# Constraint Satisfaction

### UMaine COS 470/570 – Introduction to AI Spring 2019

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

### Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

#### ◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

Search

# Search so far...

- Uninformed search nothing known about state space
- Heuristic search *something* known, at least defeasible
- Both: searching for a state with little internal structure
- Many problems: state has internal structure
- Important class of problems: state is assignment of values to variables

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



・ロト・西ト・ヨト・ヨー うらの

 Cryptarithmetic: Assign 0–9 uniquely to letters so that a symbolic expression is valid

SEND

+MORE

MONEY

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

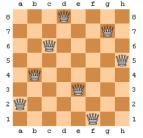
Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA




 Cryptarithmetic: Assign 0–9 uniquely to letters so that a symbolic expression is valid

SEND

+MORE

MONEY

N-queens problem: Place n queens on an n × n chessboard so that they don't attack one another



#### (From okpanico.files.wordpress.com) Copyright © 2017 UMaine School of Computing and Information Science

Constraint Satisfaction

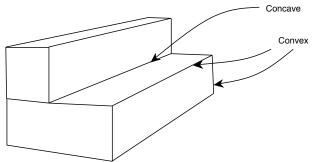
#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases


Miscellaneous

Application: Task assignment in CoDA



ъ

 Computer vision: Classify edges in an image as convex or concave



#### Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Solving simultaneous equations

$$3x + 4y + 6z = 3$$

$$4x + 6y - 3z = 4$$

$$7x - 3y - 4z = 10$$

#### Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Solving simultaneous equations

$$3x + 4y + 6z = 3$$
  
 $4x + 6y - 3z = 4$   
 $7x - 3y - 4z = 10$ 

BSAT: Is a sum-of-products binary expression satisfiable, and if so, with what T/F assignments?

 $ABC + \overline{A} \overline{B} C + \cdots + ABC\overline{D}$ 



#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

●●● Ⅲ → Ⅲ → Ⅲ → ▲ ■ → → ■ → → ■ →

Map coloring: Can we color a map of connected regions with n colors without two adjacent regions having the same color?



(From people.math.gatech.edu/~thomas)

#### Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

●●● Ⅲ → Ⅲ → Ⅲ → ▲ ■ → → ■ → → ■ →

Map coloring: Can we color a map of connected regions with n colors without two adjacent regions having the same color?



(From people.math.gatech.edu/~thomas)

Scheduling: Scheduling a meeting with n people

#### Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

To solve: could use blind or heuristic search

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ○ ○ ○

- To solve: could use blind or heuristic search
- But:
  - Often very large search spaces:



#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- To solve: could use blind or heuristic search
- But:
  - Often very large search spaces:
    - v variables, d values  $\Rightarrow \mathcal{O}(d^v)$



#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

To solve: could use blind or heuristic search

But:

- Often very large search spaces:
  - v variables, d values  $\Rightarrow \mathcal{O}(d^v)$
  - E.g., BSAT with 40 variables  $\Rightarrow \mathcal{O}(2^{40})$

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

To solve: could use blind or heuristic search

But:

- Often very large search spaces:
  - v variables, d values  $\Rightarrow \mathcal{O}(d^v)$
  - E.g., BSAT with 40 variables  $\Rightarrow \mathcal{O}(2^{40})$
  - ► E.g., Map coloring continental US w/ 4 colors  $\Rightarrow$  $\mathcal{O}(4^{48}) = \mathcal{O}(2^{96}) = \mathcal{O}(10^{28})$



#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



▲□▶▲□▶▲□▶▲□▶ = のへの

To solve: could use blind or heuristic search

But:

- Often very large search spaces:
  - v variables, d values  $\Rightarrow \mathcal{O}(d^v)$
  - E.g., BSAT with 40 variables  $\Rightarrow \mathcal{O}(2^{40})$
  - ► E.g., Map coloring continental US w/ 4 colors  $\Rightarrow$  $\mathcal{O}(4^{48}) = \mathcal{O}(2^{96}) = \mathcal{O}(10^{28})$
- Often selecting a value for one variable constrains the values another can have

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous



To solve: could use blind or heuristic search

But:

- Often very large search spaces:
  - v variables, d values  $\Rightarrow \mathcal{O}(d^v)$
  - E.g., BSAT with 40 variables  $\Rightarrow \mathcal{O}(2^{40})$
  - ► E.g., Map coloring continental US w/ 4 colors  $\Rightarrow$  $\mathcal{O}(4^{48}) = \mathcal{O}(2^{96}) = \mathcal{O}(10^{28})$
- Often selecting a value for one variable constrains the values another can have

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous



> To solve: could use blind or heuristic search

But:

- Often very large search spaces:
  - v variables, d values  $\Rightarrow \mathcal{O}(d^v)$
  - E.g., BSAT with 40 variables  $\Rightarrow \mathcal{O}(2^{40})$
  - ► E.g., Map coloring continental US w/ 4 colors  $\Rightarrow$  $\mathcal{O}(4^{48}) = \mathcal{O}(2^{96}) = \mathcal{O}(10^{28})$

