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• Control cycle:

� Find rules whose antecedents are true: triggered rules
� Select one: conflict resolution
� Fire the rule to take some action

• Continue forever or until some goal is achieved
• Used for synthesis, often, or process control
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• Toy forward chainer – domain = bagging groceries
• Steps in this process:

1. Check what customer has and suggest additions
2. Bag large items, putting large bottles in first
3. Bag medium items, putting frozen food in freezer bags
4. Bag small items wherever there is room

• Working memory:

� Needs to have information about:

• items already bagged
• unbagged items
• which step (context) we’re in
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• Representation: could be literals, could have more structure than
that

• Initial state:
Step: check-order

Bagged: nil

Unbagged: bread, Glop brand cheese, granola,

ice cream

• Also need information about the world; this might be in the form
of a table for this problem:

Object Size Container Frozen?
bread M bag nil
Glop S jar nil
granola L box nil
ice cream M box t
Pepsi L bottle nil
potato chips M bag nil
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Conflict resolution strategies – possibilities:

• specificity ordering:
� if two rules conflict and one is more specific than the other,

use it
� Rule 1 is more specific than Rule 2 if Rule 1’s antecedent

literals are a superset of Rule 2’s (assuming conjunction)

• rule ordering – implicit in rule base (unless using a rete net)
• data ordering – look at some data first (rete does this, sort of)
• size of antecedent – prefer rules with larger antecedent, since it’s

likely to be more specific
• recency – least/most recently used (depending on needs of

designer)
• context-limiting
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• Rules in form of IF-THEN pairs
• Examples:

R1: if step = check-order &

exists bag of chips &

not exists soft drink bottle

then add bottle of pepsi to order

R2: if step = check-order

then step = bag-large-items

R3: if step = bag-large-items &

exists large item to be bagged &

exists large bottle to be bagged &

exists bag with < 6 large items

then put bottle in bag

AI
rtificial
ntelligence

Example: Winston’s “Bagger” Program

Overview

Forward-Chaining
RBES

• Overview

• Example

• Triggering

• Rete Network

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 15 / 32

• Initial state:
Step: check-order

Bagged: nil

Unbagged: bread, Glop brand cheese, granola,

ice cream

• World info:
Object Size Container Frozen?

----------------------------------------

bread M bag nil

Glop S jar nil

granola L box nil

ice cream M box t

Pepsi L bottle nil

potato chips M bag nil
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• Possibly very time-consuming
• Observations:

� Rules often share LHS elements (literals)
� Rules don’t usually change over short term
� When WM changes: usually only a few changes per cycle

• Forgy: build a rete network based on the rules
• Rete records state of WM, rules in network – update on change
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Initial Rete Network

Fire Rule 1

constraint

A B

D

CA=B

E

add EA=D

A(1)
A(2)

B(2)
B(3)

A(2)
B(2)

C(5)

A=B=E

A=B=C add D

delete A

>>Nothing triggered<<

User asserts D(2)

>>Rule 1 triggered

A B

D

CA=B

E

add EA=D

A(1)
A(2)

B(2)
B(3)

A(2)
B(2)

C(5)

A=B=E

A=B=C add D

delete A

D(2) A(2)
D(2)

D(2) A(2)
D(2)

E(2)

>>Rule 3 triggered<<

A B

D

CA=B

E

add EA=D

A(1)
A(2)

B(2)
B(3)

A(2)
B(2)

C(5)

A=B=E

A=B=C add D

delete A

A(2)
B(2)
E(2)

A B

D

CA=B

E

add EA=D

B(2)
B(3)

B(2) C(5)

A=B=E

A=B=C add D

delete A

Fire Rule 3

A(1)

>>Nothing triggered<<

1) A(x) & B(x) & C(x) ==> D(x)
2) A(x) & B(y) & D(x) ==> E(x)
3) A(x) & B(x) & E(x) ==> not A(x)

Rule base: Iniital WM: A(1), A(2), B(2), B(3), C(5)
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• Synthesis: pick a solution
• Analysis: gather evidence, form best hypothesis – e.g., medical

diagnosis
• Work backward from goal: focus question–asking on relevant

facts, tests
• Need uncertainty management
• Follow all (relevant) lines of reasoning: no conflict resolution
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• Sort of like a backward-chaining theorem prover
• Want to conclude something about x:

� Is x in WM? Then conclude something from that.
� Are there rules that conclude something about x? Then for

each rule:

• Try to conclude something about each antecedent
(backchain).

