rtificial
ntelligence

POP: Initial Plan

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 10 / 23

• The initial plan – start, finish operators

• Start operator: no preconditions, effects are initial state

• Finish operator: no effects, preconditions are goal state(s)

AI
rtificial
ntelligence

POP: Initial Plan

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 23

• Example:

◦ Initial state:

at(Monkey, (1, 1)) ∧ at(Box, (3, 3)) ∧
¬haveBananas(Monkey)

◦ Goal: haveBananas(Monkey)

AI
rtificial
ntelligence

POP: Initial Plan

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 23

• Example:

◦ Initial state:

at(Monkey, (1, 1)) ∧ at(Box, (3, 3)) ∧
¬haveBananas(Monkey)

◦ Goal: haveBananas(Monkey)

Start Finish

at(Monkey,(1,1))

at(Box,(3,3))

~haveBananas(Monkey)

haveBananas(Monkey)

AI
rtificial
ntelligence

POP: Choosing Open Precondition

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 12 / 23

• Which actions are needed to achieve preconditions (PCs) is

recorded by causal links

• Choose a precondition to work on that currently has nothing

linked to it

• E.g., for:

Start Finish

at(Monkey,(1,1))

at(Box,(3,3))

~haveBananas(Monkey)

haveBananas(Monkey)

choose haveBananas(Monkey)

AI
rtificial
ntelligence

POP: Choose Way to Satisfy Precondition

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 13 / 23

• Look through effects of steps already in the plan first – including

the Start step

• If find something, add link from that action to PC

• If not, then look for a new operator that can achieve the PC, add it

to plan, linked to PC

• If still nothing, then fail

AI
rtificial
ntelligence

POP: Check for Threats

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 14 / 23

• Caual links record rationale for plan steps & whether or not PC is

open

• E.g., action1
cond

−−−→ action2 means that action1 is needed to

achieve precondition cond for action2
• If an action asserts ¬cond, then it threatens the causal link

• Check for threats when adding a new step:

◦ effects may threaten existing link

◦ existing actions may threaten new causal link

• Check for threats when using existing action: the new causal link

may be threatened by existing actions

AI
rtificial
ntelligence

POP: Resolve Threats

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 15 / 23

• Suppose an action S3 threatens link S1

c
→ S2

• Could add order constraints to ensure that S3 doesn’t come

between S1 and S2

◦ Promotion: Put S3 after S2

◦ Demotion: Put S3 before S1

• If the threat or condition have variables, could also instantiate

variables so that there is no conflict (confrontation)

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 16 / 23

POP Example:

Start state

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 16 / 23

Add an operator

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 16 / 23

Use existing

action to achieve

PC

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 16 / 23

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Milk)

At(SM) Sells(SM,Milk)

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 16 / 23

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Milk)

At(SM) Sells(SM,Milk)

At(x)

Go(SM)

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 16 / 23

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Milk)

At(SM) Sells(SM,Milk)

At(x)

Go(SM)

At(x)

Go(HWS)

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 16 / 23

Threats

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Milk)

At(SM) Sells(SM,Milk)

At(x)

Go(SM)

At(x)

Go(HWS)

Threats

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 16 / 23

Resolve threats

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Milk)

At(SM) Sells(SM,Milk)

At(x)

Go(SM)

At(x)

Go(HWS)

Resolution:
Promote Go(SM)

order
link

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 16 / 23

Final plan

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Milk)

At(SM) Sells(SM,Milk)

At(Home)

Go(HWS)

Go(Home)

At(SM)

Buy(Ban.)

Sells(SM,Ban.)At(SM)

At(HWS)

Go(SM)

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 17 / 23

Sussman

Anomaly

Start

Finish

ontable(B) ontable(A) on(C,A)

on(A,B) on(B,C)

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 17 / 23

Add operators

Start

Finish

ontable(B) ontable(A) on(C,A)

on(A,B) on(B,C)

stack(A,B) stack(B,C)
hold(A) clear(B) hold(B) clear(C)

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 17 / 23

Threats

Start

Finish

ontable(B) ontable(A) on(C,A)

on(A,B) on(B,C)

stack(A,B) stack(B,C)
holding(A) clear(B) holding(B) clear(C)

Threats

armempty() armempty()

Pickup(B)

armEmpty() clear(B)

