Overview

Forward-Chaining
RBES

o Overview

® Example
e Triggering

o Rete Network | |

Backward-Chaining
RBES

Examples Forward-Chaining RBES

|
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Forward-Chaining RBES

Overview e Control cycle:

Forward-Chaining

RBES _ o Find rules whose antecedents are true: triggered rules
e Overview

e Example o Select one: conflict resolution
e Triggerin 0 -
99ering o Fire the rule to take some action

o Rete Network

Backward-Chaining

RBES e Continue forever or until some goal is achieved

Examples e Used for synthesis, often, or process control
I ]
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Example: Winston’s “Bagger” Program

Overview e Toy forward chainer — domain = bagging groceries
Forward-Chaining . .
RBES e Steps in this process:
e Overview
o Example 1. Check what customer has and suggest additions
Tri i . . . .
e Mo 2. Bag large items, putting large bottles in first
Backward-Chaining 3. Bag medium items, putting frozen food in freezer bags
RBES c .
4. Bag small items wherever there is room
Examples
e Working memory:
o Needs to have information about:
e items already bagged
e Uunbagged items
e Wwhich step (context) we're in
| |
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Example: Winston’s “Bagger” Program

Overview e Representation: could be literals, could have more structure than
Forward-Chaining

RBES that

:EXV:;::: e Initial state:

e Triggering Step: check-order

® Rete Network Bagged . Illl

Backward-Chaini

RPES. Unbagged: bread, Glop brand cheese, granola,
Examples ice cream

e Also need information about the world; this might be in the form
of a table for this problem:

Object Size Container Frozen?

bread M bag nil

Glop S jar nil

granola L box nil

ice cream M box t

Pepsi L bottle nil

potato chips M bag nil
| ]
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Overview

Example: Winston’s “Bagger” Program

Conflict resolution strategies — possibilities:

SR e specificity ordering:
i‘BOEViMeW o if two rules conflict and one is more specific than the other,
o Example use it
S o Rule 1 is more specific than Rule 2 if Rule 1’s antecedent
s it literals are a superset of Rule 2’s (assuming conjunction)
Examples e rule ordering — implicit in rule base (unless using a rete net)
e data ordering — look at some data first (rete does this, sort of)
e size of antecedent — prefer rules with larger antecedent, since it's
likely to be more specific
e recency — least/most recently used (depending on needs of
designer)
e context-limiting
| ]
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Example: Winston’s “Bagger” Program

Overview e Rules in form of IF-THEN pairs
Forward-Chaining

RBES e Examples:

@ Overvie ,

.E;$: R1: if step = check-order &
® Triggering exists bag of chips &

o Rete Network

not exists soft drink bottle
then add bottle of pepsi to order

Backward-Chaining
RBES

Examples

R2: if step = check-order
then step = bag-large-items

R3: if step = bag-large-items &
exists large item to be bagged &
exists large bottle to be bagged &
exists bag with < 6 large items
then put bottle in bag

|
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Example: Winston’s “Bagger” Program

/

Overview e |[nitial state:
Forward-Chaining . —
I, Step: check order‘,
e Overview Bagged * nil
® Example
o Triggering Unbagged: bread, Glop d cheese, granola,
o Rete Network i C e Cre aIn :
Backward-Chaining I
RBES
Examples ® W0r|d |nf0
Object Size  Container  Frozen?
bread M bag nil
Glop S jar nil
granola L box nil
ice cream M box t
Pepsi L bottle nil
potato chips M bag nil
| |
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Finding Triggered Rules

Overview e Possibly very time-consuming
Forward-Chaining .
RBES e Observations:
® Overview
® Example o Rules often share LHS elements (literals)
B ,
i o Rules don’t usually change over short term
Backward-Chaining o When WM changes: usually only a few changes per cycle
RBES
Examples e Forgy: build a rete network based on the rules

e Rete records state of WM, rules in network — update on change

|
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Rete Network

Overview

o Rule base: Iniital WM: A(1), A(2), B(2), B(3), C(5)
Forward-Chaining 1) A(x) & B(x) & C(x) ==> D(x)
RBES 2) A(x) & B(y) & D(x) ==> E(x)

© Overview 3) A(x) & B(x) & E(x) ==> not A(x)

e Example /
® Tri i )
Triggering @_, A=D—>( addE Fire Rule 1 @ 0
—| A=D—>| a

® Rete Network Initial Rete Network

constraint

D2) AQ)

Backward-Chaining D(2)

RBES @ _»

< ©—[a==c}—(asp) —O—rmct ()
Examples A(2) C5)
A(1) B(2) AQ) C5)
B(2 B(2
A2 B PO _> A Bo  BO) (&)—> A=B=E
>>Nothing triggered<< E@) AQ2)
>>Rule 3 triggered<< B(2)

E(2)
User asserts D(2) ®—> A=D

D(2) AQ2) Fire Rule 3 @—> A=D_’
D(2)
OG- O

Ay B 2D © ©
AQ) B PO _’ A)  BQ  B® )
B NG e

>>Rule 1 triggered
>>Nothing triggered<<

|
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Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

® Overview

e How Does It Work?
® Example

e Uncertainty

o Certainty Factors

Examples

Backward-Chaining RBES

|
' Artificial

Intelligence
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Overview

Backward-Chaining RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

® Overview

e How Does It Work?
® Example

e Uncertainty

e Certainty Factors

Examples

e Synthesis: pick a solution

e Analysis: gather evidence, form best hypothesis — e.g., medical
diagnosis

e Work backward from goal: focus question—asking on relevant
facts, tests

e Need uncertainty management

e Follow all (relevant) lines of reasoning: no conflict resolution

|
' Artificial

Intelligence

1
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Overview

How Does It Work?

Forward-Chaining
RBES

Backward-Chaining

Sort of like a backward-chaining theorem prover
Want to conclude something about x:

RBES o lIs x in WM? Then conclude something from that.

