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• Two major ideas: least commitment and plan-space search

• Least commitment:

◦ Don’t commit until you have to

◦ Commit to what?
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• Plan-space search:

◦ Search through space of partial plans, not states at domain

level

◦ “States” in this space ≡ partial plans – may be missing steps,

ordering constraints, etc.

◦ Not state1 −→ state2, but

partialP lan1 −→ partialP lan2

◦ Allows planner to focus on what makes sense during planning

– may switch from one goal to another, e.g.

◦ Operators: add domain-level operator, impose order on the

steps, instantiate a variable (or separate variables)
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• Complete – every precondition for every operator is achieved and

no operator removes the precondition required for some operator

• Consistent – no contradictions in ordering or binding constraints

• Order does not need to be complete

◦ partial ordering allows operators to be executed in parallel

◦ agent may have better information for ordering at execution

time

◦ can produce a total ordering through linearization
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1. Begin with initial (dummy) plan

2. While open precondition:

(a) Choose open precondition

(b) Choose action to achieve precondition (fail if cannot)

(c) If any causal links are threatened then resolve conflicts

3. If no open preconditions, then success, else fail
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1. Begin with initial (dummy) plan

2. While open precondition:

(a) Choose open precondition

(b) Choose action to achieve precondition (fail if cannot)

(c) If any causal links are threatened then resolve conflicts

3. If no open preconditions, then success, else fail

Where are the backtrack points?
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• The initial plan – start, finish operators

• Start operator: no preconditions, effects are initial state

• Finish operator: no effects, preconditions are goal state(s)
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• Example:

◦ Initial state:

at(Monkey, (1, 1)) ∧ at(Box, (3, 3)) ∧
¬haveBananas(Monkey)

◦ Goal: haveBananas(Monkey)
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• Example:

◦ Initial state:

at(Monkey, (1, 1)) ∧ at(Box, (3, 3)) ∧
¬haveBananas(Monkey)

◦ Goal: haveBananas(Monkey)

Start Finish

at(Monkey,(1,1))

at(Box,(3,3))

~haveBananas(Monkey)

haveBananas(Monkey)
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• Which actions are needed to achieve preconditions (PCs) is

recorded by causal links

• Choose a precondition to work on that currently has nothing

linked to it

• E.g., for:

Start Finish

at(Monkey,(1,1))

at(Box,(3,3))

~haveBananas(Monkey)

haveBananas(Monkey)

choose haveBananas(Monkey)
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• Look through effects of steps already in the plan first – including

the Start step

• If find something, add link from that action to PC

• If not, then look for a new operator that can achieve the PC, add it

to plan, linked to PC

• If still nothing, then fail
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• Caual links record rationale for plan steps & whether or not PC is

open

• E.g., action1
cond

−−−→ action2 means that action1 is needed to

achieve precondition cond for action2
• If an action asserts ¬cond, then it threatens the causal link

• Check for threats when adding a new step:

◦ effects may threaten existing link

◦ existing actions may threaten new causal link

• Check for threats when using existing action: the new causal link

may be threatened by existing actions
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• Suppose an action S3 threatens link S1

c
→ S2

• Could add order constraints to ensure that S3 doesn’t come

between S1 and S2

◦ Promotion: Put S3 after S2

◦ Demotion: Put S3 before S1

• If the threat or condition have variables, could also instantiate

variables so that there is no conflict (confrontation)
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POP Example:

Start state

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)
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Add an operator

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)
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Use existing

action to achieve

PC

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)
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Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Milk)

At(SM) Sells(SM,Milk)
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Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Milk)

At(SM) Sells(SM,Milk)

At(x)

Go(SM)
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Start

Finish
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Threats

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Milk)

At(SM) Sells(SM,Milk)

At(x)

Go(SM)

At(x)

Go(HWS)

Threats
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Resolve threats

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Milk)

At(SM) Sells(SM,Milk)

At(x)

Go(SM)

At(x)

Go(HWS)

Resolution:
Promote Go(SM)

order
link



AI
rtificial
ntelligence

Overview

POP

• POP Overview

• Initial plan

• Choose open pc

• How to satisfy

• Threats

• Thread resolution

• POP example

• POP example

• Spare Tires

• POP’ing Spare Tires

• POP advantages

• Heuristics

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 16 / 23

Final plan

Start

Finish

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

At(HWS) Sells(HWS,Drill)

Buy(Milk)

At(SM) Sells(SM,Milk)

At(Home)

Go(HWS)

Go(Home)

At(SM)

Buy(Ban.)