Pickup(A)

armEmpty() clear(A)

AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 17 / 23

One way to

resolve threats;

other would lead

to failure &

backtracking

Start

Finish

ontable(B) ontable(A) on(C,A)

on(A,B) on(B,C)

stack(A,B) stack(B,C)
holding(A) clear(B) holding(B) clear(C)

armempty() armempty()

Pickup(B)

armEmpty() clear(B)

Pickup(A)

armEmpty() clear(A)

AI
rtificial
ntelligence

Spare Tires

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 18 / 23

• Spare tire world:

AI
rtificial
ntelligence

POP’ing Spare Tires

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 19 / 23

• Solution:

AI
rtificial
ntelligence

POP’ing Spare Tires

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 20 / 23

• Solution:

AI
rtificial
ntelligence

POP’ing Spare Tires

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 21 / 23

• Solution:

AI
rtificial
ntelligence

Advantages of Partial Order Planning

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 22 / 23

• Reduces backtracking by not commiting until necessary

• Search subplans only where they interact

• Causal links focus on potential problems and show where need

to backtrack

• Allows for parallel execution or for ordering steps at execution

time

AI
rtificial
ntelligence

POP Heuristics

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 23 / 23

• Count open preconditions, or open preconditions −

preconditions in start state

• Select open precondition that can be satisfied in fewest possible

ways (cf. most-constrained variable heuristic from CSP)

• Planning graphs good source of heuristics

AI
rtificial
ntelligence

Plan Graphs

Plan Graphs

• Overview

• Example

• Plan Graphs and

Heuristics

• Extracting Plans

Graphplan

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 2 / 15

• Levels of graph: each contain states and actions

◦ States portion: all possible states that could arise from

actions in previous level

◦ Actions portion: all actions that could possibly be applied at

step i, given the states

• Persistence actions

AI
rtificial
ntelligence

Plan Graphs (cont’d)

Plan Graphs

• Overview

• Example

• Plan Graphs and

Heuristics

• Extracting Plans

Graphplan

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 3 / 15

• Mutex links:

◦ For actions:

• inconsistent effects: one action’s effects negates effect of

another

• interference: one action negates precondition of another

• competing needs: two actions require inconsistent states

as preconditions

◦ For states (literals): if one is negation of other or each

possible pair of actions that could achieve the two is mutex

• Leveling off of graph

AI
rtificial
ntelligence

Cake Eating World

Plan Graphs

• Overview

• Example

• Plan Graphs and

Heuristics

• Extracting Plans

Graphplan

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 4 / 15

• “Have cake and eat it too” problem:

Init(Have(Cake))
Goal(Have(Cake)) ∧ Eaten(Cake))
Action(Eat(Cake))

Precond: Have(Cake)
Effect: ¬Have(Cake) ∧ Eaten(Cake)

Action(Bake(Cake))
Precond: ¬Have(Cake)
Effect: Have(Cake)

AI
rtificial
ntelligence

Plan Graphs and Cake Eating

Plan Graphs

• Overview

• Example

• Plan Graphs and

Heuristics

• Extracting Plans

Graphplan

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 5 / 15

AI
rtificial
ntelligence

Plan Graphs and Heuristics

Plan Graphs

• Overview

• Example

• Plan Graphs and

Heuristics

• Extracting Plans

Graphplan

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 6 / 15

• Can use levels at which precondition appears as estimate of

hardness

• Can use serial planning graph for better heuristic: insert mutex

between all pairs of actions except persistence actions

• Heuristics for computing conjunctive subgoal cost, too

AI
rtificial
ntelligence

Extracting Plans from Plan Graphs

Plan Graphs

• Overview

• Example

• Plan Graphs and

Heuristics

• Extracting Plans

Graphplan

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 7 / 15

• In addition to providing heuristics, plan graphs can also be used

for planning

• Mutex constraints guide extraction of plan from graph

• Constraint satisfaction techniques can be used to speed up plan

extraction

• Creation of plan graph is polynomial-time algorithm – extraction?