® Overview -

 How Doos 1t Work? o Are there rules that conclude something about 2? Then for

® Example each rule:

e Uncertainty

T e Try to conclude something about each antecedent

Do o (backchain).

o If that’s possible, fire the rule, giving some evidence for x.
o Combine evidence for and against .

| |
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Example: Zoo World

Overview e Goal: id(Animal1,?x)
Forward-Chaining e

RBES e |nitial state 1:

Backward-Chaining color (Animall 0 taWDY) 5

RBES . . .

o Ovorvion eye-direction(Animall,forward),
® How Does It Work? teeth-shape(Animall,pointed),

e Example .

o Uncertainty eats(Animall,meat),

2 el e hair(Animall), dark-spots(Animall)
Examples

e |Initial state 2:
color (Animall,tawny),

eye-direction(Animall,forward),
teeth-shape(Animall,pointed),
eats(Animall,meat),
hair(Animall)

|
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Uncertainty Handling

Overview e Obvious way: probability theory
Forward-Chaining

RBES e Need some way to assess belief, given some evidence
Backward-Chaining

RBES

e Overview

e How Does It Work?

® Example

e Uncertainty
o Certainty Factors

Examples

|
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Uncertainty Handling

Overview e Obvious way: probability theory
Forward-Chaining

RBES e Need some way to assess belief, given some evidence
Backward-Chaining P Bayes, rule.

RBES ]

e Overview

e How Does It Work? P(E | H) : P(H)
® Example P H E —
° Encerleainty ( ‘ ) P(E)

o Certainty Factors

Examples where P(E)=P(E |H)- P(H)+ P(E | —-H)- P(—H)

|
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Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

® Overview

e How Does It Work?
® Example

e Uncertainty

o Certainty Factors

Uncertainty Handling

e Obvious way: probability theory
e Need some way to assess belief, given some evidence
e Bayes'rule:

P(E | H) - P(H)

P(H | E) = BT

where P(E) = P(E | H) - P(H) + P(E | ~H) - P(~H)
e Example:
o H:Joey has lung cancer
o E:Joey smokes ,
, P(smoking | lung—Ca) - P(lung—Cla)
P(lung—Ca | smoking) = 2 :
(smoking)

| ]
'Artificial Copyright (©) 2014 UMaine School of Computing and Information Science — 22 / 32 I

Intelligence



Uncertainty Handling

Overview e General form:
Forward-Chaining
RBES
Backward-Chaining P(HZ | E) _ P(E ‘ HZ) o P(H’L)
RBES ) . .
e Overview Z P(E | HJ) P<HJ)
e How Does It Work?
@ Example . ) ) )
o Uncertainty e And with some prior evidence £ and a new observation e:
o Certainty Factors
Examples P(E |e H
P(H | e.B) = P(H | e). DELEH)
P(E | e)
| |
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Problems with Bayesian approach

Overview — e There are problems with Bayesian probability for expert systems
T (in dispute recently)

Backward:Charing e Probabilities may be difficult to obtain

e Overview

o P(E), P(H), P(E| H) may be hard to get in general — for

e How Does It Work?

® Example example, where E = cough, or H = AIDS
e Uncertainty . .
o Certainty Factors o empirical evidence suggests that people are not very good at
Examples estimating probabilities [Tversky & Kahneman, e.g.]
e Size of set of probabilities needed O(2")
o Even if we could obtain them — requires too much space
o ...and too much time to use, and compute
' |
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Problems with Bayesian approach

Sichioy e Inthe general case, we're interested in

Forward-Chaining

RBES

Backward-Chaining P(H | E1 N E2 ANRTVAN En)

RBES

e Overview . . ] ]

e How Does It Work? which is completely impractical to get

@ Example « a oMo

o e Also assumes that P(H;), P(Hs3), ... are disjoint probability

® Certainty Factors distributions, that is, that /{; are independent and that they cover

2EWIE the set of all hypotheses!

e Bayesian nets address many of these problems in a different
formalism

| |
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Overview

A Kludge: Certainty Factors

Forward-Chaining
RBES

Backward-Chaining
RBES

® Overview

e How Does It Work?
® Example

e Uncertainty

o Certainty Factors

Examples

e Approximation to probability theory

e MYCIN (e.g): CF[H,E| = MB[H,E] — MD|H, E]

e Since rule only supports/denies one fact: need only one number
to give CF for H given E

e One CF per literal, one per rule

|
' Artificial

Intelligence

1
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Combining Certainty Factors

Overview e Formally, when two rules give evidence about same literal:

Forward-Chaining
RBES

Backward-Chaining MB [H, S1 N\ 82] =0ifMD = ]_,
RBES
® Overview

e How Does It Work? MB[H, 31] + MB[H, 82] ’ (]- o MB[H7 81])

® Example

e Uncertainty
o Certainty Factors

e Similarly for MD
e Simple update function!

Examples

|
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Example

Ouerview e Rule A: If x then s

T Rule B: If y then s5

Backward-Chalning Rule C: If s then H

e Overview Rule D: If S9 then H

e e e suppose MB[H,s1] =03, MD=0= CF =0.3

® Uncertainty e now rule B fires, giving M B|H, s2| as, say, 0.2:

o Certainty Factors

Excimples MBIH, s1 A s3] =0.3+0.2-0.7 = 0.44

MD =0
CF =0.44

l ]
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Overview

Certainty Factors

Forward-Chaining
RBES

Backward-Chaining
RBES

® Overview

e How Does It Work?
® Example

e Uncertainty

o Certainty Factors

Examples

e How to compute CF(A N B) for rule antecedents?
MB|Hy N Hy, E| = min(M B[H1, E|, M B|Hs, F]
and for CF'(AV B):

MB[Hl A HQ,E] = maX(MB[Hl,E],MB[HQ,E]

|
' Artificial

Intelligence

1
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Certainty Factors

Overview e How to update certainty based on rule firing?

Forward-Chaining
RBES

o o Two things to consider: MB/MD in antecedents (computed as
ackward-Chaining

RBES above) and the CF of the rule:

® Overview

e How Does It Work?

e Example MB[H, S] = MB/[H, S] . maX(0,0F[S, E])

e Uncertainty
o Certainty Factors

where M B'[H, S| is how much you'd believe S if E were

e completely believed (i.e., the rule CF), and C'F'|S, E] is the
certainty you have in S given all the evidence.
o Essentially: you multiply the CF of the rule times the CF of the
evidence
| ]
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Certainty Factors

Overview e More recently (1986), it's been found that CFs aren’t in conflict
Forward-Chaining

RBES with basic probability theory

Sackward-chaining e Why, then, do they work and Bayesian techniques seem not t0?
e Overview

e How Does It Work?