 Often selecting a value for one variable constrains the values another can have

Better approach:

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous



> To solve: could use blind or heuristic search

But:

- Often very large search spaces:
  - v variables, d values  $\Rightarrow \mathcal{O}(d^v)$
  - E.g., BSAT with 40 variables  $\Rightarrow \mathcal{O}(2^{40})$
  - ► E.g., Map coloring continental US w/ 4 colors  $\Rightarrow$  $\mathcal{O}(4^{48}) = \mathcal{O}(2^{96}) = \mathcal{O}(10^{28})$
- Often selecting a value for one variable constrains the values another can have

Better approach:

- Explicitly recognize constraints between variables
- Make use of constraints to guide search

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

Artificial Intelligence

> To solve: could use blind or heuristic search

But:

- Often very large search spaces:
  - v variables, d values  $\Rightarrow \mathcal{O}(d^v)$
  - E.g., BSAT with 40 variables  $\Rightarrow \mathcal{O}(2^{40})$
  - ► E.g., Map coloring continental US w/ 4 colors  $\Rightarrow$  $\mathcal{O}(4^{48}) = \mathcal{O}(2^{96}) = \mathcal{O}(10^{28})$
- Often selecting a value for one variable constrains the values another can have

Better approach:

- Explicitly recognize constraints between variables
- Make use of constraints to guide search
- Constraints can focus search: concentrate where variables constrain each other (e.g.)

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへの

> To solve: could use blind or heuristic search

But:

- Often very large search spaces:
  - v variables, d values  $\Rightarrow \mathcal{O}(d^v)$
  - E.g., BSAT with 40 variables  $\Rightarrow \mathcal{O}(2^{40})$
  - ► E.g., Map coloring continental US w/ 4 colors  $\Rightarrow$  $\mathcal{O}(4^{48}) = \mathcal{O}(2^{96}) = \mathcal{O}(10^{28})$
- Often selecting a value for one variable constrains the values another can have
- Better approach:
  - Explicitly recognize constraints between variables
  - Make use of constraints to guide search
- Constraints can focus search: concentrate where variables constrain each other (e.g.)
- Sometimes: radically reduce search effort

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



・ロト・(四)・(日)・(日)・(日)

#### Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

### Constraint satisfaction problems

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

- Constraint satisfaction problems (CSPs):
  - ► Require set of variables to be bound to values ∈ domain
  - Require constraints to be satisfied
- Instead of trying all possible variable/value assignments via search...
- Propagate constraints and values 
   ⇒ reduce domains
   of variables
- ▶  $\mathcal{O}(v^d)$  in w.c.: try  $\Rightarrow \mathcal{O}(v^{d'}), d' \ll d$  in average case
- $\blacktriangleright$  Fox, others: All problems can be reformulated  $\Rightarrow$  CSPs

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



- Types by arity:
  - Unary constraints: constraint on single value
  - Binary, ternary, n-ary constraints: restrict value of variable depending on value of other variable(s)
  - All n ary constraints can be  $\Rightarrow$  binary constraints
- Types by whether absolute or preference constraints

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

# Constraint propagation

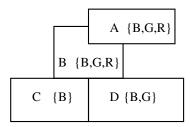
- Suppose we reduce domain of v<sub>1</sub> that constrains v<sub>2</sub>
- Some values in v<sub>2</sub> might now be eliminated
- Thus decision at v<sub>1</sub> propagates via the constraint to v<sub>2</sub>
- Propagation continues from v<sub>2</sub>, etc.
- May ultimately change v<sub>1</sub> again
- Stop when no more changes occur
- More constrained the values  $\rightarrow$  faster to a solution

#### Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism


Constraint Propagation

Special cases

Miscellaneous



# An Example of constraint propagation



Map-coloring Problem

- Cannot color adjacent areas with the same color
- Some areas may have unary constraints which limit their domains
- Eliminate impossible assignments by propagating constraints

Constraint Satisfaction



Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous



### CSP formalism

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Constraint graph

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Constraint graph
  - Nodes = variables

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

### Constraint graph

- Nodes = variables
- Arcs = constraints

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

### Constraint graph

- Nodes = variables
- Arcs = constraints
- Domain for each variable

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous



- Constraint graph
  - Nodes = variables
  - Arcs = constraints
- Domain for each variable

### One possible Constraint representation: *intensionally*

 $-e.g., v_1 \neq v_2$ 

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

- Constraint graph
  - Nodes = variables
  - Arcs = constraints
- Domain for each variable

### One possible Constraint representation: intensionally

- $-e.g., v_1 \neq v_2$
- Easier (for finite domains):

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



・ロト・西ト・ヨト・ヨー うらの

- Constraint graph
  - Nodes = variables
  - Arcs = constraints
- Domain for each variable
- One possible Constraint representation: *intensionally*  $-e.g., v_1 \neq v_2$
- Easier (for finite domains):
  - Extensionally list values that satisfy constraint