AI
rtificial
ntelligence

Graphplan

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 8 / 15

AI
rtificial
ntelligence

Graphplan Algorithm

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 9 / 15

function GRAPHPLAN(problem) returns solution or failure
graph← IINITIAL-PLANNING-GRAPH(problem)
goals← GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
solution← EXTRACT-SOLUTION(graph,goals,LENGTH(graph))
if solution ≠ failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph← EXPAND-GRAPH(graph,problem)

AI
rtificial
ntelligence

Graphplan

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 10 / 15

• Termination: when plan is found or planning graph levels off with

no solution (approx.)

• Extract-solution:

◦ This is the search step

◦ For goals at level n, identify consistent subset of actions at

level n− 1 that could produce them

◦ Do the same for the preconditions of these actions (at level

n− 1
◦ When reach S0,→ solution

◦ At any level, may need to backtrack

◦ Can also approach as a CSP, with actions as variables and

values of “in” or “out”

• Very fast planner! Capitalizes on polynomial time to compute

graph, plus guidance from plan about what can/cannot happen

AI
rtificial
ntelligence

Graphplan and Spare Tires

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 15

S0 A0
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)

AI
rtificial
ntelligence

Graphplan and Spare Tires

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 15

S0 A0 S1 A1
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

At(Flat,Axle)
~At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)
~At(Spare,Ground)
At(Spare,Ground)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

AI
rtificial
ntelligence

Graphplan and Spare Tires

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 15

S0 A0 S1 A1
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

At(Flat,Axle)
~At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)
~At(Spare,Ground)
At(Spare,Ground)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

AI
rtificial
ntelligence

Graphplan and Spare Tires

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 15

S0 A0 S1 A1 S2
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

At(Flat,Axle)
~At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)
~At(Spare,Ground)
At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

~At(Flat,Axle)

At(Flat,Axle)

~At(Spare,Axle)
At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)

~At(Spare,Ground)
At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

AI
rtificial
ntelligence

Graphplan and Spare Tires

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 15

S0 A0 S1 A1 S2
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

At(Flat,Axle)
~At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)
~At(Spare,Ground)
At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

~At(Flat,Axle)

At(Flat,Axle)

~At(Spare,Axle)
At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)

~At(Spare,Ground)
At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

AI
rtificial
ntelligence

Graphplan and Spare Tires

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 15

S0 A0 S1 A1 S2
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

At(Flat,Axle)
~At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)
~At(Spare,Ground)
At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

~At(Flat,Axle)

At(Flat,Axle)

~At(Spare,Axle)

At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)

~At(Spare,Ground)
At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

AI
rtificial
ntelligence

Graphplan and Spare Tires

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 15

S0 A0 S1 A1 S2
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

At(Flat,Axle)
~At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)
~At(Spare,Ground)
At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

~At(Flat,Axle)

At(Flat,Axle)

~At(Spare,Axle)

At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)

~At(Spare,Ground)
At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

AI
rtificial
ntelligence

Graphplan and Spare Tires

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 15

S0 A0 S1 A1 S2
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

At(Flat,Axle)
~At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)
~At(Spare,Ground)
At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

~At(Flat,Axle)

At(Flat,Axle)

~At(Spare,Axle)

At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)

~At(Spare,Ground)
At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

AI
rtificial
ntelligence

Graphplan and Spare Tires

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 15

S0 A0 S1 A1 S2
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

At(Flat,Axle)
~At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)
~At(Spare,Ground)
At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

~At(Flat,Axle)

At(Flat,Axle)

~At(Spare,Axle)

At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)

~At(Spare,Ground)
At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

AI
rtificial
ntelligence

Problems with Graphplan

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 12 / 15

• Major problem with Graphplan: propositional planner

• Potential combinatorial explosion in representation

• There are techniques to reduce this – however, still not scalable

(yet) to large, complex domains

• Recently: additions for handling resources, for conditional plans,

etc.

AI
rtificial
ntelligence

Other Planners

Plan Graphs

Graphplan

Other Planners

• Forward Planners

• POP’ing Back

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 13 / 15

AI
rtificial
ntelligence

Other Forward Planners

Plan Graphs

Graphplan

Other Planners

• Forward Planners

• POP’ing Back

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 14 / 15

• Other graph planners: IPP [Koehler et al.], STAN [Fox, Long],

SGP [Weld et al.]

