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I Why not static agent/knowledge?

I Changing world
I Different tasks
I Bad initial design/knowledge
I Incomplete/uncertain knowledge of world



Machine Learning:
Part I

Introduction
Why learn?

Learning agents

Kinds of learning?

Supervised learning:
Induction

Unsupervised learning

Reinforcement learning

“Classical” ML

Why learn?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Why not static agent/knowledge?
I Changing world
I Different tasks
I Bad initial design/knowledge
I Incomplete/uncertain knowledge of world

Machine Learning:
Part I

Introduction
Why learn?

Learning agents

Kinds of learning?

Supervised learning:
Induction

Unsupervised learning

Reinforcement learning

“Classical” MLLearning agents

Machine Learning:
Part I

Introduction
Why learn?

Learning agents

Kinds of learning?

Supervised learning:
Induction

Unsupervised learning

Reinforcement learning

“Classical” ML

Agents and learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part I

Introduction
Why learn?

Learning agents

Kinds of learning?

Supervised learning:
Induction

Unsupervised learning

Reinforcement learning

“Classical” MLKinds of learning?



Machine Learning:
Part I

Introduction
Why learn?

Learning agents

Kinds of learning?

Supervised learning:
Induction

Unsupervised learning

Reinforcement learning

“Classical” ML

What are the kinds of learning?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Feedback available: supervised vs unsupervised vs
reinforcement

I What’s learned: axioms, rules, plans, weights, . . .
I Symbolic vs sub-symbolic (neural, GA, LCS)
I Ensemble learning
I PAC learning

Machine Learning:
Part I

Introduction
Why learn?

Learning agents

Kinds of learning?

Supervised learning:
Induction

Unsupervised learning

Reinforcement learning

“Classical” MLSupervised learning: Induction

Machine Learning:
Part I

Introduction
Why learn?

Learning agents

Kinds of learning?

Supervised learning:
Induction

Unsupervised learning

Reinforcement learning

“Classical” ML

Supervised learning: Induction

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Decision-tree learning
I Bayesian learning
I Decision-theoretic
I Neural network approaches
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I Explanation-based learning
I Regression
I Induction: autoencoders, neural networks, support

vector machines (SVMs)
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I Policy learning: P(state)! action
I Q-learning: Q(action, state) ! value (utility)
I Case-based reasoning
I GAs, LCSs
I Deep RL
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I Problem:
I Given n examples of (x , f (x)) pairs
I Find f (y) for some new example y

I Approach: Find h(x), an approximation to f (x)
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I Hypothesis space contains all the h you are considering
I For regression: lines, polynomials, exponentials, . . .
I Other example: weight space of a particular neural

network architecture
I Selection critical – needs to contain f (x) or contain

good-enough approximation(s)
I Consistent hypothesis: agrees with all the data (to some ✏,

perhaps)
I Maybe infinite # of consistent hypotheses
I Use Occam’s (Ockham’s) razor
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What if there’s no consistent function?
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I Wrong hypothesis space (problem is unrealizable in
space)

I f (x) not deterministic
I Measurement errors for (x , f (x)) pairs
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I How do we know h sufficiently approximates f (Hume:
Problem of Induction)

I Usual approach:
I Try h on some new test set T of examples
I T should have same distribution over example space

as training set
I Often: break initial example set into training, test

subsets
I Estimate accuracy directly or create learning curve

I Learning curve = %correct as function of training set size
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I Problem: given a set of properties, find or answer to
question

I Given set of examplars: sets of features ! answers
I Supervised learning
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I Identify a feature that cleanly divides the exemplars
into subsets

I For each subset, do it again
I Continue until each subset contain indistinguishable

exemplars
I Each split ⌘ question about new thing to categorize
I E.g., something like Akinator
I Result is a decision tree

I Everyday examples: scientific species key, repair
manual, etc.
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I Classify user knowledge in some domain (UNS)

(STG = study time for goal objects, SCG = repititions, STR = study time for related objects, LPR = exam
performance for related objects, PEG = exam performance for goal objects)