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



### Constraint graph

- Nodes = variables
- Arcs = constraints
- Domain for each variable

# One possible Constraint representation: intensionally

- $-e.g., v_1 \neq v_2$
- Easier (for finite domains):
  - Extensionally list values that satisfy constraint
  - I.e., positive constraints

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous



### Constraint graph

- Nodes = variables
- Arcs = constraints
- Domain for each variable

### One possible Constraint representation: *intensionally* − e.g., v<sub>1</sub> ≠ v<sub>2</sub>

- Easier (for finite domains):
  - Extensionally list values that satisfy constraint
  - I.e., positive constraints
- Constraint

 $\textit{C} = \{(\textit{d}_1, \textit{d}_2) \, | \, \textit{d}_1 \in \textit{dom}(\textit{v}_1) \, \& \, \textit{d}_2 \in \textit{dom}(\textit{v}_2)\}$ 

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



## Constraint satisfaction problem

### Constraint graph

- Nodes = variables
- Arcs = constraints
- Domain for each variable

# • One possible Constraint representation: *intensionally* $-e.g., v_1 \neq v_2$

- Easier (for finite domains):
  - Extensionally list values that satisfy constraint
  - I.e., positive constraints
- Constraint

 $C = \{(d_1, d_2) \, | \, d_1 \in \mathsf{dom}(v_1) \, \& \, d_2 \in \mathsf{dom}(v_2) \}$ 

 Goal: All variables instantiated, no violated constraints Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



### What is a state?

- State representation 1: complete assignments
  - Start: Graph + random assignments
  - Operator: Change variable's value
  - Goal: All constraints satisfied
  - Generate and test search:
    - Set variable, check for goal
    - No guidance on which variable, value to choose
    - Quickly intractable: n!d<sup>n</sup> leaves

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



### What is a state?

- State representation 1: complete assignments
  - Start: Graph + random assignments
  - Operator: Change variable's value
  - Goal: All constraints satisfied
  - Generate and test search:
    - Set variable, check for goal
    - No guidance on which variable, value to choose
    - Quickly intractable: n!d<sup>n</sup> leaves
    - E.g.: For 4-coloring of 48 states: ~10<sup>90</sup>
- State representation 2: partial assignments
  - State: Graph + domains singleton = assignment
  - Operator: Make assignment
  - After each assignment: propagate constraints
  - Goal: all singleton domains
  - Encounter empty domain: backtrack
  - Systematically explore space by choosing how vars instantiated

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

3

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



#### Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

### **Constraint Propagation**

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● のへで

## Constraint propagation

- After value selected, propagate effects using constraints
- Propagation ⇒ narrowing of domains to be consistent
- Two types of consistency:
  - Node consistency
  - Arc consistency

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



・ロト・西ト・ヨト・ヨー うらの

### Node consistency

- Check unary constraints
- Pre-processing, O(n) step
- ► E.g.:
  - Map-coloring problem:
    - $\forall v \operatorname{dom}(v) = \{ \operatorname{red}, \operatorname{green}, \operatorname{blue}, \operatorname{yellow} \}$
  - Texans object to blue, dom(Texas) = {red, green, yellow}
- All unary constraints satisfied: graph is node-consistent
- Unary constraints reduce |domain| ⇒ prunes search tree, ↓ branching factor

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Eliminate any constraint violations

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

- Eliminate any constraint violations
- Pairwise checking of constraints, propagation of changes



Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

- Eliminate any constraint violations
- Pairwise checking of constraints, propagation of changes
- Delete values from domain of variable if they are not consistent with all constraints on the variable

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

- Eliminate any constraint violations
- Pairwise checking of constraints, propagation of changes
- Delete values from domain of variable if they are not consistent with all constraints on the variable
- What does "consistent" mean?

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



- Eliminate any constraint violations
- Pairwise checking of constraints, propagation of changes
- Delete values from domain of variable if they are not consistent with all constraints on the variable
- What does "consistent" mean?
  - Let v<sub>1</sub>, v<sub>2</sub> be variables connected by constraint c

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



・ロト・西ト・ヨト・ヨー うらの

- Eliminate any constraint violations
- Pairwise checking of constraints, propagation of changes
- Delete values from domain of variable if they are not consistent with all constraints on the variable
- What does "consistent" mean?
  - Let v<sub>1</sub>, v<sub>2</sub> be variables connected by constraint c
  - ► Value  $y \in \text{dom}(v_2)$  is consistent with c iff  $\exists x \in \text{dom}(v_1) \& (x, y) \in c$

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ = = のへの

- Eliminate any constraint violations
- Pairwise checking of constraints, propagation of changes
- Delete values from domain of variable if they are not consistent with all constraints on the variable
- What does "consistent" mean?
  - Let v<sub>1</sub>, v<sub>2</sub> be variables connected by constraint c
  - ► Value  $y \in \text{dom}(v_2)$  is consistent with c iff  $\exists x \in \text{dom}(v_1) \& (x, y) \in c$
- Forward checking:

Constraint Satisfaction

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



- Eliminate any constraint violations
- Pairwise checking of constraints, propagation of changes
- Delete values from domain of variable if they are not consistent with all constraints on the variable
- What does "consistent" mean?
  - Let v<sub>1</sub>, v<sub>2</sub> be variables connected by constraint c
  - ► Value  $y \in \text{dom}(v_2)$  is consistent with c iff  $\exists x \in \text{dom}(v_1) \& (x, y) \in c$
- Forward checking:
  - Special case of arc consistency

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

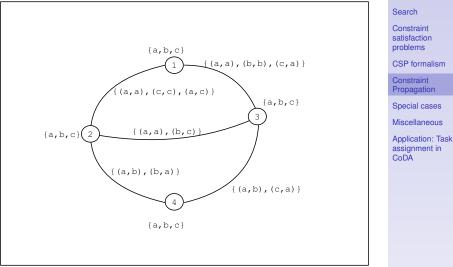


- Eliminate any constraint violations
- Pairwise checking of constraints, propagation of changes
- Delete values from domain of variable if they are not consistent with all constraints on the variable
- What does "consistent" mean?
  - Let v<sub>1</sub>, v<sub>2</sub> be variables connected by constraint c
  - ► Value  $y \in \text{dom}(v_2)$  is consistent with c iff  $\exists x \in \text{dom}(v_1) \& (x, y) \in c$
- Forward checking:
  - Special case of arc consistency
  - Initiated when variable assigned value

#### Search

Constraint satisfaction problems

CSP formalism


Constraint Propagation

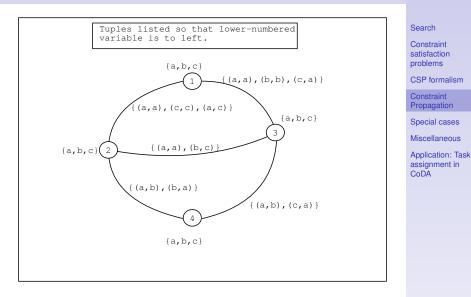
Special cases

Miscellaneous

Application: Task assignment in CoDA



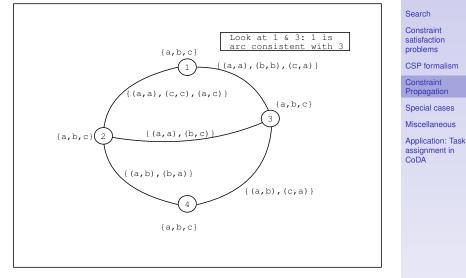



Constraint Satisfaction



Copyright © 2017 UMaine School of Computing and Information Science

・ コ ト ・ 厚 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・


Constraint Satisfaction





Copyright © 2017 UMaine School of Computing and Information Science

### Constraint Satisfaction





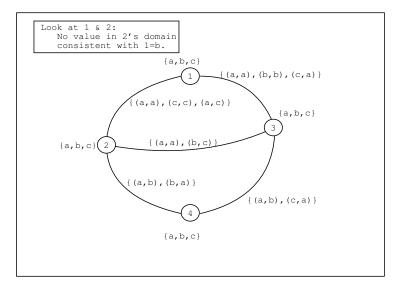
Copyright © 2017 UMaine School of Computing and Information Science

ヘロト 不得入 不定入 不定入 二定一

Constraint Satisfaction

Search

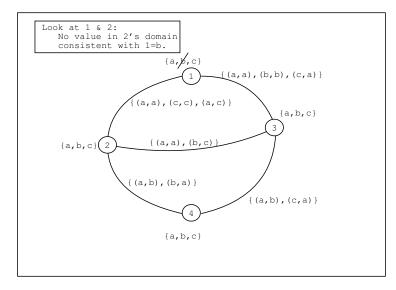
Constraint


satisfaction problems

CSP formalism Constraint Propagation

Special cases

Miscellaneous


Application: Task assignment in CoDA



Artificial Intelligence

Copyright © 2017 UMaine School of Computing and Information Science

Constraint Satisfaction



Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

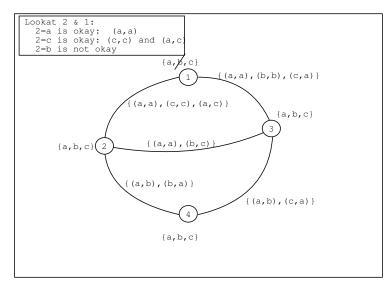


Copyright © 2017 UMaine School of Computing and Information Science

Constraint Satisfaction

Search

Constraint


satisfaction problems

CSP formalism Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Artificial Intelligence