• If that’s possible, fire the rule, giving some evidence for x.

� Combine evidence for and against x.
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• Goal: id(Animal1,?x)
• Initial state 1:

color(Animal1,tawny),

eye-direction(Animal1,forward),

teeth-shape(Animal1,pointed),

eats(Animal1,meat),

hair(Animal1), dark-spots(Animal1)

• Initial state 2:
color(Animal1,tawny),

eye-direction(Animal1,forward),

teeth-shape(Animal1,pointed),

eats(Animal1,meat),

hair(Animal1)
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• Obvious way: probability theory
• Need some way to assess belief, given some evidence
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• Obvious way: probability theory
• Need some way to assess belief, given some evidence
• Bayes’ rule:

P (H | E) =
P (E | H) · P (H)

P (E)

where P (E) = P (E | H) · P (H) + P (E | ¬H) · P (¬H)
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• Obvious way: probability theory
• Need some way to assess belief, given some evidence
• Bayes’ rule:

P (H | E) =
P (E | H) · P (H)

P (E)

where P (E) = P (E | H) · P (H) + P (E | ¬H) · P (¬H)

• Example:

� H: Joey has lung cancer
� E: Joey smokes

P (lung�Ca | smoking) =
P (smoking | lung�Ca) · P (lung�Ca)

P (smoking)
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• General form:

P (Hi | E) =
P (E | Hi) · P (Hi)�
P (E | Hj) · P (Hj)

• And with some prior evidence E and a new observation e:

P (H | e, E) = P (H | e) · P (E | e, H)

P (E | e)
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• There are problems with Bayesian probability for expert systems
(in dispute recently)

• Probabilities may be difficult to obtain

� P(E), P(H), P(E| H) may be hard to get in general – for
example, where E = cough, or H = AIDS

� empirical evidence suggests that people are not very good at
estimating probabilities [Tversky & Kahneman, e.g.]

• Size of set of probabilities needed O(2
n
)

� Even if we could obtain them – requires too much space
� ...and too much time to use, and compute
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• In the general case, we’re interested in

P (H | E1 ^ E2 ^ ... ^ En)

which is completely impractical to get
• Also assumes that P (H1), P (H2), ... are disjoint probability

distributions, that is, that Hi are independent and that they cover
the set of all hypotheses!

• Bayesian nets address many of these problems in a different
formalism
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• Approximation to probability theory
• MYCIN (e.g.): CF [H, E] = MB[H, E] � MD[H, E]

• Since rule only supports/denies one fact: need only one number
to give CF for H given E

• One CF per literal, one per rule
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• Formally, when two rules give evidence about same literal:

MB[H, s1 ^ s2] = 0 if MD = 1,

MB[H, s1] + MB[H, s2] · (1 � MB[H, s1])

• Similarly for MD
• Simple update function!
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• Rule A: If x then s1

Rule B: If y then s2

Rule C: If s1 then H
Rule D: If s2 then H

• suppose MB[H, s1] = 0.3, MD = 0 ) CF = 0.3
• now rule B fires, giving MB[H, s2] as, say, 0.2:

MB[H, s1 ^ s2] = 0.3 + 0.2 · 0.7 = 0.44

MD = 0

CF = 0.44
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• How to compute CF (A ^ B) for rule antecedents?

MB[H1 ^ H2, E] = min(MB[H1, E], MB[H2, E]

and for CF (A _ B):

MB[H1 ^ H2, E] = max(MB[H1, E], MB[H2, E]
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• How to update certainty based on rule firing?

� Two things to consider: MB/MD in antecedents (computed as
above) and the CF of the rule:

MB[H, S] = MB�
[H, S] · max(0, CF [S, E])

where MB�
[H, S] is how much you’d believe S if E were

completely believed (i.e., the rule CF), and CF [S, E] is the
certainty you have in S given all the evidence.