• Satisfiability: SATplan & BlackBox [Kautz, Selman]

• State-space search: UNPOP [McDermott], HSP [Bonet, Geffner],

FASTFORWARD (FF) [Hoffmann]

AI
rtificial
ntelligence

POP’ing Back

Plan Graphs

Graphplan

Other Planners

• Forward Planners

• POP’ing Back

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 15 / 15

• Using CSP, SAT techniques – improve POP

• RePOP [Nguyen and Kambhampati]

• Scales up better than Graphplan

AI
rtificial
ntelligence

Hierarchical Planning

‚ So Far

Hierarchical Planning

‚ Hierarchical

Decomposition

‚ Approximation

Hierarchies

‚ Hierarchical Planners

‚ Advantages

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 3 / 36

AI
rtificial
ntelligence

Problems with Planners Studied So Far

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 2 / 36

‚ Focus too much on details

˝ E.g., if goal = have(House), plan at level of “swing hammer”,

...

˝ Leads to very high branching factor, focus on inappropriate

details

‚ Concerned solely with planning – not execution

AI
rtificial
ntelligence

Hierarchical Decomposition

‚ So Far

Hierarchical Planning

‚ Hierarchical

Decomposition

‚ Approximation

Hierarchies

‚ Hierarchical Planners

‚ Advantages

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 4 / 36

‚ Idea: represent steps at different levels of abstraction

˝ Some steps: executable actions (e.g., “swing hammer”)

˝ Other steps: abstract actions (e.g., “put up house frame”)

‚ Advantages:

˝ Can focus on outline of plan by dealing with high-level steps...

˝ ...lower branching factor

˝ Later worry about details after outline okay

AI
rtificial
ntelligence

Planning with Approximation Hierarchies

‚ So Far

Hierarchical Planning

‚ Hierarchical

Decomposition

‚ Approximation

Hierarchies

‚ Hierarchical Planners

‚ Advantages

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 5 / 36

‚ Use the same operators, but check preconditions depending on

criticality

˝ most critical preconditions checked first

˝ plan again, lowering threshold on criticality level each time

‚ Should find reasons to backtrack quickly because most often

caused by most critical preconditions

‚ Must mark criticality levels for all preconditions on all operators

‚ Planner using this technique: ABSTRIPS

AI
rtificial
ntelligence

Hierarchical Planners

‚ So Far

Hierarchical Planning

‚ Hierarchical

Decomposition

‚ Approximation

Hierarchies

‚ Hierarchical Planners

‚ Advantages

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 6 / 36

‚ Plan library of plan schemas gives decomposition of step to more

detailed representation

‚ Plan decompositions in library should be well tested

‚ Have solution when all actions in plans are executable actions

‚ Need to watch for interactions between steps in different plan

schemas

˝ critics are daemons that execute to handle specific kinds of

interactions

‚ Planner using this technique: NONLIN [Sacerdoti]

AI
rtificial
ntelligence

Advantages of Hierarchical Planning

‚ So Far

Hierarchical Planning

‚ Hierarchical

Decomposition

‚ Approximation

Hierarchies

‚ Hierarchical Planners

‚ Advantages

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 7 / 36

‚ Plan schemas: same advantages as subroutines

˝ can take advantage of cumulative debugging

˝ reduced planning effort

‚ Like top-down programming: Can check whole plan before

working with details

‚ Can focus on most critical steps first

‚ Saves time and guarantees a solution in certain conditions

˝ Downward solution property

˝ Upward solution property

AI
rtificial
ntelligence

Conditional Planning

‚ So Far

Hierarchical Planning

Conditional Planning

‚ Condi-

tional/Contingency

Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 8 / 36

AI
rtificial
ntelligence

Conditional/Contingency Planning

‚ So Far

Hierarchical Planning

Conditional Planning

‚ Condi-

tional/Contingency

Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 9 / 36

‚ Account for each possibility that may arise

‚ Operators have conditional steps

˝ If C then P else Q

˝ P and Q can be lengthy plans

˝ Context is the value of conditions needed to get to this step

˝ Can have parameterized plans

‚ Need to have steps to find out value of conditional

‚ Need to be able to anticipate all possibilities: universal planning

‚ Problems?