(from UCI machine learning repository, explained.ai)
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(from UCI ML Breast Cancer Wisconsin dataset, explained.ai)
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Learning a decision tree
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I Suppose we have a data set described by attribute

values

I E.g., to answer: “Should I wait for a table?” (T/F
categorization)

I Attributes:
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I Have examples:
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I Decision trees: can express any function of the
attributes

I E.g., equiv. to binary satisfiability for Boolean
functions

I Think of a truth table
I Internal nodes = input variables

I Can find a consistent tree for any training set
I But trivially, won’t generalize –
I Want a more compact tree
I Decide on attribute to include next based on amount

of information they provide
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I Good attribute splits into (ideally) all pos or all neg
examples
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I Consider attributes as questions to be asked
I Choose one that gives more information when

answered
I Less I initially know, more information answer

provides
I Measure information in bits

I Need 1 bit to answer yes/no question with prior prob.
= <0.5, 0.5>

I If prior = <P1, P2, . . . , Pn>, information is the
entropy of the prior:

H(< P1,P2, . . . ,Pn >) =
nX

i=1

�Pi log2 Pi
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Which attribute to choose?
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I Suppose we have p pos and n neg examples
I H(< p/(p + n), n/(p + n) >) bits needed to classify new

example
I Each attribute i splits examples E into subgroup Ei

I Hopefully, each Ei needs less information to complete
than initial problem

I If Ei has pi pos and ni neg examples, then need:

H(< pi/(pi + ni), ni/(pi + ni) >)

bits to classify
I Expected bits per example over all branches

HE = ⌃i

pi + ni

p + n
H(< pi/(pi + ni), ni/(pi + ni) >)

I Prev example: HE(Patrons?) = 0.459 bits, HE(Type) = 1
bit

I ) choose Patrons?
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Result of using information gain
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Russell’s tree:

Learned tree:
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Learned tree:



Machine Learning:
Part I

Introduction

“Classical” ML
Induction

Decision tree learning

Explanation-based learning

Support vector machines

Genetic algorithms

Case-based reasoning

Schema-Based Reasoning

Drawbacks
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I Leaf nodes with multiple examples may not agree on
classification
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I Overfitting
I Even if critical info is missing, DT alg. will create

some DTree
I Can make spurious distinctions based on irrelevant

attribs
I E.g., predict roll of die
I Attributes given: hair color, color of die, day of the

week, etc.
I If no duplicate descriptions for different outcomes )

exact hypothesis
I As number of attribute goes up, so does likelihood of

overfitting
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I Decision tree learning space
I With n Boolean attributes, tree is equiv. to truth table
I So 2n rows
I Space of all possible n-attribute decision trees =

number of n-variable Boolean functions
I There are 2n rows, same as the answer column
I Thus there are 22n

decision trees
I Russell & Norvig: “scary number”
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I Decision tree learning space (cont’d)
#attributes # poss. decision trees

1 22 = 4

2 24 = 16
3 28 = 256
4 216 = 65,536
5 232 = 4,294,967,296
6 264 = 18,446,744,073,709,551,616
7 ~3.4E38
8 ~1.2E77

I R&N: “We will need some ingenious algorithms to
find consistent hypotheses in such a large space.”
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From: A visual introduction to machine learning
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I Explanation-based learning (EBL): use prior domain
knowledge to learn new facts

I Traditionally (Mooney, DeJong, others) – no
statistical inference, no induction

I Given a domain theory � and some example X:
I Use � to account for X – e.g., show that � |= X

I Then convert reasoning chain to a new rule
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I Suppose we know people want money, people value
things they love, people will pay to have things they
value, . . .

I We learn that Johnny took Peter, Peter is Sally’s
husband, and Sally paid Johnny $100,000

I Explain this by such things as: Sally loves Peter,
Sally values Peter, Sally pays Johnny to have Peter,
etc.

I Ultimately, compress into rule or schema for
kidnapping
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EBL
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I Can be seen more as operationalizing existing
knowledge

I Problem: no real new knowledge
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(From R&N)

Rewrite(u, v) ^ Simplify(v ,w) ) Simplify(u,w)
Primitive(u) ) Simplify(u, u)
ArithmeticUnknown(u) ) Primitive(u)
Number(u) ) Primitive(u)
Rewrite(1 ⇥ u,u) Rewrite(0u, u)
. . .