® Example

e Uncertainty
o Certainty Factors

Examples

|
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Certainty Factors

Overview e More recently (1986), it's been found that CFs aren’t in conflict
Forward-Chaining . ; ong

RBES with basic probability theory

Sackward-chaining e Why, then, do they work and Bayesian techniques seem not t0?
® Overview H 0 g

e How Does It Work? © eurIStICS

® Example o They assume rule independence — conditional probabilities
e Uncertainty

o Certainty Factors are O

Examples o The knowledge engineer has to ensure this

o Leads to compound antecedents, but...
o ...makes it tractable and modular

e Many recent expert systems are based on Bayesian networks

|
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Example Expert Systems

Overview e DENDRAL

T e R1/XCON [J. McDermott] — DEC

Secvard Chaiing e MYCIN, EMYCIN, ONCOCIN, PUFF, VM, CENTAUR, MDX,
I MDX2,...

e Blackboard systems

|
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Topic: Structured knowledge

representation

Symbolic
Reasoning

Symbolic
reasoning

Knowledge
representation

First-order logic
Theorem proving

Rule-based
reasoning

Structured
knowledge
representation

Local DL example:
Orca



Structured Knowledge Representations

Structured KRep e Problem with IOgiC and rules:
e Overview
e Ontological

Commitment o No real structure
S /05 ancoons o Representation doesn’t reflect patterns—structure—in world

e Kinds of Structured
Representation

e Need a knowledge representation that is structured

Frames

Semantic Networks

CD

Cyc

Description Logics

|
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Ontological Commitment

S”(;Ct““?d KRep e Ontological commitment for structured representations:
® Overview

Ontological . .
ST o World consists of objects

® Pros and cons
e Kinds of Structured

o Obijects have properties

represenaton o Relations exist between objects
Frames

Semantic Networks e |.e., pretty much same as FOPC...
CD

Cyc

Description Logics

|
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Ontological Commitment

S”(;Ct““?d KRep e Ontological commitment for structured representations:
® Overview

Ontological . .
ST o World consists of objects

® Pros and cons
e Kinds of Structured

o Obijects have properties

representation o Relations exist between objects

Frames

e N e |.e., pretty much same as FOPC...

cD e ..difference is structure of representation
Cyc

Description Logics

|
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Advantages and Disadvantages

Structured KRep e Reflects structure of the world
® Overview
e Ontological e Groups knowledge together:

Commitment

® Pros and cons

e Kinds of Structured O EaSier acCess
e —— o Easy to establish salient features
Frames .

o Conceptually easier for many people

Semantic Networks

cD e But managing relationships is not easy

Cyc

Description Logics

|
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Kinds of Structured Representation

Structured KRep e Several different types: frames, semantic networks

e Overview

e Ontological e Functionally equivalent (and they're all formally equivalent to

Commitment

® Pros and cons FOPC)

e Kinds of Structured
Representation

Frames

Semantic Networks

CD

Cyc

Description Logics

|
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Structured KRep

Frames

e Overview

@ Inheritance

@ Representation

® Example ] ]

® Proc. attachment
o Other info
® Examples

Semantic Networks Frames

CD

Cyc

Description Logics | |

|
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Frames

Structured KRep e Frames are one kind of structured representation
if;”;:fview e COiriginally: used to describe visual scenes [Minsky]
o Inheritance e Frames are slot-filler representations:

@ Representation

® Example o Slots of frame: name attributes or relations

e Proc. attachment . . .

o Other info o Filler of slot contains its value

® Examples

e Since frames can fill slots = interconnected frame system
e Frame rely heavily on isa relationships => isa hierarchies

Semantic Networks

CD

Cyc

Description Logics

|
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ISA hierarchies

Overview e Creates an abstraction hierarchy

Knowledge . c

Representation e Captures relationships between classes and subclasses (or

Isa Hierarchies types and SUbtypeS)

e Overview I h . . | b |

S e Inheritance: class = subclass

e Example o c T .

o Which nodes? o If XISAY, then X inherits Y’s characteristics - unless explicitly
® Tangled ISA : e

Hierarchies overwritten by more specific class

@ Other Hierarchies

o ISA is transitive and anti-symmetric

e Saves space
e GQives access to default information by identifying type

|
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Caveats for Object-Oriented Programmers

Overview e ISA hierarchies are not copied from C++, Java, Python...

Knowledge . . . - c
Representation e OOP: inheritance partly (mainly?) to share function, abstraction —
Isa Hierarchies ISA: class—subclass relationship is semantic, not for convenience
e Overview C I h “ k ”

Ny e Create classes that “make sense

® Example e Make sure ISA reflects a subclass/class relationship

o Which nodes?

® Tangled ISA

Hierarchies

@ Other Hierarchies

|
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Let’s Create an Animal Hierarchy

Overview Animals to include:
Knowledge dog cat monkey elephant guppie

Representation
Isa Hierarchies catfish  parrot robin Muffet Clyde

® Overview
e Isa 7~ OOP
® Example

@ Which nodes?
® Tangled ISA
Hierarchies

@ Other Hierarchies

|
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Overview

Let’s Create an Animal Hierarchy

Knowledge
Representation

Isa Hierarchies

® Overview
e Isa # OOP
® Example

® Which nodes?
® Tangled ISA
Hierarchies

@ Other Hierarchies

Animals to include:

dog
catfish

cat
parrot

cat

y il Ob\

abstract object

A/Ay1

Muffet

num-legs: 3

monkey
robin

thing

ammal

mal

elephant

elephant
Muffet

parrot

Verteb\

bird

a

robin

guppie
Clyde

fish

/

guppie

t

stuffed animal

Clyde

Art|f|C|aI

Intelllgence
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Let’s Create an Animal Hierarchy

OeRess Animals to include:

Knowledge I
il dog cat monkey elephant guppie

\sa Hierarchies catfish  parrot robin Muffet Clyde

® Qverview —— e e

® Isa #* OOP this contain? Should this
e Example \ be (;zbfircc;cll?or
e Which nodes? Should this physical objgct physicat:

abstract object
® Tangled ISA be abstract or / \

Hierarchies physical? / 1 t
anima
e Other Hierarchies \
vertebgate
/ x\ stuffed animal
‘/‘ylmal /bll{ ﬁih
ca

dog elephant parrot  robin guppie

Muffet

num-legs: 3 Clyde <—
How are Which parent should this
these different? prefer values from?
1
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Deciding on the Nodes

Overview e Instances must have their own nodes
Knowledge ) . )

Representation o cannot inherit from an instance

lsa Hierarchies o no default information is stored

® Overview

® Isa 7 OOP e Prototypes or Classes?

