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I Without some guidance: average case is likely to be
exponential

I Can we do better by using knowledge to
I prioritize nodes to expand?
I prune some paths entirely?
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I Use heuristics to search smarter
I Heuristic: “rule of thumb”, estimate, guess about

I search space topology
I problem domain property
I problem-solving process itself

I Defeasible
I Should be easy to calculate
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I Heuristic function maps state→ worth
I Apply heuristic to child states
I Expand most desirable state first
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I Differ in kind of information/heuristics available
I Local information:

I How good is this state?
I How good are the next states

I Global information:
I How close is this state/next state(s) compared to

goal?
I How good is the path this/next states are on?

I Optimality or even completeness may not be
guaranteed
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I Idea: pick best node to expand next
I Recall R&N’s general algorithm for search:

function GENERAL-SEARCH( problem,QUEUING-FN) returns a solution, or failure

nodes MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))
loop do
if nodes is empty then return failure
node REMOVE-FRONT(nodes)
if GOAL-TEST[problem] applied to STATE(node) succeeds then return node
nodes QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))

end

I Have Queuing-Fn pick best node picked first based
on heuristic function
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I Simple, purely local best-first search
I Analogy: real hill-climbing

I When path branches, choose direction that
increased altitude

I May not be good: but best with available information
I Sometimes “up” is “down”: want lowest cost, e.g.
I Gradient descent (← neural network’s backprop)
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I Let h(si) = heuristic function, s = current state
I Simple hill climbing: if h(si)) > h(s), choose si

I Steepest-ascent hill-climbing: choose best si that is
better than s:
Choose sm = argmax(h(si)) if h(sm) > h(s)
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I Steepest-ascent: maybe quicker to goal
I Simple may be quicker to do: e.g., large # of

children, expensive heuristic function
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I No history:
I Reduce space complexity
I But could repeat states if poor/uncertain heuristics→

infinite loop
I Local minima problem

I Save history:
I If local minimum 6= goal, can backtrack
I Doesn’t solve local minima problem in general. . .
I . . . e.g., “go as far east as possible”
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I World:

1 2 3 4 5
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I Operators: R, L, U, D
I Heuristics?

I Straight-line distance
I Manhattan distance
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I Occurs when at a and ∀b | child(b,a) ∧ h(a) ≥ h(b)
I Can’t find successor!
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I Occurs when at a and ∀b | child(b,a) ∧ h(a) ≥ h(b)
I Can’t find successor!
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I Possible solution: backtrack
I Implementation: DFS, but order expansion by child

cost
I But what if this is the initial state:
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I Also, what if relative goal, e.g., “go East as far as you
can”?
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I Have ≥ 2 axes, continuous space
I Heuristic function looks something like:

I Progress if stepping in one dimension: slow, zig-zag
I Maybe can’t make a single move to a better position
I Possible solution: try several moves in a row
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I Reach area of search space where everything looks
same (wrt h(s))

I Potential solution: take n steps, do random jump
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I Good when we want to quickly find reasonable
solution

I Premise: local optimality⇒ global optimality
I If local heuristic always accurate⇒ goal
I May be the best we can do without some global

information
I Can be used to search real world
I May sometimes get heuristic for free

I If side-effect of checking for goal
I E.g., if goal is to be close to x , then get distance

during goal check
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I No guarantee of optimality!
I Local character of heuristics⇒ plateau, ridge,

minima problems
I Hard to get started in some problems if all choices

look the same
I Example: Robot in Boardman, wants to get to

downtown Orono
I Huge number of possible “next states”
I All about the same in terms of distance from

downtown
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Started from the bottom, now we’re here. . .

–A.D. Graham

Always gonna be a uphill battle
Sometimes I’m gonna have to lose
Ain’t about how fast I get there,
Ain’t about what’s waiting on the other side
It’s the climb

–M. Cyrus
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I Hill-climbing is one type of greedy search:
I Pick better/best next node
I HC is local, however

I Can also have non-local greedy search
I Choose best node from frontier – as in uniform-cost

search
I “Best” now incorporates heuristic
I h(s) estimates distance to goal
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I don’t make merry myself at Christmas and I can’t
afford to make idle people merry.