Machine Learning:
Part I

Introduction

“Classical” ML
Induction

Decision tree learning

Explanation-based learning

Support vector machines

Genetic algorithms

Case-based reasoning

Schema-Based Reasoning

EBL example

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

(From R&N)

Rewrite(u, v) ^ Simplify(v ,w) ) Simplify(u,w)
Primitive(u) ) Simplify(u, u)
ArithmeticUnknown(u) ) Primitive(u)
Number(u) ) Primitive(u)
Rewrite(1 ⇥ u,u) Rewrite(0u, u)
. . .

Primitive(X)

ArithmeticUnknown(X)

Primitive(z)

ArithmeticUnknown(z)

Simplify(X,w)

Yes, {  }

Yes, {x / 1, v / y+z}
Simplify(y+z,w)

Rewrite(y+z,v')
Yes, {y / 0, v'/ z}

{w / X}

Yes, {  }

Yes, {v / 0+X}

Yes, {v' / X}

Simplify(z,w)
{w / z}

Simplify(1 × (0+X),w)

Rewrite(x × (y+z),v)

Simplify(x × (y+z),w)

Rewrite(1 × (0+X),v) Simplify(0+X,w)

Rewrite(0+X,v')
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I Can read bottom tree’s leaves to extract the (generalized)
rule:

Rewrite(1 ⇥ (0 + z), 0 + z) ^ Rewrite(0 + z, z)^

ArithmeticUnknown(z) ) Simplify(1 ⇥ (0 + z), z)

I Two rightmost terms: true no matter what z is

I ArithmeticUnknown(z) – not every z is an arithmetic
unknown, so can’t drop it

I Resulting rule:

ArithmeticUnknown(z) ) Simplify(1 ⇥ (0 + z), z)
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Learning, expertise, and soundness
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(See DeJong’s (2005) explanation-based learning paper,

distributed on Slack)

I Problem:
I Statistical learning (induction) :

I unsound
I can’t readily make use of expert’s knowledge

I EBL:
I sound
I can easily incorporate expert’s knowledge
I but only operationalizes the knowledge

I DeJong: use EBL to combine expert knowledge with
(some) statistical learning
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Explanation-based learning and expertise
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I Obtain knowledge from expert, encode in representation
I Problem: Expert knowledge approximate, conflicting
I Problem: If represented in something like FOPC, doesn’t

apply to real world:

8xBird(x) ) Flies(x)

Statement not so much false as incomplete

I Almost all logical statements are incomplete with respect
to the real world

I Only sound with respect to some axiom set �
I In general, subject to the qualification problem:

I Most universally quantified sentences will have to
include an infinite number of qualifications if they are
to be interpreted as accurate statements about the
world.

I E.g.: 8xBird(x) ^ ¬Dead(x) ^ · · · ) Flies(x)
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Explanation-based learning and expertise
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I Proposal: accept expert’s knowledge � as correct, but not
believed

I Belief only comes from seeing examples that � can
explain

I Learn new rules based on � and experience
I E.g.:

I �: birds fly, flying involves volition, dead things have
no volition, etc.

I New example: cooked chicken – refutes birds fly
I Rule still considered correct (from expert)
I Explain not flying by proof relying on the chicken

being dead
I Hypothesize: 8xDead(x) ) ¬Flies(x)
I Look for more examples to confirm this
I Confirmed to acceptable level of belief: create new

rule:
8xBird(x) ^ ¬Dead(x) ) Flies(x)

I Add other literals as experience dictates.
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How to derive the new rule?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I New inference rule – AND introduction

⇢1 )  
⇢2 )  

(⇢1 ^ ⇢2) )  

I Not logically necessary – but if 9 weak evidence for
⇢1 and ⇢2, together might be sufficient to conclude  .