® Example

® Which nodes?

e o A prototype describes some typical member of a group
Hierarchies o Classes partition the knowledge base — may have more than

e Other Hierarchies G .
one partitioning

e Is-covered-by: the set of classes that form a partitioning
o mutually-disjoint-with: the relationship between classes in

a partitioning

|
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Deciding on the Nodes

Overview e The right types

Knowledge

Representation o group things by significant properties

sa Hierarchies o properties identified with types should be unlikely to change
:i:e;'zvg . o existing taxonomies, basic level categories can help

® Example

@ Which nodes?
® Tangled ISA
Hierarchies

@ Other Hierarchies

|
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Tangled I1SA Hierarchies

Overview e The problem: An entity is a member of more than one type or
K led y
nowiledage . . .
Representation class and need to get information about the entity from the
Isa Hierarchies correct parent
o Onrte e Possible solutions:
e Isa 7~ OOP
® Example o if there are no conflicting slots, take information from
@ Which nodes? . )
o Tangled 1SA wherever it resides
Hierarchies

o weight parents for the slots
inferential distance

@ Other Hierarchies

|
egs = 1
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Tangled I1SA Hierarchies: Inferential distance

Overview

Knowledge e NEVER want to count
Representation .
links

Isa Hierarchies

® Overview
e Isa 7~ OOP
® Example

@ Which nodes?
® Tangled ISA
Hierarchies

@ Other Hierarchies

|
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Overview

Tangled I1SA Hierarchies: Inferer

Knowledge
Representation

Isa Hierarchies

® Overview
e Isa 7~ OOP
® Example

@ Which nodes?
® Tangled ISA
Hierarchies

@ Other Hierarchies

NEVER want to count

links
classo is further than

classs from classy if
there is a path through

classs to classs
only a partial order
conflicts are unresolved if

the classes are not related

/

computer program

N -

unix-like OS

fre¢Stuff

linux foodSample

Linux is more like a computer program,
or samples of sausage at Hannaford’s?

|
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Intelligence
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Other Hierarchies

Overview e Partonomic hierarchy
Knowledge
Representation e (Can make your own

Isa Hierarchies

o o must be transitive and anti-symmetric
® Isa 7 OOP o must inherit relation

® Example

o Which nodes? o can inherit other features

® Tangled ISA
Hierarchies

@ Other Hierarchies

|
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Inheritance in Frames

Structured KRep e Frames make use of inheritance through the isa links
Frames e Slots are inherited:
® Qverview

® Inheritance

o Helps determine which slots (attributes, relations) the frame

@ Representation

e Example has

® Proc. attachment .

o Other info o A kind of default knowledge
® Examples

e Fillers are inherited, too

Semantic Networks

CD

Cyc

Description Logics

|
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Representing Knowledge with Frames

Structured KRep e Frames can be used to represent abstract as well as physical

Frames . “ObjeCtS”

e Overview .

o Inheritance e Frames as classes of objects: e.g., HUMANS

" Depreseniater e Frames as prototypes of objects: e.g., HUMAN

xample

® Proc. attachment e Frames as instances of a class/exemplar of a prototype: e.g.,

e Other info

o Examples Roy, HUMANOO1, etc.

Semantic Networks ® Isa: SUb'type or instance-of link?

CD

Cyc

Description Logics
| |
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Representing Knowledge with Frames

Structured KRep How would you represent each of the following?
Frames
e Overview [ ] Car

® Inheritance

@ Representation
® Example

® Proc. attachment
e Other info

® Examples

Semantic Networks

CD

Cyc

Description Logics

|
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Representing Knowledge with Frames

Structured KRep How would you represent each of the following?
Frames
e Overview [ ] Car

® Inheritance .
® Representation ® POllCe car
e Example

® Proc. attachment

e Other info

® Examples

Semantic Networks

CD

Cyc

Description Logics

|

1 egs = 1
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Representing Knowledge with Frames

Structured KRep How would you represent each of the following?
Frames
e Overview [ ] Car

@ Inheritance

@ Representation ® POllCe car
o Example e A particular police car, say Carb4

® Proc. attachment
o Other info
® Examples

Semantic Networks

CD

Cyc

Description Logics

|
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Representing Knowledge with Frames

Structured KRep How would you represent each of the following?
Frames
e Overview [ ] Car

@ Inheritance

e Police car

@ Representation

® Example e A particular police car, say Carb4
® Proc. attachment

e Other info > Water

® Examples

Semantic Networks

CD

Cyc

Description Logics

|

1 egs = 1
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Representing Knowledge with Frames

Structured KRep How would you represent each of the following?
Frames
e Overview [ ] Car

@ Inheritance

@ Representation ® POllCe car
o Example e A particular police car, say Carb4

® Proc. attachment

e Other info ¢ Water
e Examples P River or |ake

Semantic Networks

CD

Cyc

Description Logics

|

1 egs = 1
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Representing Knowledge with Frames

Structured KRep How would you represent each of the following?
Frames
e Overview [ ] Car

@ Inheritance

® Representation ¢ PO“Ce car

® Example e A particular police car, say Carb54
@ Proc. attachment

e Other info > Water

® Examples e Riverorlake

Semantic Networks .
e Music

CD

Cyc

Description Logics

|
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Representing Knowledge with Frames

Structured KRep How would you represent each of the following?
Frames
e Overview [ ] Car

@ Inheritance

e Police car

@ Representation

® Example e A particular police car, say Carb54

® Proc. attachment

e Other info ® Water

® Examples e River or lake

Semantic Networks ° M USiC

CD

e Numbers

Cyc

Description Logics
| |
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Representing Knowledge with Frames

Structured KRep How would you represent each of the following?
Frames
e Overview [ ] Car

@ Inheritance

e Police car

@ Representation

® Example e A particular police car, say Carb54
® Proc. attachment
e Other info ® Water
® Examples e River or lake
Semantic Networks ° M USiC
CD
e Numbers
Cyc
e Sets
Description Logics
| |
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Representing Knowledge with Frames

Structured KRep How would you represent each of the following?
Frames
e Overview [ ] Car

@ Inheritance

e Police car

@ Representation

® Example e A particular police car, say Carb54
e Proc. attachment
e Other info ® Water
e Examples e River or lake
Semantic Networks ° M USiC
CD
e Numbers
Cyc
e Sets

Description Logics

e Logical relationships

|
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Procedural Attachment

Structured KRep e Mechanism to allow principled way to execute procedures when
rrames events happen in the frame system

e Overview . o

o Inheritance e Procedures are attached to individual slots

@ Representation

e Two types generally defined:

® Example

@ Proc. attachment . .

o Other info o If-needed: executed when a value is retrieved from the slot
- B o If-added: executed when a value is added to a slot or the
Semantic Networks value of the slot is changed

CD

Gy e Why use them?