–E. Scrooge

And I’m greedy
’Cause I’m so greedy

–A. Grande
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I Uniform-cost (branch-and-bound): complete, optimal;
no heuristics

I Greedy search: usually quick to zero in on goal; not
guaranteed to be optimal

I Why not combine them?
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I Greedy with respect to estimated total path cost
I Given: problem with start S and goal G
I Let f (i) = g(i) + h(i) be best-cost path from S → G

through i
I g(i) = cost of best path S → i
I h(i) = cost of best path i → G

I Can know g(i)
I Estimate h(i) by h′(i) (also: h ∗ (i)): a heuristic

function
I f ′(i) = g(i) + h′(i) = estimate of best cost path

through i
I From the frontier: pick node with minimum f ′
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I Could use R&N’s
Best-First-Search(problem,g+h\prime{})

I May be easier to understand as standard algorithm
I Sketch:

I Put start on a queue of open nodes
I At each point:

I Select the open (frontier) node with the best f ′(i)
I If none, fail; if goal, success.
I Otherwise, update f ′(i) for the children, add them to

queue
I Hopefully f ′ is a better estimate of f as search

progresses
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function A∗(p)
Input: a problem p
Returns: path to solution or nil if none
Let Open, Closed be empty lists
Let Current = a search node
Current.state = Start(p)
Current.f = h(Start), Current.g = 0
Add Current to Open
while Open is non-empty do

Current = node on Open with lowest f value
Remove Current from Open, put on Closed
if Current.state = Goal(p) then

Compute path to Current, return path
else
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for each successor state i of Current.state do
gi = Current.g + Cost(Current.state, i)
fi = gi + h(i)
if i not on Open or Closed then

Create Child node, Child.state = i
Child.parent = Current
Child.g = gi , Child.f = fi
Add Child to Open list

else
Child = Find(i ,Open) | Find(i ,Closed)
if fi < Child.f then

Child.g = g(i), Child.f = fi
Child.parent = Current
if Child ∈ Closed then

Remove, place on Open
Return nil (failure)
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I Complete?

Yes
I Optimality: Two types: optimal solution and optimal

search
I Admissible search:

A search algorithm is admissible if, for any
graph, it always terminates in an optimal
path from [the start] to goal when ever a
path from [the start] to a goal node exists.”
(Nilsson)

I Is A* admissible?



Heuristic Search

Uniformed search

Heuristic search

Hill-climbing

Greedy search

A*

Iterative
Deepening A*

Memory-bounded
A*

Simulated
annealing

Beam search

Properties of A*

AI
rtificial

ntelligence
Copyright © 2017 UMaine School of Computing and Information Science

I Complete? Yes

I Optimality: Two types: optimal solution and optimal
search

I Admissible search:
A search algorithm is admissible if, for any
graph, it always terminates in an optimal
path from [the start] to goal when ever a
path from [the start] to a goal node exists.”
(Nilsson)

I Is A* admissible?



Heuristic Search

Uniformed search

Heuristic search

Hill-climbing

Greedy search

A*

Iterative
Deepening A*

Memory-bounded
A*

Simulated
annealing

Beam search

Properties of A*

AI
rtificial

ntelligence
Copyright © 2017 UMaine School of Computing and Information Science

I Complete? Yes
I Optimality: Two types: optimal solution and optimal

search

I Admissible search:
A search algorithm is admissible if, for any
graph, it always terminates in an optimal
path from [the start] to goal when ever a
path from [the start] to a goal node exists.”
(Nilsson)

I Is A* admissible?



Heuristic Search

Uniformed search

Heuristic search

Hill-climbing

Greedy search

A*

Iterative
Deepening A*

Memory-bounded
A*

Simulated
annealing

Beam search

Properties of A*

AI
rtificial

ntelligence
Copyright © 2017 UMaine School of Computing and Information Science

I Complete? Yes
I Optimality: Two types: optimal solution and optimal

search
I Admissible search:

A search algorithm is admissible if, for any
graph, it always terminates in an optimal
path from [the start] to goal when ever a
path from [the start] to a goal node exists.”
(Nilsson)

I Is A* admissible?



Heuristic Search

Uniformed search

Heuristic search

Hill-climbing

Greedy search

A*

Iterative
Deepening A*

Memory-bounded
A*

Simulated
annealing

Beam search

Properties of A*

AI
rtificial

ntelligence
Copyright © 2017 UMaine School of Computing and Information Science

I Complete? Yes
I Optimality: Two types: optimal solution and optimal

search
I Admissible search:

A search algorithm is admissible if, for any
graph, it always terminates in an optimal
path from [the start] to goal when ever a
path from [the start] to a goal node exists.”
(Nilsson)

I Is A* admissible?