I Second rule:

⇢1 )  
⇢2 ) ¬ 

(⇢1 ^ ¬⇢2) )  

I Again, logically redundant
I However, very useful for conditioning knowledge for

real world
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Support vector machines
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I Problem: How to categorize examples of something?
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I Problem: How to categorize examples of something?
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I Maximize ability to generalize by picking something in the
middle

I Maximum margin separator

I Mathematical formula (in book) to find this
I Support vectors: the points closest to the separator
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I Maximize ability to generalize by picking something in the
middle

I Maximum margin separator
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I Mathematical formula (in book) to find this
I Support vectors: the points closest to the separator
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I Maximize ability to generalize by picking something in the
middle

I Maximum margin separator
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I Mathematical formula (in book) to find this
I Support vectors: the points closest to the separator
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SVMs
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I What if data no linearly-separable?
I Change dimensionality of data: map to a different

space
I Look for hyperplane that cleanly separates data in

that space
I How?

I Formula uses dot product of vectors to data points to
find maximal separator

I Replace each vector x with a higher-dimensional
vector F(x)

I Dot products of these yield a kernel function: e.g.:
~F (~xj) · ~F (~xk ) = (~xj · ~xk )

2

I Different kernel function ! different mappings
I With n data points, can always separate in � n � 1

dimensions

Example
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SVMs: What are they good for?
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I Categorizing images
I Detecting possible cancerous lesions (e.g., B.

Toner’s work on breast cancer)
I Basically the same kinds of things that artificial

neural networks (ANNs) are good for



Machine Learning:
Part I

Introduction

“Classical” ML
Induction

Decision tree learning

Explanation-based learning

Support vector machines

Genetic algorithms

Case-based reasoning

Schema-Based Reasoning

So. . . SVNs or ANNs?
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I SVMs are non-parametric: meaning, size of model
can grow with new data

I ANNs are parametric: number of weights fixed
I However, there are parametric variants of SVMs. . .
I . . . .and non-parametric versions of ANNs (if we

include neuroevolutionary algorithms)
I ANNs discover compact representations of input –

useful for other things
I But SVMs don’t overfit, like ANNs do
I Not clear – perhaps a religious war? Need

data/theory!
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I Biological evolution – can be viewed as:
I a search process
I a learning process

I Characteristics:
I Unsupervised
I Highly parallel
I Stochastic
I Feedback: fitness

I Use ideas from evolution for AI: genetic algorithms
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Example: Match a sentence
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I Initially, output is random
I Feedback: measure of how close output is to target
I Use biological-like operations (e.g., mutation,

reproduction) to evolve better solutions
I Many generations to get to correct/good enough

answer

Example
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GA is a local search
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I Recall from CSP:
I Didn’t use a complete state representation in search
I I.e., didn’t start with state {v1 = vali , v2 = valj , · · ·}
I Reason: Search space was factorial time exponential
I But what if we can prune search effectively?
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Local search
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I Start with complete candidate solution
I If not solution (or within ✏ of solution): change some

small part of state
I Different changes ) different neighborhoods

I Defined by operators sometimes (gen. alg., e.g.)
I Defined by problem other times (e.g., BSAT)

I Choose best neighborhood
I Hill-climbing search; can use sim. annealing
I How to choose neighbors?
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Biological evolution (again)
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I Evolution: can be viewed as highly-parallel
hill-climbing search

I “Goal”: optimize for environment/produce most
surviving offspring

I Species population = state
I Operators: mating, mutation, crossover, death
I Pruning: death or lack of offspring
I So parallel hill-climbing beam search

I Very successful, very flexible
I How to mimic?
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I Genetic algorithm:

I Parallel hill-climbing search
I Fixed beam-size (cf. evolution: population size)

I States: populations of individuals
I Individual: bit string (usually) – candidate solution
I Fitness function: applied to individual ) fitness

I Best individuals reproduce, get rid of some ) next
generation
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I Select n most fit individuals
I Let pairs reproduce ) new children

I No paired chromosomes, so no (re)assortment of
chromosomes

I Mutation

I Cross-over

I Replace least fit with children
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Reproduction
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I Select n most fit individuals
I Let pairs reproduce ) new children

I No paired chromosomes, so no (re)assortment of
chromosomes

I Mutation

A C G T A G G C C C G G G G G A

A C G T A G G C T C G G G G G A

I Cross-over

I Replace least fit with children
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Reproduction
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I Select n most fit individuals
I Let pairs reproduce ) new children