Copyright © 2017 UMaine School of Computing and Information Science

Constraint Satisfaction

Lookat 2 & 1: 2=a is okay: (a,a) 2=c is okay: (c,c) and (a,c) 2=b is not okay {a, p, c} {(a,a), (b,b), (c,a)} (a,a),(c,c),(a,c)} {a,b,c} 3 {a, p, c} (2 {(a,a),(b,c) {(a,b),(b,a)} {(a,b),(c,a)} {a,b,c}

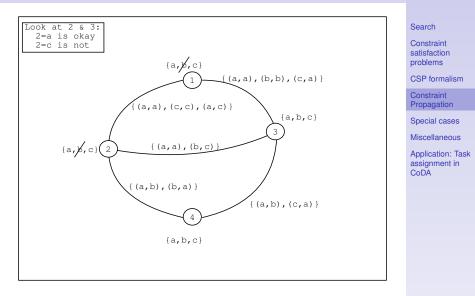
Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

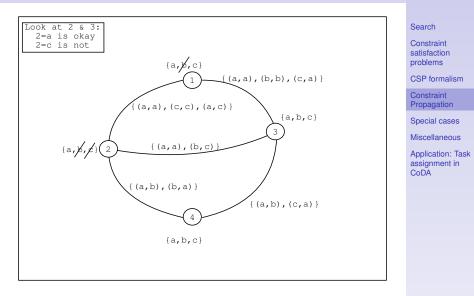
Special cases


Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

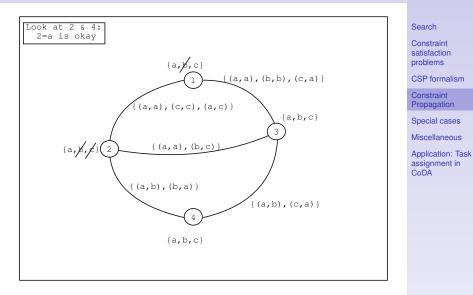

Constraint Satisfaction





Copyright © 2017 UMaine School of Computing and Information Science

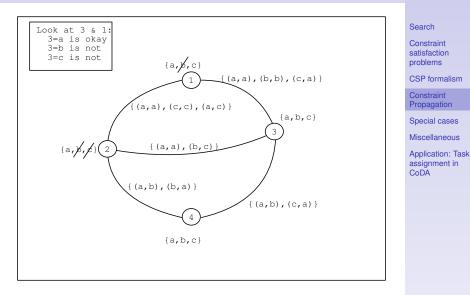
Constraint Satisfaction






Copyright © 2017 UMaine School of Computing and Information Science

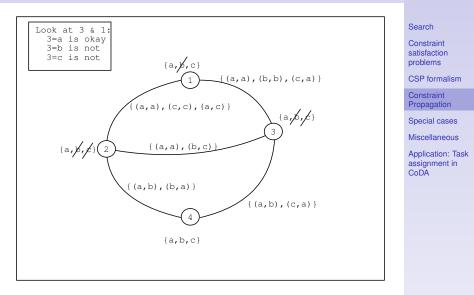
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�?


#### Constraint Satisfaction





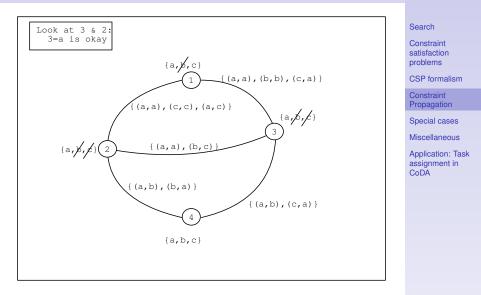
Copyright © 2017 UMaine School of Computing and Information Science


Constraint Satisfaction





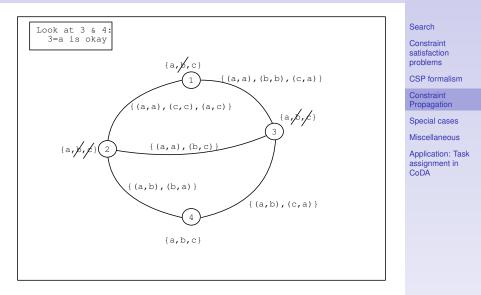
Copyright © 2017 UMaine School of Computing and Information Science


Constraint Satisfaction





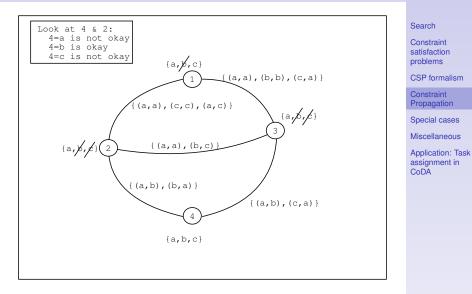
Copyright © 2017 UMaine School of Computing and Information Science