Sells(SM,Ban.)At(SM)

At(HWS)

Go(SM)
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Sussman

Anomaly

Start

Finish

ontable(B) ontable(A) on(C,A)

on(A,B) on(B,C)
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Add operators

Start

Finish

ontable(B) ontable(A) on(C,A)

on(A,B) on(B,C)

stack(A,B) stack(B,C)
hold(A) clear(B) hold(B) clear(C)
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Threats

Start

Finish

ontable(B) ontable(A) on(C,A)

on(A,B) on(B,C)

stack(A,B) stack(B,C)
holding(A) clear(B) holding(B) clear(C)

Threats

armempty() armempty()

Pickup(B)

armEmpty() clear(B)

Pickup(A)

armEmpty() clear(A)
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One way to

resolve threats;

other would lead

to failure &

backtracking

Start

Finish

ontable(B) ontable(A) on(C,A)

on(A,B) on(B,C)

stack(A,B) stack(B,C)
holding(A) clear(B) holding(B) clear(C)

armempty() armempty()

Pickup(B)

armEmpty() clear(B)

Pickup(A)

armEmpty() clear(A)
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• Spare tire world:
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• Solution:
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• Solution:
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• Solution:
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• Reduces backtracking by not commiting until necessary

• Search subplans only where they interact

• Causal links focus on potential problems and show where need

to backtrack

• Allows for parallel execution or for ordering steps at execution

time
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• Count open preconditions, or open preconditions −

preconditions in start state

• Select open precondition that can be satisfied in fewest possible

ways (cf. most-constrained variable heuristic from CSP)

• Planning graphs good source of heuristics
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• Levels of graph: each contain states and actions

◦ States portion: all possible states that could arise from

actions in previous level

◦ Actions portion: all actions that could possibly be applied at

step i, given the states

• Persistence actions



AI
rtificial
ntelligence

Plan Graphs (cont’d)

Plan Graphs

• Overview

• Example

• Plan Graphs and

Heuristics

• Extracting Plans

Graphplan

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 3 / 15

• Mutex links:

◦ For actions:

• inconsistent effects: one action’s effects negates effect of

another

• interference: one action negates precondition of another

• competing needs: two actions require inconsistent states

as preconditions

◦ For states (literals): if one is negation of other or each

possible pair of actions that could achieve the two is mutex

• Leveling off of graph



AI
rtificial
ntelligence

Cake Eating World

Plan Graphs

• Overview

• Example

• Plan Graphs and

Heuristics

• Extracting Plans

Graphplan

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 4 / 15

• “Have cake and eat it too” problem:

Init(Have(Cake))
Goal(Have(Cake)) ∧ Eaten(Cake))
Action(Eat(Cake))

Precond: Have(Cake)
Effect: ¬Have(Cake) ∧ Eaten(Cake)

Action(Bake(Cake))
Precond: ¬Have(Cake)
Effect: Have(Cake)
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• Can use levels at which precondition appears as estimate of

hardness

• Can use serial planning graph for better heuristic: insert mutex

between all pairs of actions except persistence actions

• Heuristics for computing conjunctive subgoal cost, too
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• In addition to providing heuristics, plan graphs can also be used

for planning

• Mutex constraints guide extraction of plan from graph

• Constraint satisfaction techniques can be used to speed up plan

extraction

• Creation of plan graph is polynomial-time algorithm – extraction?
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• Graphplan

• Example

• Problems

Other Planners
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function GRAPHPLAN(problem) returns solution or failure
graph← IINITIAL-PLANNING-GRAPH(problem)
goals← GOALS[problem]
loop do

if goals all non-mutex in last level of graph then do
solution← EXTRACT-SOLUTION(graph,goals,LENGTH(graph))
if solution ≠ failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure

graph← EXPAND-GRAPH(graph,problem)
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• Termination: when plan is found or planning graph levels off with

no solution (approx.)