Heuristic Search

Uniformed search

Heuristic search

Hill-climbing

Greedy search

A*

Iterative
Deepening A*

Memory-bounded
A*

Simulated
annealing

Beam search

Admissibility of A*

AI
rtificial

ntelligence
Copyright © 2017 UMaine School of Computing and Information Science

I Suppose A* selects a goal node G from Open
I ⇒ ∀ i ∈ Open, f ′(G) ≤ f ′(i)
I Suppose ∀ i ∈ Open,h′(i) ≤ h(i)

I ⇒ h′ is an underestimating heuristic
I ⇒ f ′ also underestimates f for all nodes

I Nodes really represent paths to goal through a state
I f ′(G) = f (G) since we are at goal
I Cost of path to G ≤ all other estimated costs. . .
I . . . and estimated costs ≤ actual costs. . .
I ∴ G is optimal path
I ∴ A* is admissible with underestimating heuristics
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I We consider h′ ≤ h to be underestimating heuristic
I What if sometimes h′ > h?
I Suppose G, representing a path to goal, is selected

from Open
I f (g) ≤ f ′(i), ∀ i ∈ Open
I But some f ′(i) > f (i)
I ∴ possible: f (i) < f (G)⇒ G not optimal path

I Also:
I Extra work may be done during search
I Select node j , but possible f (i) < f (j)
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I What happens if ∀ i ,h′(i) = 0?

⇒ uniform-cost
search

I What if we ignore g, i.e., f ′(i) = h′(i)?⇒
greedy/best-first search

I What if f ′(i) = depth of i ⇒ BFS
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I What if we ignore g, i.e., f ′(i) = h′(i)?⇒
greedy/best-first search

I What if f ′(i) = depth of i

⇒ BFS
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I What happens if ∀ i ,h′(i) = 0? ⇒ uniform-cost
search

I What if we ignore g, i.e., f ′(i) = h′(i)?⇒
greedy/best-first search

I What if f ′(i) = depth of i ⇒ BFS



Heuristic Search

Uniformed search

Heuristic search

Hill-climbing

Greedy search

A*

Iterative
Deepening A*

Memory-bounded
A*

Simulated
annealing

Beam search

Heuristics for A*

AI
rtificial

ntelligence
Copyright © 2017 UMaine School of Computing and Information Science

I Best heuristic function: highest value without
overestimating cost

I Limitation of admissibility: not always easy to find
underestimating heuristic function

I Graceful decay of admissibility
I Let Co be the cost of the optimal solution
I Suppose h′ rarely overestimates h by more than δ
I ⇒ A* will rarely find a solution whose cost is > Co + δ
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I Relax problem by taking away some condition in
problem statement

I Exact solution to relaxed problem often good
heuristic

I E.g., in Robot World:
I Problem: Move from S to G using Manhattan moves

and avoiding obstacles
I Relaxed 1: Move from S to G using Manhattan

moves.
I Relaxed 2: Move from S to G
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I Effective branching factor:
I Suppose expand N nodes for depth d solution
I In a balanced tree, what would have been branching

factor?
I No closed-form solution, but can estimate b∗

I b∗ ≈ 2log N/d – or
I b∗ ≈ N1/d

I E.g.:
I Expand N = 1024 nodes, depth d = 10: b∗ ≈ 2
I Expand N = 1000 nodes, depth d = 5: b∗ ≈ 4;

45 = 1024

I Heuristic h1 is better h2 if b1∗ < b2∗ for all nodes
I Ideally: b∗ close to 1
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I Heuristic h2 dominates h1 if for any node n,
h2(n) > h1(n)

I A* using h2 will never expand more nodes than using
h1

I What if no heuristic dominates any other?
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I A* is optimally efficient: for any heuristic function, no
other optimal algorithm is guaranteed to expand
fewer nodes

I If A*1 uses h′
1 and A*2 uses h′

2 and h′
1(n) > h′

2(n)
for all n, then A*2 expands at least every node that
A*1 does

I Time complexity: still O(bd) in worst case
I Space complexity: Poor – keeps all expanded nodes

in memory!
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A*, others in JavaScript
A* vs Dijkstra
A* example video

https://qiao.github.io/PathFinding.js/visual/
https://github.com/kevinwang1975/PathFinder
https://youtu.be/19h1g22hby8
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Every day A* is born.

–J. –Z

When you wish upon A*
. . .
Anything your heart desires will come to you.

–J. Cricket
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I Space complexity of A* is terrible – maybe do
something like IDFS?