� Essentially: you multiply the CF of the rule times the CF of the
evidence
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• More recently (1986), it’s been found that CFs aren’t in conflict
with basic probability theory

• Why, then, do they work and Bayesian techniques seem not to?
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• More recently (1986), it’s been found that CFs aren’t in conflict
with basic probability theory

• Why, then, do they work and Bayesian techniques seem not to?

� Heuristics
� They assume rule independence – conditional probabilities

are 0
� The knowledge engineer has to ensure this
� Leads to compound antecedents, but...
� ...makes it tractable and modular

• Many recent expert systems are based on Bayesian networks
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• DENDRAL
• R1/XCON [J. McDermott] – DEC
• MYCIN, EMYCIN, ONCOCIN, PUFF, VM, CENTAUR, MDX,

MDX2,...
• Blackboard systems

Symbolic
Reasoning

Symbolic
reasoning

Knowledge
representation

First-order logic

Theorem proving

Rule-based
reasoning

Structured
knowledge
representation

Local DL example:
Orca

Topic: Structured knowledge
representation
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• Problem with logic and rules:

� No real structure
� Representation doesn’t reflect patterns—structure—in world

• Need a knowledge representation that is structured
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• Ontological commitment for structured representations:

� World consists of objects
� Objects have properties
� Relations exist between objects

• I.e., pretty much same as FOPC...
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• Ontological commitment for structured representations:

� World consists of objects
� Objects have properties
� Relations exist between objects

• I.e., pretty much same as FOPC...
• ...difference is structure of representation
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• Reflects structure of the world
• Groups knowledge together:

� Easier access
� Easy to establish salient features
� Conceptually easier for many people

• But managing relationships is not easy
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• Several different types: frames, semantic networks
• Functionally equivalent (and they’re all formally equivalent to

FOPC)
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• Frames are one kind of structured representation
• Originally: used to describe visual scenes [Minsky]
• Frames are slot-filler representations:

� Slots of frame: name attributes or relations
� Filler of slot contains its value

• Since frames can fill slots ) interconnected frame system
• Frame rely heavily on isa relationships ) isa hierarchies
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• Creates an abstraction hierarchy
• Captures relationships between classes and subclasses (or

types and subtypes)
• Inheritance: class ) subclass

� If X ISA Y, then X inherits Y’s characteristics - unless explicitly
overwritten by more specific class

� ISA is transitive and anti-symmetric

• Saves space
• Gives access to default information by identifying type
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• ISA hierarchies are not copied from C++, Java, Python...
• OOP: inheritance partly (mainly?) to share function, abstraction –

ISA: class–subclass relationship is semantic, not for convenience
• Create classes that “make sense”
• Make sure ISA reflects a subclass/class relationship
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Animals to include:
dog cat monkey elephant guppie

catfish parrot robin Muffet Clyde
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Animals to include:
dog cat monkey elephant guppie

catfish parrot robin Muffet Clyde

animal

vertebrate

mammal bird fish

pet

dogcat

Muffet

elephant

Clyde

stuffed animal

toy

physical object

thing

guppieparrot robin

abstract object

num-legs: 3
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Animals to include:
dog cat monkey elephant guppie

catfish parrot robin Muffet Clyde

animal

vertebrate

mammal bird fish

pet

dogcat

Muffet

elephant

Clyde

stuffed animal

toy

physical object

thing

guppieparrot robin

abstract object

num-legs: 3

How are
these different?

Which parent should this
prefer values from?

Should this
be abstract or

physical?

Should this
be abstract or

physical?

What would
this contain?
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• Instances must have their own nodes

� cannot inherit from an instance
� no default information is stored

• Prototypes or Classes?

� A prototype describes some typical member of a group
� Classes partition the knowledge base – may have more than

one partitioning

• is-covered-by : the set of classes that form a partitioning
• mutually-disjoint-with: the relationship between classes in

a partitioning
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• The right types

� group things by significant properties
� properties identified with types should be unlikely to change
� existing taxonomies, basic level categories can help
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• The problem: An entity is a member of more than one type or
class and need to get information about the entity from the
correct parent

• Possible solutions:

� if there are no conflicting slots, take information from
wherever it resides

� weight parents for the slots
� inferential distance
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• NEVER want to count
links
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• NEVER want to count
links

• class2 is further than
class3 from class1 if
there is a path through
class3 to class2