• Extract-solution:

◦ This is the search step

◦ For goals at level n, identify consistent subset of actions at

level n− 1 that could produce them

◦ Do the same for the preconditions of these actions (at level

n− 1
◦ When reach S0,→ solution

◦ At any level, may need to backtrack

◦ Can also approach as a CSP, with actions as variables and

values of “in” or “out”

• Very fast planner! Capitalizes on polynomial time to compute

graph, plus guidance from plan about what can/cannot happen
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S0 A0
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)



AI
rtificial
ntelligence

Graphplan and Spare Tires

Plan Graphs

Graphplan

• Algorithm

• Graphplan

• Example

• Problems

Other Planners

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 11 / 15

S0 A0 S1 A1
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

At(Flat,Axle)
~At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)
~At(Spare,Ground)
At(Spare,Ground)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)
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S0 A0 S1 A1
At(Spare, Trunk)

At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

~At(Spare,Ground)

At(Spare,Trunk)

~At(Spare,Trunk)

At(Flat,Axle)
~At(Flat,Axle)

~At(Spare,Axle)

~At(Flat,Ground)

At(Flat,Ground)
~At(Spare,Ground)
At(Spare,Ground)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)
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• Major problem with Graphplan: propositional planner

• Potential combinatorial explosion in representation

• There are techniques to reduce this – however, still not scalable

(yet) to large, complex domains

• Recently: additions for handling resources, for conditional plans,

etc.



AI
rtificial
ntelligence

Other Planners

Plan Graphs

Graphplan

Other Planners

• Forward Planners

• POP’ing Back

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 13 / 15



AI
rtificial
ntelligence

Other Forward Planners

Plan Graphs

Graphplan

Other Planners

• Forward Planners

• POP’ing Back

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 14 / 15

• Other graph planners: IPP [Koehler et al.], STAN [Fox, Long],

SGP [Weld et al.]

• Satisfiability: SATplan & BlackBox [Kautz, Selman]

• State-space search: UNPOP [McDermott], HSP [Bonet, Geffner],

FASTFORWARD (FF) [Hoffmann]
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• Using CSP, SAT techniques – improve POP

• RePOP [Nguyen and Kambhampati]

• Scales up better than Graphplan
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‚ Focus too much on details

˝ E.g., if goal = have(House), plan at level of “swing hammer”,

...

˝ Leads to very high branching factor, focus on inappropriate

details

‚ Concerned solely with planning – not execution
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‚ Idea: represent steps at different levels of abstraction

˝ Some steps: executable actions (e.g., “swing hammer”)

˝ Other steps: abstract actions (e.g., “put up house frame”)

‚ Advantages:

˝ Can focus on outline of plan by dealing with high-level steps...

˝ ...lower branching factor

˝ Later worry about details after outline okay
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‚ Use the same operators, but check preconditions depending on

criticality

˝ most critical preconditions checked first

˝ plan again, lowering threshold on criticality level each time

‚ Should find reasons to backtrack quickly because most often

caused by most critical preconditions

‚ Must mark criticality levels for all preconditions on all operators

‚ Planner using this technique: ABSTRIPS
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‚ Plan library of plan schemas gives decomposition of step to more

detailed representation

‚ Plan decompositions in library should be well tested

‚ Have solution when all actions in plans are executable actions

‚ Need to watch for interactions between steps in different plan

schemas

˝ critics are daemons that execute to handle specific kinds of

interactions

‚ Planner using this technique: NONLIN [Sacerdoti]
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‚ Plan schemas: same advantages as subroutines

˝ can take advantage of cumulative debugging

˝ reduced planning effort

‚ Like top-down programming: Can check whole plan before

working with details

‚ Can focus on most critical steps first

‚ Saves time and guarantees a solution in certain conditions

˝ Downward solution property

˝ Upward solution property
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‚ Account for each possibility that may arise

‚ Operators have conditional steps

˝ If C then P else Q

˝ P and Q can be lengthy plans

˝ Context is the value of conditions needed to get to this step

˝ Can have parameterized plans

‚ Need to have steps to find out value of conditional

‚ Need to be able to anticipate all possibilities: universal planning

‚ Problems?
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‚ So far: only planning

‚ Sufficient for some agents

‚ Other agents need to execute the plans
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‚ One approach: create plan, then monitor its execution

‚ Two ways: execution or action monitoring

‚ Execution monitoring:

˝ Know which preconditions must be met for each step

˝ After current step, see if any are violated (via some possibly

complex plan regression)

˝ If preconditions not met – have to create situation which

meets them (like planning itself)

‚ Action monitoring:

˝ Check actions’ effects, not preconditions in general – replan

or redo if problem

˝ Can also see if there is serendipitous goal satisfaction
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‚ Why do unanticipated events arise?
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‚ Why do unanticipated events arise? CRUD:

˝ Complex missions and domains (ù planning errors, etc.)