Constraint Satisfaction





Copyright © 2017 UMaine School of Computing and Information Science


Constraint Satisfaction





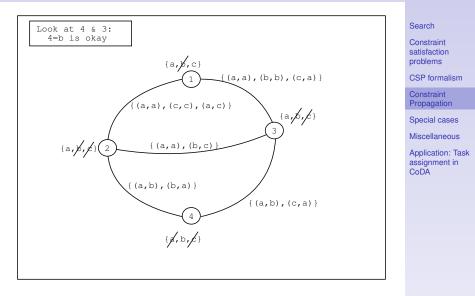
Copyright © 2017 UMaine School of Computing and Information Science

Constraint Satisfaction





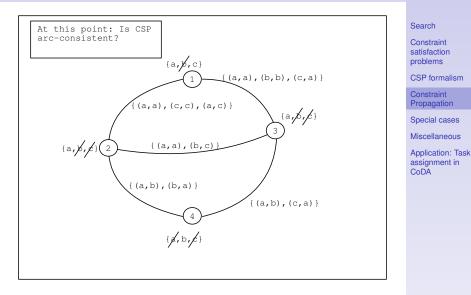
Copyright © 2017 UMaine School of Computing and Information Science


Constraint Satisfaction





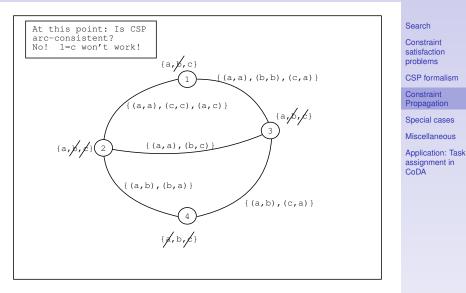
Copyright © 2017 UMaine School of Computing and Information Science


#### Constraint Satisfaction





Copyright © 2017 UMaine School of Computing and Information Science


#### Constraint Satisfaction



Artificial Intelligence

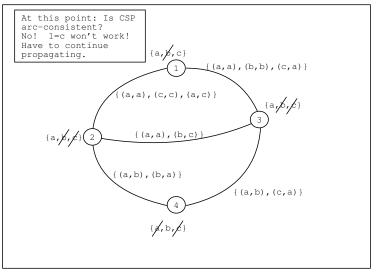
Copyright © 2017 UMaine School of Computing and Information Science

Constraint Satisfaction



Artificial Intelligence

Copyright © 2017 UMaine School of Computing and Information Science

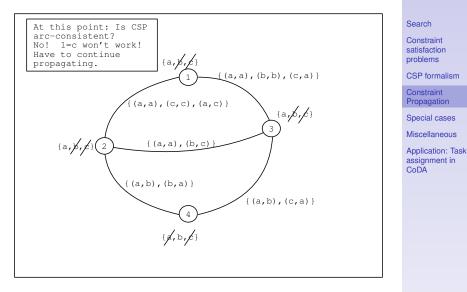

Constraint Satisfaction

Search

Constraint

satisfaction

problems

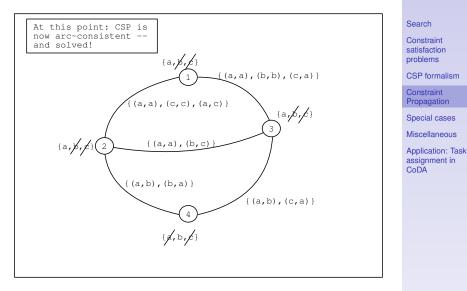



CSP formalism Constraint Propagation Special cases Miscellaneous Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

Constraint Satisfaction



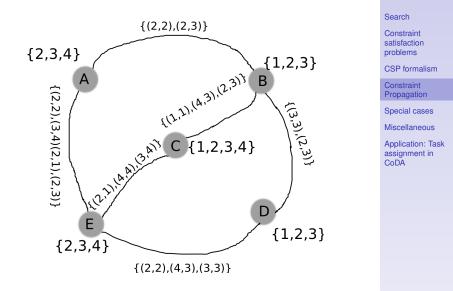

Artificial

Copyright © 2017 UMaine School of Computing and Information Science

## Example

### Constraint Satisfaction




Artificial Intelligence

Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Your turn

#### Constraint Satisfaction





Copyright © 2017 UMaine School of Computing and Information Science

ヘロト 人間 とくほとくほとう

æ

### Example of CSP

#### Constraint Satisfaction

Search

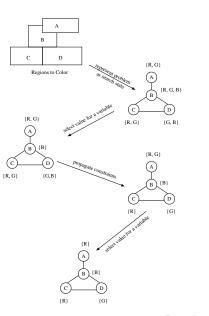
Constraint

satisfaction problems

Constraint

Propagation

Special cases


Miscellaneous

assignment in

CoDA

Application: Task

CSP formalism



Copyright © 2017 UMaine School of Computing and Information Science

<ロ> <四> <四> <四> <三</td>



► Best case: value selection + propagation →→ solution



Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- ► Best case: value selection + propagation →→ solution
- But it's a search process



Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

- ► Best case: value selection + propagation →→ solution
- But it's a search process :
  - But what if dead-end?