• only a partial order
• conflicts are unresolved if

the classes are not related

linux

unix-like OS

OS

computer program

freeStuff

foodSample

Linux is more like a computer program, 
or samples of sausage at Hannaford’s?
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• Partonomic hierarchy
• Can make your own

� must be transitive and anti-symmetric
� must inherit relation
� can inherit other features
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• Frames make use of inheritance through the isa links
• Slots are inherited:

� Helps determine which slots (attributes, relations) the frame
has

� A kind of default knowledge

• Fillers are inherited, too
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• Frames can be used to represent abstract as well as physical
“objects”

• Frames as classes of objects: e.g., HUMANS

• Frames as prototypes of objects: e.g., HUMAN

• Frames as instances of a class/exemplar of a prototype: e.g.,
ROY, HUMAN001, etc.

• isa: sub-type or instance-of link?
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How would you represent each of the following?

• Car
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How would you represent each of the following?

• Car
• Police car
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How would you represent each of the following?

• Car
• Police car
• A particular police car, say Car54
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How would you represent each of the following?

• Car
• Police car
• A particular police car, say Car54
• Water
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How would you represent each of the following?

• Car
• Police car
• A particular police car, say Car54
• Water
• River or lake
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How would you represent each of the following?

• Car
• Police car
• A particular police car, say Car54
• Water
• River or lake
• Music
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How would you represent each of the following?

• Car
• Police car
• A particular police car, say Car54
• Water
• River or lake
• Music
• Numbers
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How would you represent each of the following?

• Car
• Police car
• A particular police car, say Car54
• Water
• River or lake
• Music
• Numbers
• Sets



AI
rtificial
ntelligence

Representing Knowledge with Frames

Structured KRep

Frames

• Overview

• Inheritance

• Representation

• Example

• Proc. attachment

• Other info

• Examples

Semantic Networks

CD

Cyc

Description Logics

Copyright c� 2014 UMaine School of Computing and Information Science – 10 / 46

How would you represent each of the following?

• Car
• Police car
• A particular police car, say Car54
• Water
• River or lake
• Music
• Numbers
• Sets
• Logical relationships
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• Mechanism to allow principled way to execute procedures when
events happen in the frame system

• Procedures are attached to individual slots
• Two types generally defined:

� If-needed: executed when a value is retrieved from the slot
� If-added: executed when a value is added to a slot or the

value of the slot is changed

• Why use them?
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• constraints: range or type of values that must fill slots
• defining values: all members of the type must have this value
• special inheritance: inherit from some other frame or hierarchy

than the isa hierarchy
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(defframe mobile-object (^physical-object)
(motile t)
medium ;what it moves under/on/over/through
(velocity (0 0 0))
(orientation (0 0 0))
(speed - (if-needed

(lambda (filler frame slot)
(let* ((vel (role-filler ’velocity frame))

(x (first vel))
(y (second vel))
(z (third vel)))

(sqrt (+ (* x x)
(* y y)
(* z z))))))))
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(defframe living-thing (^natural-object)
(living? t)
(density ^moderate)
(physical-state ^solid)
(substance ^protoplasm)
(status ^nominal-health))
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(defframe water-surface (^interface)
(object1 - (isa ^air))
(object2 - (isa ^water))
(position (^above @object1 @object2))
surface-traffic
ice-status ; nil? solid? percent?
sea-state
)
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(defframe orca (^planner ^mobile-agent)
(mission - (default (^mission)))
(plan - (default (^intention-structure)))
(location @(vehicle location))
(heading @(vehicle heading))
(depth @(vehicle depth))
(altitude @(vehicle altitude))
(velocity @(motion velocity))
(acceleration @(motion acceleration))
(motion @(vehicle motion))
(vehicle - (default (^EAVE)))
(equipment @(vehicle mission-package))
(communication-system @(vehicle communication-system))
(communication - (default (^set))))
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• A semantic network is a set of nodes an arcs:

� Nodes = concepts
� Arcs = relationships or attributes

• Example
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• A semantic network is a set of nodes an arcs:

� Nodes = concepts
� Arcs = relationships or attributes

• Example
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• Semantic nets and frames are very similar
• Can view frames as portions of semantic nets
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• Semantic nets and frames are very similar
• Can view frames as portions of semantic nets
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• Semantic nets and frames are very similar
• Can view frames as portions of semantic nets
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Car03:
isa: Honda
type: Van
color: Red
owner: Roy

Roy:
isa: Human
daughter: Kathrina
job: Professor
employed: UMaine

Red:
isa: Color
...