Description Logics

|
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Other Information Associated with Slots

Structured KRep e constraints: range or type of values that must fill slots
ifag;:fview e defining values: all members of the type must have this value
e Inheritance e special inheritance: inherit from some other frame or hierarchy

@ Representation i .
o Example than the isa hierarchy
e Proc. attachment

e Other info

® Examples

Semantic Networks

CD

Cyc

Description Logics

|
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Examples

Structured KRep

(defframe mobile-object (“physical-object)

Frames

e Overview (mot ile t)

® Inheritance medium ;what it moves under/on/over/through
® Representation ( 1 . (O O O) )

® Example ve OClty

® Proc. attachment (orient ation (O 0 O) )

® Otherinfo (speed - (if-needed

® Examples

(lambda (filler frame slot)
(let* ((vel (role-filler ’velocity frame))
(x (first vel))
(y (second vel))
(z (third vel)))
(sqrt (+ (* x x)
Gk y y)
(xz2))))))))

Semantic Networks

CD

Cyc

Description Logics

|
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Examples

Structured KRep

(defframe living-thing ("natural-object)
Frames L
e Overview (11Vll’lg? t)
O [Meiiznes (density “moderate)
® Representation
.Eiiimm (physical-state “solid)
e Proc. attachment (substance “protoplasm)
® Other nfo (status “nominal-health))

® Examples

Semantic Networks

CD

Cyc

Description Logics

|
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Structured KRep

Examples

Frames

e Overview

® Inheritance

@ Representation
® Example

e Proc. attachment
e Other info

® Examples

Semantic Networks

CD

Cyc

Description Logics

(defframe water-surface (“interface)
(objectl - (isa "air))
(object2 - (isa “water))
(position (“above @objectl Qobject2))
surface-traffic

ice—-status
sea—-state

)

; nil? solid? percent?

|
'Ikmmm

Intelligence

1
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Examples

Structured KRep

(defframe orca ("“planner “mobile-agent)

Frames

- OV (mission - (default (“mission)))

o lifeifiznes (plan - (default (“intention-structure)))
:::ﬁ??ﬁm‘ (location @(vehicle location))

e Proc. attachment (heading @(vehicle heading))

:EZ:&Z (depth @(vehicle depth))

(altitude @(vehicle altitude))

(velocity @(motion velocity))

(acceleration @(motion acceleration))

(motion @(vehicle motion))

(vehicle - (default (TEAVE)))

(equipment @(vehicle mission-package))
(communication-system @(vehicle communication-system))
(communication - (default (“set))))

Semantic Networks

CD

Cyc

Description Logics

|
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Structured KRep

Frames

Semantic Networks

e Overview

e Vs. frames

CD

Cyc

Description Logics

Semantic Networks

|

1 gs _m 1

AI‘tIfICIal Copyright (©) 2014 UMaine School of Computing and Information Science — 17 / 46
Intelligence



Semantic Networks

Structured KRep e A semantic network is a set of nodes an arcs:

Frames

o Nodes = concepts

Semantic Networks

® Overview o Arcs = relationships or attributes
e Vs. frames

cD e Example

Cyc

Description Logics

|
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Semantic Networks

Structured KRep e A semantic network is a set of nodes an arcs:

Frames

o Nodes = concepts

Semantic Networks

® Overview o Arcs = relationships or attributes
e Vs. frames

cD e Example

Cyc

Description Logics

professor a',"

\\<EEL
daughter

2z
D75
yed
UMaine
Co
Car03 __——————”‘“’——————_>
]

Red

|
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Semantic networks and frames

Structured KRep e Semantic nets and frames are very similar
Frames e (Can view frames as portions of semantic nets

Semantic Networks

e Overview

e Vs. frames

CD

Cyc

Description Logics

|
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Structured KRep

Semantic networks and frames

Frames

Semantic Networks

e Overview

e Vs. frames

CD

Cyc

Description Logics

e Semantic nets and frames are very similar
e (Can view frames as portions of semantic nets

Human

professor .é?

V%
R

o) _ffggﬁfff_,Kathrina
)
\‘Peo"
UMaine
typeé Van
ar03 ___—————"’—_-—_——>
Car03: Roy:
. i1sa: Human
isa: Honda

daughter: Kathrina
job: Professor
employed: UMaine

type: Van
color: Red
owner: Roy

Red: Kathrina:
isa: Color isa: Human

|
' Artificial

bﬂemgence
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Structured KRep

Semantic networks and frames

Frames

Semantic Networks

e Overview

e Vs. frames

CD

Cyc

Description Logics

e Semantic nets and frames are very similar
e (Can view frames as portions of semantic nets

Human

professor .é?

V%
R

o} daughter »Kathrina
)
\*P’S‘(}"
UMaine
typeé Van
ar03 ___—————"’—_-—_——>
Car03: Roy:
. i1sa: Human
isa: Honda

daughter: Kathrina
job: Professor
employed: UMaine

type: Van
color: Red
owner: Roy

Red: Kathrina:
isa: Color isa: Human

e Hard to do procedural attachment in semantic net

|
' Artificial

bﬂemgence

1
Copyright (©) 2014 UMaine School of Computing and Information Science — 19/ 46



Structured KRep

Frames

Semantic Networks

CD

Cyc | |

e Overview

e Why?

@ Representation

e Kn. acquisition Cyc
e CYCL

e Extensions

e Ontology

e Upper ontology ]

Description Logics

|
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Cye

Structured KRep e Huge project: many, many person-years of effort
Frames e Doug Lenat and others at MCC; now CYCorp

Semantic Networks .
o Goal:

CD
Cyc o Initially, to have the knowledge required to read the

o Overview encyclopedia
o Why?

® Representation o Then: common sense knowledge — shoot for level of three

e Kn. acquisition
. year-old

@ Extensions

e Ontology
e Upper ontology

Description Logics

|
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Why CYC?