I No paired chromosomes, so no (re)assortment of
chromosomes

I Mutation

I Cross-over

I Replace least fit with children
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Reproduction
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I Select n most fit individuals
I Let pairs reproduce ) new children

I No paired chromosomes, so no (re)assortment of
chromosomes

I Mutation

I Cross-over

A C G T A G G C C C G G G G G A

G C A C A C G C A C A C A C A C

A C G T A

G G C C C G G G G G AG C A C A

C G C A C A C A C A C

I Replace least fit with children
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Parameters
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I Mutation rate
I Crossover rate
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Fitness function
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I Can use heuristic function
I Can also simulate solution, measure fitness
I E.g.:

I Learning a string: How many characters are correct?
I TSP: combination of penalty for it not being a circuit,

not being a Hamiltonian circuit, path cost
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Genetic algorithms
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I Pros:
I Good for scheduling
I Good for optimization problems
I Design: antennae, solar collection mirrors, robot

gait,. . .
I Cons:

I Fitness function:
I Applied many times, can be costly
I Maybe difficult to devise

I Not clear what termination conditions should be
sometimes

I Local optima sometimes
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Case-based reasoning
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I Some problems:
I Little domain knowledge
I Sparse examples

I E.g., law, design
I Even medicine: Rich domain knowledge, but

insufficient/too complex
I Approach for these domains:

I Compare current problem to previous, similar ones
solved (cases)

I Transfer information to help solve current one
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CBR examples
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I Labor mediation
I Meal planning
I Law
I Dispute mediation
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How does it work?
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I Solve a problem ) create a case respresentation !
memory

I New case: get reminded of prior case(s)
I Use old case:

I Make predictions
I Try same solution
I Try similar reasoning
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Finding a case: Dynamic memory
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I Could use anything
I Often used a dynamic memory [Schank, Kolodner]
I Store cases relative to similarities and differences
I Similar cases encountered:

I create memory organization packet (MOP) from
similarities

I identify predictive features to discriminate between
cases

I index each case based on values of predictive
features

I Add new case: traverse MOP structure based on
case’s features/values

I Model of human memory: have to elaborate indices,
can forget

I Memory organization/reorganizaton based on use
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Motivation
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I Problem with CBR:
I anectdotal reasoning
I doesn’t use induction of generalizations

I But it does have generalized cases: MOPs
I Why not use them and only fall back on cases?
I MOPs are schemas

I Schema-based reasoning [Turner]
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Example: MEDIC
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I Doctors do use cases: “I remember one time I
saw. . . ”

I But seems to be the exception rather than rule:
“Usually when you see something like this. . . ”

I MEDIC program: schema-based reasoner in small
area of pulmonology

I Signs and symptoms schemas that represent
generalized cases

I Interpret the schemas rather than transfer
information
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Kinds of schemas
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I Contextual schemas (prev: dxMOPs):
I represent problem-solving sessions or parts of

sessions
I generalized cases

I Procedural schemas:
I generalized action portions of similar cases
I can be plans, actions

I Strategic schemas:
I represent problem-solving strategies
I e.g., of a novice, expert, . . .
I “meta-contextual schemas”
I not currently used
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Current work: Orca
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I Initial domain: AUV control
I Uses more mature form of SBR: context-mediated

behavior (CMB)
I Identify current context
I Use c-schema(s) to:

I Provide semantic knowledge
I Make predictions about situation
I Decide goal priorities
I Diagnose, assess, and handle unanticipated events
I Achieve goals
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Orca
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Schema Applier

Agenda Manager

Event Handler

Context Manager
(ConMan)

Long-Term
(Schema) Memory

AgendaWorking Memory

Context Structure

1 - Requests, contextual schemas
2 - Requests, procedural schemas
3 - Maintenance of contextual structure, contextual information
4 - Attention-focusing information, goal activation/deactivation
      requests
5 - P-schema suggestions, parameter setting requests
6 - Event-handling information, predictions
7 - Agenda maintenance, goal activation/deactivation
8 - Goal to work on
9 - Goal activation in response to events

1 2

3
4

5

6

7
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Sensor
Data, Status,

Messages

Commands,
Messages,

Parameter Settings

Orca