Kathrina:
isa: Human
...

• Hard to do procedural attachment in semantic net
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• Huge project: many, many person-years of effort
• Doug Lenat and others at MCC; now CYCorp
• Goal:

� Initially, to have the knowledge required to read the
encyclopedia

� Then: common sense knowledge – shoot for level of three
year-old
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• Try to overcome brittleness of expert systems, other AI programs
• Test many/all existing knowledge representation techniques to

see if they scale up
• Provide a shared commonsense knowledge base for smaller,

special-purpose programs
• Study what commonsense knowledge is
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• Two kinds of representation used:

� epistemological level: easy interface for people, simple
semantics,

� heuristic level: more efficient, allows logically superfluous
knowledge which makes processing more efficient

• Creates an ontology that must be used as base
• Huge body of knowledge, heterogeneous, with many inference

mechanisms
• Many ideas about characterizing slots came from CYC
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• Possibilities:

� By hand
� NLP
� Machine learning

• Their approach:

� Hand code the first “ten million or so facts that make up
commonsense knowledge”

� Then try to “bootstrap” using NLP, learning, etc.
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• CYC’s representation language is CYCL
• Standard extentions to frame programs:

� tangled hierarchies
� slots as objects/frames
� inheritance via other slots (transfers-through) slot

frame color

isa: slot

transfers-through: top-level-part-of

frame car01:

color: red

frame car-door01:

top-level-part-of: car01

� mutually-disjoint with
� distinction between instance and isa
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• Additional inheritance mechanisms
• Constraint language

Me:
likes:
constraints (beerConstraint)

beerConstraint:
slotConstrained: (likes)
slotValueSubsumes:

(TheSetOf X (Person allInstances)
(And (likes-to-drink X beer)

(Not (ThereExists Y (Drinks allInstances)
(And (Equal Y sissyDrink)

(likes-to-drink X Y))))))
propagateDirection: forward

Mike:
likes-to-drink: (beer)



AI
rtificial
ntelligence

CYCL-specific extensions

Structured KRep

Frames

Semantic Networks

CD

Cyc

• Overview

• Why?

• Representation

• Kn. acquisition

• CYCL

• Extensions

• Ontology

• Upper ontology

Description Logics

Copyright c� 2014 UMaine School of Computing and Information Science – 33 / 46

• Additional inheritance mechanisms
• Constraint language

Me:
likes:
constraints (beerConstraint)

beerConstraint:
slotConstrained: (likes)
slotValueSubsumes:

(TheSetOf X (Person allInstances)
(And (likes-to-drink X beer)

(Not (ThereExists Y (Drinks allInstances)
(And (Equal Y sissyDrink)

(likes-to-drink X Y))))))
propagateDirection: forward

Mike:
likes-to-drink: (beer)

Mike:
likes-to-drink: (beer sissyDrink)

• Constraints enforced by constraint system, TMS
• If propagateDirection is “backward”, then it fires when we want

slot’s value – if “forward” – takes a while!
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• What is an “ontology”?
• Thing concept
• Collection vs IndividualObject
• Intangible, TangibleObject, CompositeObject
• Substance
• Intrinsic properties and extrinsic properties
• Event, process
• Slot
• Time
• Agent
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• Logic:

� very general, good semantics, but:
� cumbersome
� intractable, not decidable

• Frames and semantic nets (“network representations”):

� specialized reasoning, intuitive, but:
� semantics lacking/inconsistent

• Brachman’s KL-ONE system: attempted to add rigor to network
representations

• Gave rise to what is now called description logics
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• Concerned with concepts and roles
• Concepts correspond to sets of individuals
• Primitive concepts:

� e.g., Car, Human, etc.
� equivalent to: Car(x), etc., in FOL
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• Concerned with concepts and roles
• Concepts correspond to sets of individuals
• Primitive concepts:

� e.g., Car, Human, etc.
� equivalent to: Car(x), etc., in FOL

• Roles:

� Like slots in frames
� E.g., hasChildren
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• Concerned with concepts and roles
• Concepts correspond to sets of individuals
• Primitive concepts:

� e.g., Car, Human, etc.
� equivalent to: Car(x), etc., in FOL

• Roles:

� Like slots in frames
� E.g., hasChildren

• Complex (compound) concepts:

� Built by composition from other concepts and roles
� Often intersection of concepts (�) as operator
� Different composition operators ) different logics
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• Knowledge in a DL system divided into two “boxes”
• Tbox (terminological box):

� definitions – the ontology, i.e.
� consists of concepts – e.g., Human
� relatively static across problems
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• Knowledge in a DL system divided into two “boxes”
• Tbox (terminological box):

� definitions – the ontology, i.e.
� consists of concepts – e.g., Human
� relatively static across problems

• Abox (assertion box):

� facts about current problem
� instances of concepts – e.g., Human(Roy)
� dynamic across, even within problems
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• Woman:
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• Woman:
Woman ⌘ Person � Female
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• Woman:
Woman ⌘ Person � Female

• Parent:
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• Woman:
Woman ⌘ Person � Female

• Parent:

Parent ⌘ Person � 9hasChild.Person
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• Woman:
Woman ⌘ Person � Female

• Parent:

Parent ⌘ Person � 9hasChild.Person

• Mother:
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• Woman:
Woman ⌘ Person � Female

• Parent:

Parent ⌘ Person � 9hasChild.Person

• Mother:
Mother ⌘ Parent � Woman
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• Woman:
Woman ⌘ Person � Female

• Parent:

Parent ⌘ Person � 9hasChild.Person

• Mother:
Mother ⌘ Parent � Woman

• Students who take COS 470:
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• Woman:
Woman ⌘ Person � Female

• Parent:

Parent ⌘ Person � 9hasChild.Person

• Mother:
Mother ⌘ Parent � Woman

• Students who take COS 470:

Student � 9classSchedule.(9contains.COS470)
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• Joe is Harry’s son:
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• Joe is Harry’s son:

hasSon(Harry, Joe)
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• Joe is Harry’s son:

hasSon(Harry, Joe)

• Roy is a professor:
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• Joe is Harry’s son:

hasSon(Harry, Joe)

• Roy is a professor:

Professor(Roy)
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• Joe is Harry’s son:

hasSon(Harry, Joe)

• Roy is a professor:

Professor(Roy)

Person(Roy) � hasRole(Roy,Professor)

(Person � 9hasRole.Professor)(Roy)
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• Some logics can count, too
• E.g.: “A mother with two female and at least one male children”:
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• Some logics can count, too
• E.g.: “A mother with two female and at least one male children”:

Mother� = 2(hasChild.Female)� � 1(hasChild.Male)
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• Reasoning in DL systems occurs in context of Tbox and Abox
• Tbox reasoning: subsumption

� Is concept A � concept B?
� E.g.:

Mother ⌘ Person � Female � 9hasChild.Person
Parent ⌘ Person � 9hasChild.Person
Mother � Parent

� Can be much more complicated and indirect

• Abox reasoning: classification

� Is A an instance of concept B?

• Often other kinds of reasoning, too
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• DL really comprised of a family of logics
• Basic is AL (ascription language)
• Add other operators, get new languages – e.g., ALU would be

AL plus union, etc.
• Simple DLs: decidable, (relatively) efficient inferences
• More expressive DLs: give up efficiency, even decidability
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• The CLASSIC language is an implementation of a DL (AL?)
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• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor
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• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor

Bachelor = And(Unmarried, Adult, Male)
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• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor

Bachelor = And(Unmarried, Adult, Male)
• (From R&N) Men with at least three sons who are all unemployed

and married to doctors, and at most two daughters who are all
professors in physics or math departments:
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• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor

Bachelor = And(Unmarried, Adult, Male)
• (From R&N) Men with at least three sons who are all unemployed

and married to doctors, and at most two daughters who are all
professors in physics or math departments:

And(Man,AtLeast(3,Son),AtMost(2,Daughter),

All(Son,And(Unemployed, Married,

All(Spouse,Doctor))),

All(Daughter,And(Professor,

Fills(Department,Physics,Math))))
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• General-purpose knowledge representation
• Natural language processing
• Reasoning in intelligent databases: entity-relation models
• Web Ontology Language (OWL):