Structured KRep e Try to overcome brittleness of expert systems, other Al programs
TEES e Test many/all existing knowledge representation techniques to
see if they scale up

o e Provide a shared commonsense knowledge base for smaller,

o Overview special-purpose programs

® Why? e Study what commonsense knowledge is

® Representation

Semantic Networks

CD

e Kn. acquisition
e CYCL

e Extensions

e Ontology

e Upper ontology

Description Logics

|
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Structured KRep

Representation in CYC

Frames

Semantic Networks

CD

Cyc

e Overview

o Why?

® Representation
e Kn. acquisition
e CYCL

e Extensions

e Ontology

e Upper ontology

Description Logics

e Two kinds of representation used:

(@)

(@)

epistemological level: easy interface for people, simple

semantics,

heuristic level: more efficient, allows logically superfluous
knowledge which makes processing more efficient

e Creates an ontology that must be used as base

e Huge body of knowledge, heterogeneous, with many inference
mechanisms

e Many ideas about characterizing slots came from CYC

|
' Artificial

Intelligence

1
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How to Get All the Knowledge in There?

e e Possibilities:

Frames

Semantic Networks © By hand

CcD o NLP

Cyo o Machine learning

e Overview

o Why? e Their approach:

® Representation

e Kn. acquisition o Hand code the first “ten million or so facts that make up
e CYCL

- Bl commonsense knowledge

® Ontology o Then try to “bootstrap” using NLP, learning, etc.

e Upper ontology

Description Logics

|
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CYCL

Structured KRep e CYC’s representation language is CYCL
Frames e Standard extentions to frame programs:

Semantic Networks

cD o tangled hierarchies
Cyc o slots as objects/frames
e Overview

. o Inheritance via other slots (transfers-through) slot

® Representation
e Kn. acquisition
e CYCL

e Extensions isa: slot
e Ontology

frame color

transfers—-through: top-level-part-of
frame carO1:

e Upper ontology

Description Logics

color: red
frame car-doorO1l:
top-level-part-of: carOl

o mutually-disjoint with
o distinction between instance and isa

|
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CYCL-specific extensions

Structured KRep e Additional inheritance mechanisms
TIames e Constraint language
Semantic Networks Me:
likes:
CD constraints (beerConstraint)
Cyc beerConstraint:
e Overview slotConstrained: (likes)
e Why? slotValueSubsumes:

(TheSet0f X (Person alllnstances)
(And (likes-to-drink X beer)
(Not (ThereExists Y (Drinks alllnstances)

® Representation
e Kn. acquisition

e CYCL (And (Equal Y sissyDrink)
® Extensions (1ikes—t0—drink X Y) ) ) ) ) )
e Ontology propagateDirection: forward

e Upper ontology Mike:

Description Logics likes-to-drink: (beer)

|
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Structured KRep

CYCL-specific extensions

Frames

Semantic Networks

CD

Cyc

e Overview

o Why?

® Representation
e Kn. acquisition

e Additional inheritance mechanisms

e Constraint language
Me:
likes:
constraints (beerConstraint)

beerConstraint:
slotConstrained: (likes)
slotValueSubsumes:
(TheSetOf X (Person alllnstances)
(And (likes-to-drink X beer)

(Not (ThereExists Y (Drinks alllnstances)
e CYCL (And (Equal Y sissyDrink)
e Extensions (likes-to-drink X Y))))))

e Ontology propagateDirection: forward

e Upper ontology Mike:

Description Logics likes-to-drink: (beer)

Mike:
likes-to-drink: (beer sissyDrink)

e (Constraints enforced by constraint system, TMS
e If propagateDirection is “backward”, then it fires when we want
slot’s value — if “forward” — takes a while!

|
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CYC’s Ontology

Structured KRep e What is an “ontology”?
rrames e Thing concept
e Collection vs IndividualObject

Semantic Networks

CD . . : . -
e Intangible, TangibleObject, CompositeObject
Cyc
e Overview e Substance
oWhyz e Intrinsic properties and extrinsic properties
® Representation
@ Kn. acquisition ) Event, pProcess
e Extensions
e Ontology e [ime
e Upper ontology
e Agent
Description Logics
| I
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CYC’s Upper Ontology

Thi
Structured KRep =
Individual P artiallylntangible
Fames | Mathem ati calOrC om putational Thing
Partiallyitangiblelndividual | | 1stangitte |
Semantic Networks TemporalThing SpatialThing
| Mather atical Thing |
cD Intangblelndividual |
Cyc Timelnterval | [ situation | [ Mathem aticalObject | RsiOrCllection

® Overview
S om ethingExisting / ity flue | Set-Mathematical | | Collection |

e Why?

| Situation Temporal |

| SpatialThing Localized |

® Representation

RelauorTL
@ Kn. acquisition . Evem Staucsm.laum \
e CYCL PartiallyT angible \ '
. / PhystcalEvent TruthFunction I | FunctionalRelation II ScopingRelation |
e Extensions I
[ ] Ontology TangibleThing | Function-D enotati onal |

F1x edArityRelation
e Upper ontology c""f‘g‘”a“m
) . ) - BinaryRelation

N ——

Description Logics [ 1stangibieE isingThing | e et
BinaryPredicate | ObjectPredlcate | Quartifier |
[ror] /
| Bma.ryRolePred.tcate
1
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Structured KRep

Frames

Semantic Networks

CD

Cyc | I

Description Logics

® Thox and Abox

e Examples - - -

o Gounting Description Logics

e Inference in DL

e Different DLs

e CLASSIC

® Uses | |

|
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Description logics

Structured KRep ° Log iC o

Frames

Semantic Networks © Very general: QOOd SemanthS, bUt:
CD o cumbersome
Cyc o intractable, not decidable

Description Logics
® Thox and Abox

e Frames and semantic nets (“network representations”):

® Examples . g ] c anc

o Counting o specialized reasoning, intuitive, but:

¢ Inference in DL o semantics lacking/inconsistent

o Different DLs

:S::SSS'C e Brachman’s KL-ONE system: attempted to add rigor to network

representations
e (Gave rise to what is now called description logics

' |
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Basics

Structured KRep e Concerned with concepts and roles
Frames e (Concepts correspond to sets of individuals
e Primitive concepts:

Semantic Networks

CD

S o e.g., Car, Human, etc.

Description Logics ©) eCIUIV8.|ent tO CaI‘(CIJ), etC, |n FOL
® Tbox and Abox
® Examples

e Counting

@ Inference in DL
o Different DLs
e CLASSIC

® Uses

|
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Basics

Structured KRep e Concerned with concepts and roles
Frames e (Concepts correspond to sets of individuals
e Primitive concepts:

Semantic Networks

CD

Cye o e.g., Car, Human, etc.