AI
rtificial
ntelligence

Planning and Execution

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

‚ Overview
‚ Execution and Action

Monitoring

‚ Unanticipated Events

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 10 / 36

AI
rtificial
ntelligence

Adding Execution

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

‚ Overview
‚ Execution and Action

Monitoring

‚ Unanticipated Events

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 36

‚ So far: only planning

‚ Sufficient for some agents

‚ Other agents need to execute the plans

AI
rtificial
ntelligence

Execution and Action Monitoring

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

‚ Overview
‚ Execution and Action

Monitoring

‚ Unanticipated Events

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 12 / 36

‚ One approach: create plan, then monitor its execution

‚ Two ways: execution or action monitoring

‚ Execution monitoring:

˝ Know which preconditions must be met for each step

˝ After current step, see if any are violated (via some possibly

complex plan regression)

˝ If preconditions not met – have to create situation which

meets them (like planning itself)

‚ Action monitoring:

˝ Check actions’ effects, not preconditions in general – replan

or redo if problem

˝ Can also see if there is serendipitous goal satisfaction

AI
rtificial
ntelligence

What about Unanticipated Events?

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

‚ Overview
‚ Execution and Action

Monitoring

‚ Unanticipated Events

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 13 / 36

‚ Why do unanticipated events arise?

AI
rtificial
ntelligence

What about Unanticipated Events?

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

‚ Overview
‚ Execution and Action

Monitoring

‚ Unanticipated Events

Combining Planning

and Execution

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 13 / 36

‚ Why do unanticipated events arise? CRUD:

˝ Complex missions and domains (ù planning errors, etc.)

˝ Real physical systems (ù imprecision, unpredicted effects)

˝ Uncertainty

˝ Dynamic world

‚ How to handle?

˝ Conditional/universal plans

˝ Could enumerate events, and specify what to do

˝ Could replan or try to repair plan

AI
rtificial
ntelligence

Combining Planning and

Execution

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

‚ Overview

‚ Reactive Planning

‚ Moderate Reactive

Planning

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 14 / 36

AI
rtificial
ntelligence

Combining Planning and Execution

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

‚ Overview

‚ Reactive Planning

‚ Moderate Reactive

Planning

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 15 / 36

‚ Maybe entire two-phase plan-then-execute is wrong

‚ Instead, maybe we should put the two together:

˝ Can take advantage of delayed/least commitment

˝ Can take unanticipated events into account in evolving plan

˝ Can avoid creating complex conditional plans

AI
rtificial
ntelligence

Reactive Planning

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

‚ Overview

‚ Reactive Planning

‚ Moderate Reactive

Planning

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 16 / 36

‚ Do not commit to future parts of plan

˝ can have schemas for achieving goals, but do not look at

future steps to make current decisions

‚ Does not waste effort on predictive planning when the world is

unpredicatable and likely to change between beginning of

planning and execution

‚ Cannot make global optimizations

‚ Agre & Chapman

‚ Brooks

AI
rtificial
ntelligence

Reactive Planning with Goal Schemas

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

‚ Overview

‚ Reactive Planning

‚ Moderate Reactive

Planning

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 17 / 36

‚ Place schema on the agenda

‚ Select a step to execute

‚ Expand step until reach an executable action

˝ at each expansion place steps on agenda to be selected in

competition with others – usually use stack-like structure to

continue work on same goal

˝ choose expansion based on current situation only

‚ PRS [Georgeff]

‚ MEDIC, Orca [R. Turner], JUDIS [E. Turner], ACRO [Albert]

AI
rtificial
ntelligence

Schema-Based Reasoning

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 18 / 36

AI
rtificial
ntelligence

Schema-Based Reasoning

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 19 / 36

‚ Schema-based reasoning (SBR) [Turner] is an adaptive

reasoning method

‚ Adaptive reasoning: agent changes its behavior to fit the evolving

problem-solving situation

˝ Short-term adaptation

˝ Long-term adaptation

˝ Adapt in context ñ context-mediated behavior (CMB)

‚ Schemas are used to guide reasoning

AI
rtificial
ntelligence

Schemas

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 20 / 36

‚ Schemas are packets of related information used to guide

behavior

‚ Three types:

˝ Procedural schemas

˝ Contextual schemas

˝ Strategic schemas

AI
rtificial
ntelligence

Procedural Schemas

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 21 / 36

‚ Procedural schemas (p-schemas) represent hierarchical plans

‚ Selection ñ partial commitment to a course of action

‚ Steps can be

˝ executable actions

˝ other p-schemas

˝ sub-goals

‚ Leave unexpanded until needed ñ least commitment

AI
rtificial
ntelligence

Example

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 22 / 36

(defpschema p-mission (goals)
:order (sequential analyze-goals preflight-checkout

launch transit-out work-phase transit-home
recovery postflight-debrief)

:steps
((analyze-goals (action ^x-analyze-goals)

(input (?goals => goals))
(output (location => ?location)

(equipment => ?equipment)))
(preflight-checkout ...)
(launch ...)
(transit-out
(action ^p-transit-to)
(input (location => ?location)))
(work-phase
(goals ?goals))
(transit-home ...) (recovery ...) (postflight-debrief

...)