˝ Real physical systems (ù imprecision, unpredicted effects)

˝ Uncertainty

˝ Dynamic world

‚ How to handle?

˝ Conditional/universal plans

˝ Could enumerate events, and specify what to do

˝ Could replan or try to repair plan



AI
rtificial
ntelligence

Combining Planning and

Execution

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

‚ Overview

‚ Reactive Planning

‚ Moderate Reactive

Planning

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 14 / 36



AI
rtificial
ntelligence

Combining Planning and Execution

‚ So Far

Hierarchical Planning

Conditional Planning

Planning and Execution

Combining Planning

and Execution

‚ Overview

‚ Reactive Planning

‚ Moderate Reactive

Planning

Schema-Based

Reasoning

Copyright c⃝ 2014 UMaine School of Computing and Information Science – 15 / 36

‚ Maybe entire two-phase plan-then-execute is wrong

‚ Instead, maybe we should put the two together:

˝ Can take advantage of delayed/least commitment

˝ Can take unanticipated events into account in evolving plan

˝ Can avoid creating complex conditional plans
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‚ Do not commit to future parts of plan

˝ can have schemas for achieving goals, but do not look at

future steps to make current decisions

‚ Does not waste effort on predictive planning when the world is

unpredicatable and likely to change between beginning of

planning and execution

‚ Cannot make global optimizations

‚ Agre & Chapman

‚ Brooks
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‚ Place schema on the agenda

‚ Select a step to execute

‚ Expand step until reach an executable action

˝ at each expansion place steps on agenda to be selected in

competition with others – usually use stack-like structure to

continue work on same goal

˝ choose expansion based on current situation only

‚ PRS [Georgeff]

‚ MEDIC, Orca [R. Turner], JUDIS [E. Turner], ACRO [Albert]
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‚ Schema-based reasoning (SBR) [Turner] is an adaptive

reasoning method

‚ Adaptive reasoning: agent changes its behavior to fit the evolving

problem-solving situation

˝ Short-term adaptation

˝ Long-term adaptation

˝ Adapt in context ñ context-mediated behavior (CMB)

‚ Schemas are used to guide reasoning
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‚ Schemas are packets of related information used to guide

behavior

‚ Three types:

˝ Procedural schemas

˝ Contextual schemas

˝ Strategic schemas
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‚ Procedural schemas (p-schemas) represent hierarchical plans

‚ Selection ñ partial commitment to a course of action

‚ Steps can be

˝ executable actions

˝ other p-schemas

˝ sub-goals

‚ Leave unexpanded until needed ñ least commitment
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(defpschema p-mission (goals)
:order (sequential analyze-goals preflight-checkout

launch transit-out work-phase transit-home
recovery postflight-debrief)

:steps
((analyze-goals (action ^x-analyze-goals)

(input (?goals => goals))
(output (location => ?location)

(equipment => ?equipment)))
(preflight-checkout ...)
(launch ...)
(transit-out
(action ^p-transit-to)
(input (location => ?location)))
(work-phase
(goals ?goals))
(transit-home ...) (recovery ...) (postflight-debrief

...)
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‚ Context-mediated behavior: context should impact all facets of an

agent’s behavior

‚ Contextual schemas (c-schemas) represent known contexts

‚ Process:

˝ Retrieve c-schemas that the current situation reminds agent

of...

˝ Diagnose which one(s) really fit the situation...

˝ Merge c-schemas ñ coherent view of context
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‚ Context provides:

˝ Knowledge about the situation

˝ Context-specific meaning of symbols, etc.