Description Logics ©) eCIUIV8.|ent tO CaI‘(CIJ), etC, |n FOL

@ Thox and Abox

® Examples ° ROleS:

e Counting

¢ Inference in DL o Like slots in frames

e Different DLs .

e CLASSIC o E.g.,hasChildren

® Uses
i |
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Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

® Thox and Abox
® Examples

e Counting

@ Inference in DL
o Different DLs
e CLASSIC

® Uses

Basics

Concerned with concepts and roles
Concepts correspond to sets of individuals
Primitive concepits:

o e.g., Car, Human, etc.
o equivalent to: Car(x), etc., in FOL

Roles:

o Like slots in frames
o E.g.,,hasChildren

Complex (compound) concepts:

o Built by composition from other concepts and roles
o Often intersection of concepts (I'1) as operator
o Different composition operators = different logics

|
' Artificial

Intelligence
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Tbox and Abox

Structured KRep e Knowledge in a DL system divided into two “boxes”
Frames e Tbox (terminological box):

Semantic Networks

- o definitions — the ontology, i.e.

Cyc o consists of concepts — e.g., Human
Description Logics o relatively static across problems

® Thox and Abox

® Examples

e Counting

e Inference in DL
e Different DLs
e CLASSIC

® Uses

|
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Tbox and Abox

StillctilicdlREEp e Knowledge in a DL system divided into two “boxes”
TIames e Tbox (terminological box):

Semantic Networks

- o definitions — the ontology, i.e.

Cyc o consists of concepts — e.g., Human

Description Logics o relatively static across problems

® Thox and Abox

o Examples e Abox (assertion box):

e Counting

e RE o facts about current problem

e Different DLs .

o CLASSIC o instances of concepts — e.g., Human (Roy)
® Uses

o dynamic across, even within problems

|
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Tbox Examples

Structured KRep P WO man:

Frames

Semantic Networks

CD

Cyc

Description Logics
® Thox and Abox
® Examples

e Counting

@ Inference in DL
e Different DLs
e CLASSIC

® Uses

|
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Tbox Examples

Structured KRep P WO man:

Frames

Woman = Person (|1 Female

Semantic Networks

CD

Cyc

Description Logics
® Thox and Abox
® Examples

e Counting

@ Inference in DL
e Different DLs
e CLASSIC

® Uses

|
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Tbox Examples

Structured KRep P WO man:

Frames

Woman = Person (|1 Female

Semantic Networks

cb e Parent:
Cyc

Description Logics
® Thox and Abox
® Examples

e Counting

@ Inference in DL
e Different DLs
e CLASSIC

® Uses

|
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Tbox Examples

Structured KRep P WO man:

Frames

Woman = Person (|1 Female

Semantic Networks

cb e Parent:
Cyc

Description Logics Parent = Person 1 dhasChild.Person
® Thox and Abox

® Examples

e Counting

@ Inference in DL
e Different DLs
e CLASSIC

® Uses

|
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Tbox Examples

Structured KRep P WO man:

Frames

Woman = Person (|1 Female

Semantic Networks

cb e Parent:
Cyc

Description Logics Parent = Person 1 dhasChild.Person
® Thox and Abox

® Examples

e Counting

e Inference in DL ® MOther-
o Different DLs

e CLASSIC

® Uses

|
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Tbox Examples

Structured KRep P WO man:

Frames

Woman = Person (|1 Female

Semantic Networks

cb e Parent:
Cyc

Description Logics Parent = Person 1 dhasChild.Person
® Thox and Abox

® Examples

e Counting

e Inference in DL o MOther:

e Different DLs Mother = Parent [ | Woman
e CLASSIC

® Uses

|
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Tbox Examples

Structured KRep P WO man:

Frames

Woman = Person (|1 Female

Semantic Networks

cb e Parent:
Cyc

Description Logics Parent = Person 1 dhasChild.Person
® Thox and Abox

® Examples

e Counting

e Inference in DL o MOther:

e Different DLs Mother = Parent [ | Woman
e CLASSIC

® Uses

e Students who take COS 470:

|
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Tbox Examples

Structured KRep P WO man:

Frames

Woman = Person (|1 Female

Semantic Networks

cb e Parent:
Cyc

Description Logics Parent = Person 1 dhasChild.Person
® Thox and Abox

® Examples

e Counting

e Inference in DL o MOther:

e Different DLs Mother = Parent [ | Woman
e CLASSIC

® Uses

e Students who take COS 470:

Student M dclassSchedule.(dcontains.C0S470)

|
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Abox Examples

Slutned <y e Joeis Harry’s son:

Frames

Semantic Networks

CD

Cyc

Description Logics
® Thox and Abox
® Examples

e Counting

@ Inference in DL
e Different DLs
e CLASSIC

® Uses

|
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Abox Examples

Slutned <y e Joeis Harry’s son:

Frames

Semantic Networks hCLSSO’n,(HCLTTy, JO@)
CD

Cyc

Description Logics
® Thox and Abox
® Examples

e Counting

@ Inference in DL
e Different DLs
e CLASSIC

® Uses

|
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Slutned <y e Joeis Harry’s son:

Frames

Semantic Networks h(LSSO’n,(HCLTTy, JO@)
CD

Cyc

e Roy is a professor:

Description Logics
® Thox and Abox

® Examples Professor (Roy)

e Counting

e Inference in DL

o Different DLs Person(Roy) lNhasRole(Roy,Professor)
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Counting

Structured KRep e Some logics can count, too
Fames e E.g.: “A mother with two female and at least one male children”:
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Counting

Structured KRep e Some logics can count, too
Fames e E.g.: “A mother with two female and at least one male children”:

Semantic Networks

e Motherll = 2(hasChild.Female)ll > 1(hasChild.Male)

Cyc

Description Logics
® Thox and Abox
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Inference in DL

Structured KRep e Reasoning in DL systems occurs in context of Tbox and Abox
Frames e Tbox reasoning: subsumption

Semantic Networks

- o Is concept A C concept B?
CyC O E.g.:
Description Logics
ot e Mother = PersonllFemalellJhasChild.Person
® Examples
® Counting Parent = PersonlldhasChild.Person
® Inference in DL
e Different DLs Mother E Parent
e CLASSIC
® Uses 0 c 0
o Can be much more complicated and indirect
e Abox reasoning: classification
o Is A aninstance of concept B?
e Often other kinds of reasoning, too
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Different DLs