I Instead of depth, think cost
I Use DFS multiple times, each time within some cost

“contour” limit (min. of any node exceeding prev.
limit)
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function IDA*( problem) returns a solution sequence

inputs: problem, a problem

static: f-limit, the current f - COST limit

root, a node

root MAKE-NODE(INITIAL-STATE[problem])

f-limit f - COST(root)

loop do

solution, f-limit DFS-CONTOUR(root, f-limit)

if solution is non-null then return solution

if f-limit =1 then return failure; end

function DFS-CONTOUR(node, f-limit) returns a solution sequence and a new f - COST limit

inputs: node, a node

f-limit, the current f - COST limit

static: next-f, the f - COST limit for the next contour, initially1

if f - COST[node] > f-limit then return null, f - COST[node]

if GOAL-TEST[problem](STATE[node]) then return node, f-limit

for each node s in SUCCESSORS(node) do

solution, new-f DFS-CONTOUR(s, f-limit)

if solution is non-null then return solution, f-limit

next-f MIN(next-f, new-f); end

return null, next-f
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I Complete, optimal – with same restrictions as A*
I Space complexity: worst case O(bf ′/δ), where:

I b = branching factor, f ′ = cost of optimal solution
I δ = smallest operator cost

I Can estimate usually as O(bd)
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I Time depends on properties of h′

I If h′ has large grain size, then search quite a bit of
the tree each DFS call

I Small grain size: DFS may be called many times –
worst case, once per expanded node

I if A* expands a nodes, IDA* in this case expands
1 + 2 + ...+ a = a2 nodes

I worst case: O((bd )2) = O(b2d)
I Example

I Can ameliorate this by forcing granularity to be
coarse

I Increase f ′ contour by ε each time
I Solution could be as much as ε sub-optimal
I ε-admissibility
I Example

https://qiao.github.io/PathFinding.js/visual/
https://qiao.github.io/PathFinding.js/visual/
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They meant to set up a standard maxim for free society, which
should be familiar to all, and revered by all; constantly
looked to, constantly labored for, and even though never
perfectly attained, constantly approximated, and thereby
constantly spreading and deepening its influence and
augmenting the happiness and value of life to all people of
all colors everywhere.

–A. Lincoln
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I Can we do better with respect to space?

I Simple memory-bounded A*

I Uses whatever memory you give it
I If enough memory to store a solution⇒ complete
I If enough to store optimal solution⇒ optimal
I If not, will return best solution that will fit in memory

I Idea:

I Proceed like A*, but when bump against memory limit,
drop the highest-cost node from queue

I Record in a node the cost of its best descendant node
I Don’t re-expand unless all other paths in memory are

worse

I Complex search! – see R&N for details
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Enough is as good as a feast.

–Joshua Sylvester, Works (1611).
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I Hill-climbing: iterative improvement algorithm

I Some drawbacks: e.g., local minima/maxima

I Addressed drawbacks with (e.g.) random jumps–can we
do better?

I Simulated annealing: allows some “downhill” moves to
escape local maxima

I Analogous to annealing
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I Goal: Metal at lowest energy level

I ⇒ Most stable crystal structure

I Problem: ∃ local minima, “trap” metal as it cools

I Solution: annealing

I Make use of randomness – thermal noise – in physical
system

I Devise schedule of temperature reduction

I Hold/slow at some temperatures for a while⇒ escape
local minima



Heuristic Search

Uniformed search

Heuristic search

Hill-climbing

Greedy search

A*

Iterative
Deepening A*

Memory-bounded
A*

Simulated
annealing

Beam search

Simulated annealing

AI
rtificial

ntelligence
Copyright © 2017 UMaine School of Computing and Information Science

I At start, probability of random moves high

I As progress, ↓probability

I Define:

I “Temperature” T: P(uphill move) ∝ T

I Schedule for lowering temperature over time/as moves
made
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I At node: Try a random move

I If better state, take it

I If not, then with P = f (T), take move

I Reduce temperature according to schedule
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Simulated annealing example

https://youtu.be/iaq_Fpr4KZc
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Love’s a different sort of thing, hot enough to make you flow
into something, interflow, cool and anneal and be a weld
stronger than what you started with.

Theodore Sturgeon, More than Human (1953)
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I Problem with breadth-first searches: branching factor!

I If can reduce b, speed up the search

I Approach: search only i best open nodes at level – i =
beam width

I Pros: faster, cheaper (wrt. space)

I Cons: maybe not optimal, maybe not complete!
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I Like beam search, but random element

I Choose i nodes at random: prob of selection is function
of worth
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Dim as the borrowed beams of moon and stars
To lonely, weary, wandering travellers. . .

John Dryden, Religio Laici (1682)
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