AI
rtificial
ntelligence

Contextual Schemas

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 23 / 36

‚ Context-mediated behavior: context should impact all facets of an

agent’s behavior

‚ Contextual schemas (c-schemas) represent known contexts

‚ Process:

˝ Retrieve c-schemas that the current situation reminds agent

of...

˝ Diagnose which one(s) really fit the situation...

˝ Merge c-schemas ñ coherent view of context

AI
rtificial
ntelligence

Contextual Schemas

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 24 / 36

‚ Context provides:

˝ Knowledge about the situation

˝ Context-specific meaning of symbols, etc.

˝ Knowledge about how to handle unanticipated events: how to

recognize, how to diagnose, meaning, importance, response

˝ Knowledge about goals: which are likely, which are

appropriate to pursue

˝ Suggestions of actions (p-schemas) to take

‚ Advantage: automatic context-sensitive reasoning

AI
rtificial
ntelligence

Example

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 25 / 36

^C-HARBOR is a frame with the following description:
ISA: (^CONTEXTUAL-SCHEMA)
SLOTS:
o ACTORS:

((^ACTOR-DESC
(VARIABLE ?SELF) (BINDING $SELF)
(DESCRIPTION (^AUV)) (CF 1.0) (PENALTY 1.0)
(NAME AC1)))

o OBJECTS:
((^OBJECT-DESC

(VARIABLE ?PLACE) (BINDING $LOCALE)
(DESCRIPTION (^PLACE)) (CF 1.0) (PENALTY 1.0)
(NAME OB0))

(^OBJECT-DESC
(VARIABLE ?MISSION) (BINDING $MISSION)
(DESCRIPTION (^MISSION)) (CF 0.5) (NAME OB1))

(^OBJECT-DESC
(VARIABLE ?SURFACE) (DESCRIPTION (^SURFACE))
(NAME OB2)) ...)

AI
rtificial
ntelligence

Example

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 26 / 36

o DESCRIPTION:
((^FEATURE-DESC

(DESCRIPTION (NAME $CONTEXT in harbor))
(CF 1.0) (NAME FE0))

(^FEATURE-DESC
(DESCRIPTION (DEPTH ?WC SHALLOW))
(CF 0.8) (NAME FE1))

(^FEATURE-DESC
(DESCRIPTION
(AND (TRAFFIC-VOLUME ?SURFACE ?VALUE)

(>= ?VALUE SOME)))
(CF 0.7) (NAME FE2))

...)
o DEFINITIONS:

((^FUZZY-DEFINITION-DESC
(LINGUISTIC-VARIABLE (SLOT ^PHYSICAL-OBJECT DEPTH))
(LINGUISTIC-VALUE SHALLOW)
(MEMBERSHIP-FUNCTION ((0 1) (10 0)))
(CF 0.8) (COMBINATION-TYPE REPLACE) (NAME FU0))
...)

AI
rtificial
ntelligence

Example

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 27 / 36

o EVENTS:
((^EVENT-DESC

(DESCRIPTION (POWER-LEVEL ?SELF LOW))
(DIAGNOSTIC-INFORMATION NIL)
(LIKELIHOOD UNLIKELY) (IMPORTANCE CRITICAL)
(EFFECTS ((^EVENT-DESC (DESCRIPTION

(STATUS ?MISSION FAILED))
(CF 0.9))

(^EVENT-DESC (DESCRIPTION
(STATUS ?SELF FAILED))

(CF 0.9))))
(RESPONSE
(^RESPONSE-DESC (DESCRIPTION (DO (^P-ABORT)))

(CF 1.0))) (NAME EV0))
...)

o GOALS:
((^GOAL-DESC

(DESCRIPTION (^ACHIEVEMENT-GOAL
(STATE (AT ?SELF (?X ?Y 0)))))

(IMPORTANCE LOW) (NAME GO0))
...)