˝ Knowledge about how to handle unanticipated events: how to

recognize, how to diagnose, meaning, importance, response

˝ Knowledge about goals: which are likely, which are

appropriate to pursue

˝ Suggestions of actions (p-schemas) to take

‚ Advantage: automatic context-sensitive reasoning
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^C-HARBOR is a frame with the following description:
ISA: (^CONTEXTUAL-SCHEMA)
SLOTS:
o ACTORS:

((^ACTOR-DESC
(VARIABLE ?SELF) (BINDING $SELF)
(DESCRIPTION (^AUV)) (CF 1.0) (PENALTY 1.0)
(NAME AC1)))

o OBJECTS:
((^OBJECT-DESC

(VARIABLE ?PLACE) (BINDING $LOCALE)
(DESCRIPTION (^PLACE)) (CF 1.0) (PENALTY 1.0)
(NAME OB0))

(^OBJECT-DESC
(VARIABLE ?MISSION) (BINDING $MISSION)
(DESCRIPTION (^MISSION)) (CF 0.5) (NAME OB1))

(^OBJECT-DESC
(VARIABLE ?SURFACE) (DESCRIPTION (^SURFACE))
(NAME OB2)) ...)
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o DESCRIPTION:
((^FEATURE-DESC

(DESCRIPTION (NAME $CONTEXT in harbor))
(CF 1.0) (NAME FE0))

(^FEATURE-DESC
(DESCRIPTION (DEPTH ?WC SHALLOW))
(CF 0.8) (NAME FE1))

(^FEATURE-DESC
(DESCRIPTION
(AND (TRAFFIC-VOLUME ?SURFACE ?VALUE)

(>= ?VALUE SOME)))
(CF 0.7) (NAME FE2))

...)
o DEFINITIONS:

((^FUZZY-DEFINITION-DESC
(LINGUISTIC-VARIABLE (SLOT ^PHYSICAL-OBJECT DEPTH))
(LINGUISTIC-VALUE SHALLOW)
(MEMBERSHIP-FUNCTION ((0 1) (10 0)))
(CF 0.8) (COMBINATION-TYPE REPLACE) (NAME FU0))
...)
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o EVENTS:
((^EVENT-DESC

(DESCRIPTION (POWER-LEVEL ?SELF LOW))
(DIAGNOSTIC-INFORMATION NIL)
(LIKELIHOOD UNLIKELY) (IMPORTANCE CRITICAL)
(EFFECTS ((^EVENT-DESC (DESCRIPTION

(STATUS ?MISSION FAILED))
(CF 0.9))

(^EVENT-DESC (DESCRIPTION
(STATUS ?SELF FAILED))

(CF 0.9))))
(RESPONSE
(^RESPONSE-DESC (DESCRIPTION (DO (^P-ABORT)))

(CF 1.0))) (NAME EV0))
...)

o GOALS:
((^GOAL-DESC

(DESCRIPTION (^ACHIEVEMENT-GOAL
(STATE (AT ?SELF (?X ?Y 0)))))

(IMPORTANCE LOW) (NAME GO0))
...)
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o STANDING-ORDERS:
((^STANDING-ORDER

(CONDITION T)
(DESCRIPTION (SET-LLA-PARAMETER DEPTH-ENVELOPE

(5 10)))
(CF 0.8) (WHEN DURING) (NAME ST0))
...)
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‚ Strategic schemas (s-schemas) were (and may again be) used to

represent an agent’s strategies

‚ E.g., novice versus expert diagnostic reasoning

‚ Could be just a type of c-schema – unsure at this point what is

best
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1. Diagnose context (situation/context assessment) – continuous,

and in parallel with the rest.

2. Select goal to work on.

3. If no p-schema yet, select one.

4. Expand partially-expanded p-schema to level of finding an

executable action

5. Do the action.

6. Go to 2.
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‚ Three programs so far

‚ MEDIC

‚ Orca

‚ ACRO
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‚ PhD dissertation work

‚ Medical diagnosis program: pulmonology

‚ Modeled after way physicians seem to do their work

‚ Fundamental contributions:

˝ Schema-based reasoning

˝ Context-sensitive reasoning (later ñ context-mediated

behavior)
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‚ Initially focused on controlling real-world agents: autonomous

underwater vehicles

˝ Originally: ORCA = Ocean Research Control Architecture...
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‚ Initially focused on controlling real-world agents: autonomous

underwater vehicles

˝ Originally: ORCA = Ocean Research Control Architecture...

˝ ...but now just Orca...I like orcas...
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‚ Replace the agenda with an evolving plan template

‚ Insert new goals and actions into the template

‚ Focus attention on where in the template should next be

expanded, patched, or executed

‚ Organization of template based on resources, time, etc.: ACRO

‚ Still guided by context