� Part of semantic Web
� Associate machine-understandable semantics with Web

pages
� One language is OWL-DL
� Complete and decidable

Symbolic
Reasoning

Symbolic
reasoning

Knowledge
representation

First-order logic

Theorem proving

Rule-based
reasoning

Structured
knowledge
representation

Local DL example:
Orca

Topic: Local DL example: Orca

Example Orca DL

----------------------------------------
Definition=(SOME expectsPresenceOf Salinity)
Certainty=0.401
----------------------------------------
Definition=(SOME expectsPresenceOf OceanSurface)
Certainty=0.436
----------------------------------------
Definition=(SOME expectsPresenceOf

(AND Thruster (SOME hasAdvisedValue ShoreBased)))
Certainty=0.769
----------------------------------------
Definition=(SOME expectsPresenceOf

(AND Location
(SOME hasNumber

(AND Float
(D-FILLER hasNumericValue

1



(D-LITERAL 19.115639 (D-BASE-TYPE float)))
(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE string)))))

(SOME hasNumber
(AND Integer

(D-FILLER hasNumericValue
(D-LITERAL 31 (D-BASE-TYPE integer)))

(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE string)))))))

Certainty=0.482
----------------------------------------
Definition=(SOME expectsPresenceOf

(AND Survey (SOME hasDegreeExpected Mine)
(SOME definesGoal ActiveMission)))

Certainty=0.125
----------------------------------------
Definition=(SOME expectsPresenceOf

(AND DetectSubmarine
(D-FILLER hasEventDescription

2

(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))

Certainty=0.243
----------------------------------------
Definition=(SOME hasFuzzyFeature

(AND Danger
(SOME hasFuzzyMembershipFunction

(AND TrapezoidalFunction
(SOME hasLocalMaxAt Number)
(SOME hasLocalMaxAt

(AND Float
(D-FILLER hasNumericValue
(D-LITERAL 24.848389
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#float)))

(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))

(SOME hasLocalMinAt Number)

3

(SOME hasLocalMinAt
(AND Integer

(D-FILLER hasNumericValue
(D-LITERAL 5
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#integer)))

(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))))))

Certainty=0.334
----------------------------------------
Definition=(AND (SOME hasActivePeriod EnteringContext)

(SOME hasOperationalSetting
(AND SelfDepth (SOME hasAdvisedValue Medium))))

Certainty=0.943
----------------------------------------
Definition=(AND

(SOME definesGoal
(AND SamplingComplete

(D-FILLER hasEventDescription

4

(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))

(SOME hasCost Medium) (SOME hasDegreeExpected High)
(SOME hasImportance High)
(SOME isAchievedBy (AND Maneuver (SOME hasActor PeerAgent))))

Certainty=0.559
----------------------------------------
Definition=(AND

(SOME respondsWithAction
(AND CommunicateStatus

(SOME hasObject
(AND NavigationComputer

(SOME hasCost
(AND SelfBatteryLevel

(SOME hasStateValue Medium)))))
(SOME hasActor AdversaryAgent)
(SOME isSampleTargetOf PeerAgent)))

(SOME hasImportance Medium)
(SOME handlesEvent

(AND SensorFailure

5



(D-FILLER hasEventDescription
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string))))))

Certainty=0.124
----------------------------------------
Definition=(AND

(SOME handlesEvent
(AND PowerFailure

(SOME hasStateValue
(AND ThrusterFailure

(D-FILLER hasEventDescription
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))))

(SOME hasImportance Low)
(SOME respondsWithAction

(AND MaintainPosition (SOME hasActor Agent))))
Certainty=0.904
----------------------------------------
Definition=(SOME definesAction

6

(AND Thruster
(SOME hasObject

(AND PeerAgent (SOME hasNumber Targeted)))
(SOME hasSpeed AdversaryAgent)))

Certainty=0.655
----------------------------------------
Definition=(SOME definesAction

(AND MaintainPosition
(SOME hasDirection

(AND Number (SOME handlesEvent Submarine)))
(SOME hasSpeed

(AND Float
(SOME hasObject

(AND Navigate
(SOME hasActor AdversaryAgent)))))

(SOME definesGoal Thruster)))
Certainty=0.117
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