Structured KRep e DL really comprised of a family of logics

Frames e Basicis AL (ascription language)

Semeriic Notworks e Add other operators, get new languages — e.g., ALY would be
AL plus union, etc.

eeorton Logie e Simple DLs: decidable, (relatively) efficient inferences

o Thox and Abox e More expressive DLs: give up efficiency, even decidability

® Examples

CD

Cyc

e Counting

@ Inference in DL
o Different DLs
e CLASSIC

® Uses
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Example Implementation: CLASSIC

Structured KRep e The CLASSIC language is an implementation of a DL (AL?)
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Example Implementation: CLASSIC

Structured KRep e The CLASSIC language is an implementation of a DL (AL?)
TIames e Example: a bachelor

Semantic Networks

<D Bachelor = And (Unmarried, Adult, Male)

Cyc e (From R&N) Men with at least three sons who are all unemployed

fejs”p“"';;"bg“’s and married to doctors, and at most two daughters who are all

OoXx an OX
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Example Implementation: CLASSIC

Structured KRep

e The CLASSIC language is an implementation of a DL (AL?)
e Example: a bachelor

Frames

Semantic Networks

<D Bachelor = And (Unmarried, Adult, Male)

Cyc e (From R&N) Men with at least three sons who are all unemployed

fejs;f‘;';;"bgf and married to doctors, and at most two daughters who are all

o Examples professors in physics or math departments:

e Counting

® Inference in DL And (Man,AtLeast(3,Son) ,AtMost (2,Daughter),

o Different DLs

,UA%L A11(Son,And(Unemployed, Married,

® Uses A11 (Spouse,Doctor))),

A11 (Daughter,And(Professor,
Fills(Department,Physics,Math))))

| ]
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Uses

Structured KRep e General-purpose knowledge representation
Frames e Natural language processing
e Reasoning in intelligent databases: entity-relation models

Semantic Networks

CD
) e Web Ontology Language (OWL):
yC
Description Logics @) Part Of Semantic Web
Tb d Ab . 5 . 0
R o Associate machine-understandable semantics with Web
e Counting pages
@ Inference in DL .
A o One language is OWL-DL
® CLASSIC o Complete and decidable
® Uses
I I
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Topic: Local DL example: Orca

Symbolic
Reasoning

Symbolic
reasoning

Knowledge
representation

First-order logic
Theorem proving

Rule-based
reasoning

Structured
knowledge
representation

Local DL example:
Orca



Example Orca DL

Definition=(SOME expectsPresence0f Salinity)
Certainty=0.401

Definition=(SOME expectsPresence0f OceanSurface)
Certainty=0.436

Definition=(SOME expectsPresencelf

(AND Thruster (SOME hasAdvisedValue ShoreBased)))
Certainty=0.769
Definition=(SOME expectsPresencelf
(AND Location
(SOME hasNumber
(AND Float
(D-FILLER hasNumericValue

1



Certainty=0.482

(D-LITERAL 19.115639 (D-BASE-TYPE float)))

(D-FILLER hasUnitOfMeasure

(D-LITERAL somerandomstring
(D-BASE-TYPE string)))))

(SOME hasNumber
(AND Integer

(D-FILLER hasNumericValue

(D-LITERAL 31 (D-BASE-TYPE integer)))

(D-FILLER hasUnitOfMeasure

(D-LITERAL somerandomstring
(D-BASE-TYPE string)))))))

Definition=(SOME expectsPresencelf

Certainty=0.125

(AND Survey (SOME hasDegreeExpected Mine)

(SOME definesGoal ActiveMission)))

Definition=(SOME expectsPresencelf

(AND DetectSubmarine

(D-FILLER hasEventDescription



(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))
Certainty=0.243
Definition=(SOME hasFuzzyFeature
(AND Danger
(SOME hasFuzzyMembershipFunction
(AND TrapezoidalFunction
(SOME hasLocalMaxAt Number)
(SOME hasLocalMaxAt
(AND Float
(D-FILLER hasNumericValue
(D-LITERAL 24.848389
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#f1o:
(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#str:
(SOME hasLocalMinAt Number)



(SOME hasLocalMinAt
(AND Integer
(D-FILLER hasNumericValue
(D-LITERAL 5
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#inte
(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#str:
Certainty=0.334
Definition=(AND (SOME hasActivePeriod EnteringContext)
(SOME hasOperationalSetting
(AND SelfDepth (SOME hasAdvisedValue Medium))))
Certainty=0.943
Definition=(AND
(SOME definesGoal
(AND SamplingComplete
(D-FILLER hasEventDescription



(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.0rg/2001/XMLSchema#string)))))
(SOME hasCost Medium) (SOME hasDegreeExpected High)
(SOME hasImportance High)

(SOME isAchievedBy (AND Maneuver (SOME hasActor PeerAgent))))
Certainty=0.559

Definition=(AND
(SOME respondsWithAction
(AND CommunicateStatus
(SOME hasObject
(AND NavigationComputer
(SOME hasCost
(AND SelfBatteryLevel
(SOME hasStateValue Medium)))))
(SOME hasActor AdversaryAgent)
(SOME isSampleTarget0f PeerAgent)))
(SOME hasImportance Medium)
(SOME handlesEvent
(AND SensorFailure



(D-FILLER hasEventDescription
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.0rg/2001/XMLSchema#string))))))
Certainty=0.124
Definition=(AND
(SOME handlesEvent
(AND PowerFailure
(SOME hasStateValue
(AND ThrusterFailure
(D-FILLER hasEventDescription
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#tstring)))))))
(SOME hasImportance Low)
(SOME respondsWithAction
(AND MaintainPosition (SOME hasActor Agent))))
Certainty=0.904

Definition=(SOME definesAction



(AND Thruster
(SOME hasObject
(AND PeerAgent (SOME hasNumber Targeted)))
(SOME hasSpeed AdversaryAgent)))
Certainty=0.655
Definition=(SOME definesAction
(AND MaintainPosition
(SOME hasDirection
(AND Number (SOME handlesEvent Submarine)))
(SOME hasSpeed
(AND Float
(SOME hasObject
(AND Navigate
(SOME hasActor AdversaryAgent)))))
(SOME definesGoal Thruster)))
Certainty=0.117