AI
rtificial
ntelligence

Example

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 28 / 36

o STANDING-ORDERS:
((^STANDING-ORDER

(CONDITION T)
(DESCRIPTION (SET-LLA-PARAMETER DEPTH-ENVELOPE

(5 10)))
(CF 0.8) (WHEN DURING) (NAME ST0))
...)

AI
rtificial
ntelligence

Strategic Schemas

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 29 / 36

‚ Strategic schemas (s-schemas) were (and may again be) used to

represent an agent’s strategies

‚ E.g., novice versus expert diagnostic reasoning

‚ Could be just a type of c-schema – unsure at this point what is

best

AI
rtificial
ntelligence

Process

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 30 / 36

1. Diagnose context (situation/context assessment) – continuous,

and in parallel with the rest.

2. Select goal to work on.

3. If no p-schema yet, select one.

4. Expand partially-expanded p-schema to level of finding an

executable action

5. Do the action.

6. Go to 2.

AI
rtificial
ntelligence

Context Assessment: ConMan

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 31 / 36

Context
Structure

Evocation of
Contextual Schemas

Disseminate
Contextual
Knowledge

Merge C-schemas

Diagnosis
of Context

Passive
Context
"Oracle"

Change in
Situation

Standing Orders, Goal
Priority Info

Event-handling
Info

 Action-
 selection
 Info

Predictions

Schema
Applier

Context-dependent
 Concept Meanings

Candidate
C-schemas

C-schemas
Representing

Situation

Working
Memory

Event
Handler

Agenda
Manager

AI
rtificial
ntelligence

Implementations

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 32 / 36

‚ Three programs so far

‚ MEDIC

‚ Orca

‚ ACRO

AI
rtificial
ntelligence

MEDIC

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 33 / 36

‚ PhD dissertation work

‚ Medical diagnosis program: pulmonology

‚ Modeled after way physicians seem to do their work

‚ Fundamental contributions:

˝ Schema-based reasoning

˝ Context-sensitive reasoning (later ñ context-mediated

behavior)

AI
rtificial
ntelligence

Orca

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 34 / 36

‚ Initially focused on controlling real-world agents: autonomous

underwater vehicles

˝ Originally: ORCA = Ocean Research Control Architecture...

AI
rtificial
ntelligence

Orca

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 34 / 36

‚ Initially focused on controlling real-world agents: autonomous

underwater vehicles

˝ Originally: ORCA = Ocean Research Control Architecture...

˝ ...but now just Orca...

AI
rtificial
ntelligence

Orca

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 34 / 36

‚ Initially focused on controlling real-world agents: autonomous

underwater vehicles

˝ Originally: ORCA = Ocean Research Control Architecture...

˝ ...but now just Orca...I like orcas...

AI
rtificial
ntelligence

Orca (Current Version)

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 35 / 36

Schema Applier

Agenda Manager

Event Handler

Context Manager
(ConMan)

Long-Term
(Schema) Memory

AgendaWorking Memory

Context Structure

1 - Requests, contextual schemas
2 - Requests, procedural schemas
3 - Maintenance of contextual structure, contextual information
4 - Attention-focusing information, goal activation/deactivation
 requests
5 - P-schema suggestions, parameter setting requests
6 - Event-handling information, predictions
7 - Agenda maintenance, goal activation/deactivation
8 - Goal to work on
9 - Goal activation in response to events

1 2

3
4

5

6

7

89

Sensor
Data, Status,

Messages

Commands,
Messages,

Parameter Settings

Orca

AI
rtificial
ntelligence

Orca (Next Version)

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

Schema-Based

Reasoning

‚ Overview

‚ Schemas

‚ P-schemas

‚ C-schemas

‚ S-schemas

‚ Process
‚ Context Assessment:

ConMan

‚ Implementations

‚ MEDIC

‚ Orca

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 36 / 36

‚ Replace the agenda with an evolving plan template

‚ Insert new goals and actions into the template

‚ Focus attention on where in the template should next be

expanded, patched, or executed

‚ Organization of template based on resources, time, etc.: ACRO

‚ Still guided by context