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○の≪⊙

- ► Best case: value selection + propagation →→ solution
- But it's a search process :
  - But what if dead-end?\ Backtrack

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

- ► Best case: value selection + propagation →→ solution
- But it's a search process :
  - But what if dead-end?\ Backtrack
  - And which variable, which value to pick each choice point?

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Which variable to set?

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

- Which variable to set?
  - Most-constrained variable heuristic:

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Which variable to set?
  - Most-constrained variable heuristic:
    - Pick variable with smallest remaining domain

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Which variable to set?
  - Most-constrained variable heuristic:
    - Pick variable with smallest remaining domain
    - Reduces branching factor: fewest alternatives to backtrack to

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

- Which variable to set?
  - Most-constrained variable heuristic:
    - Pick variable with smallest remaining domain
    - Reduces branching factor: fewest alternatives to backtrack to
  - Most-constraining variable heuristic:

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

- Which variable to set?
  - Most-constrained variable heuristic:
    - Pick variable with smallest remaining domain
    - Reduces branching factor: fewest alternatives to backtrack to
  - Most-constraining variable heuristic:
    - Assign variable with most constraints

### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



- Which variable to set?
  - Most-constrained variable heuristic:
    - Pick variable with smallest remaining domain
    - Reduces branching factor: fewest alternatives to backtrack to
  - Most-constraining variable heuristic:
    - Assign variable with most constraints
    - Reduces branching factor by pruning other variables' domains

Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



・ロト・西ト・ヨト・ヨー うらの

- Which variable to set?
  - Most-constrained variable heuristic:
    - Pick variable with smallest remaining domain
    - Reduces branching factor: fewest alternatives to backtrack to
  - Most-constraining variable heuristic:
    - Assign variable with most constraints
    - Reduces branching factor by pruning other variables' domains

Which value to use?

Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



- Which variable to set?
  - Most-constrained variable heuristic:
    - Pick variable with smallest remaining domain
    - Reduces branching factor: fewest alternatives to backtrack to
  - Most-constraining variable heuristic:
    - Assign variable with most constraints
    - Reduces branching factor by pruning other variables' domains
- Which value to use?
  - Least-constraining value heuristic:

Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



- Which variable to set?
  - Most-constrained variable heuristic:
    - Pick variable with smallest remaining domain
    - Reduces branching factor: fewest alternatives to backtrack to
  - Most-constraining variable heuristic:
    - Assign variable with most constraints
    - Reduces branching factor by pruning other variables' domains
- Which value to use?
  - Least-constraining value heuristic:
    - Choose value that rules out fewest values from connected variables

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



●●● Ⅲ → Ⅲ → Ⅲ → ▲ ■ → → ■ → → ■ →

- Which variable to set?
  - Most-constrained variable heuristic:
    - Pick variable with smallest remaining domain
    - Reduces branching factor: fewest alternatives to backtrack to
  - Most-constraining variable heuristic:
    - Assign variable with most constraints
    - Reduces branching factor by pruning other variables' domains
- Which value to use?
  - Least-constraining value heuristic:
    - Choose value that rules out fewest values from connected variables
    - increases likelihood of success

### Search

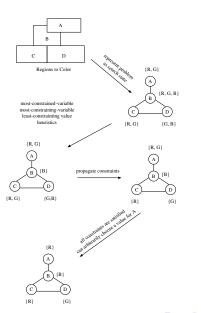
Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous


Application: Task assignment in CoDA



▲口 > ▲御 > ▲ 臣 > ▲ 臣 > ― 臣 ―

## Example

#### Constraint Satisfaction



Constraint satisfaction problems CSP formalism Constraint Propagation Special cases

Search

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

イロト イヨト イヨト イヨト ニヨー

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Independent subproblems:

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

- Independent subproblems:
  - Identify connected components of graph, solve separately



Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Independent subproblems:
  - Identify connected components of graph, solve separately
  - Suppose each subproblem has c variables of total n

#### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



- Independent subproblems:
  - Identify connected components of graph, solve separately
  - Suppose each subproblem has c variables of total n
  - Becomes *linear* in *n*:  $\mathcal{O}(n/c \times d^c)$

#### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



- Independent subproblems:
  - Identify connected components of graph, solve separately
  - Suppose each subproblem has c variables of total n
  - Becomes *linear* in *n*:  $\mathcal{O}(n/c \times d^c)$
  - ▶ n = 80, d = 2,  $c = 20, 10^7$  nodes/sec: 4 billion years without, 0.4 s with

### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 「臣」

- Independent subproblems:
  - Identify connected components of graph, solve separately
  - Suppose each subproblem has c variables of total n
  - Becomes *linear* in *n*:  $\mathcal{O}(n/c \times d^c)$
  - ▶ n = 80, d = 2,  $c = 20, 10^7$  nodes/sec: 4 billion years without, 0.4 s with
- Acyclic constraint graph:

Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣・

- Independent subproblems:
  - Identify connected components of graph, solve separately
  - Suppose each subproblem has c variables of total n
  - Becomes *linear* in *n*:  $\mathcal{O}(n/c \times d^c)$
  - ▶ n = 80, d = 2,  $c = 20, 10^7$  nodes/sec: 4 billion years without, 0.4 s with
- Acyclic constraint graph:
  - ▶ Pick root, order nodes parent → child

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□ → ◆□ → ◆□ → ◆□ → ●□ =

- Independent subproblems:
  - Identify connected components of graph, solve separately
  - Suppose each subproblem has c variables of total n
  - Becomes *linear* in *n*:  $\mathcal{O}(n/c \times d^c)$
  - ▶ n = 80, d = 2,  $c = 20, 10^7$  nodes/sec: 4 billion years without, 0.4 s with
- Acyclic constraint graph:
  - ▶ Pick root, order nodes parent → child

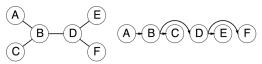
### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases


Miscellaneous

Application: Task assignment in CoDA



◆□ → ◆□ → ◆□ → ◆□ → ●□ =

- Independent subproblems:
  - Identify connected components of graph, solve separately
  - Suppose each subproblem has c variables of total n
  - Becomes *linear* in *n*:  $\mathcal{O}(n/c \times d^c)$
  - ▶ n = 80, d = 2,  $c = 20, 10^7$  nodes/sec: 4 billion years without, 0.4 s with
- Acyclic constraint graph:
  - Pick root, order nodes parent  $\rightarrow$  child



3

 $\blacktriangleright$  From leaves  $\rightarrow$  root, remove inconsistencies between child, parent

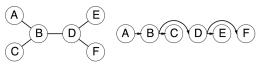
Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation


Special cases

Miscellaneous

Application: Task assignment in CoDA



- Independent subproblems:
  - Identify connected components of graph, solve separately
  - Suppose each subproblem has c variables of total n
  - Becomes *linear* in *n*:  $\mathcal{O}(n/c \times d^c)$
  - ▶ n = 80, d = 2,  $c = 20, 10^7$  nodes/sec: 4 billion years without, 0.4 s with
- Acyclic constraint graph:
  - Pick root, order nodes parent  $\rightarrow$  child



- From leaves → root, remove inconsistencies between child, parent
- From root  $\rightarrow$  leaves: pick value consistent w/ parent

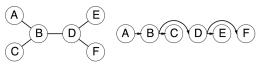
### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases


Miscellaneous

Application: Task assignment in CoDA



ъ

- Independent subproblems:
  - Identify connected components of graph, solve separately
  - Suppose each subproblem has c variables of total n
  - Becomes *linear* in *n*:  $\mathcal{O}(n/c \times d^c)$
  - ▶ n = 80, d = 2,  $c = 20, 10^7$  nodes/sec: 4 billion years without, 0.4 s with
- Acyclic constraint graph:
  - Pick root, order nodes parent  $\rightarrow$  child



- From leaves → root, remove inconsistencies between child, parent
- $\blacktriangleright$  From root  $\rightarrow$  leaves: pick value consistent w/ parent

(From S. Russell's slides) → ← @ → ← ≧ → ← ≧ →

### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



ъ

Almost tree-structured:

(From S. Russell's slides)



Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

- Almost tree-structured:
  - Instantiate set of variables in all possible ways s.t. remainder is tree-structured

(From S. Russell's slides)

#### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

- Almost tree-structured:
  - Instantiate set of variables in all possible ways s.t. remainder is tree-structured
  - Take out the cutset

(From S. Russell's slides)

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Almost tree-structured:
  - Instantiate set of variables in all possible ways s.t. remainder is tree-structured
  - Take out the cutset
  - If cutset size c,  $\mathcal{O}(d^c \cdot (n-c)d^2)$

(From S. Russell's slides)

#### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Use hill-climbing, simulated annealing

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

(From S. Russell's slides)



Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

- Use hill-climbing, simulated annealing
- Complete assignment, allow violated constraints



Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

(From S. Russell's slides)



Copyright © 2017 UMaine School of Computing and Information Science

・ロト・西・・田・・田・・日・

- Use hill-climbing, simulated annealing
- Complete assignment, allow violated constraints
- Operators: reassign variables

(From S. Russell's slides)

#### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

・ロト・西・・田・・田・・日・

- Use hill-climbing, simulated annealing
- Complete assignment, allow violated constraints
- Operators: reassign variables
- Select any variable

(From S. Russell's slides)

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

- Use hill-climbing, simulated annealing
- Complete assignment, allow violated constraints
- Operators: reassign variables
- Select any variable
- Value: use *min-conflicts* heuristic choose state w/ fewest constraints violated

(From S. Russell's slides)

Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

- Use hill-climbing, simulated annealing
- Complete assignment, allow violated constraints
- Operators: reassign variables
- Select any variable
- Value: use *min-conflicts* heuristic choose state w/ fewest constraints violated
- How good?

(From S. Russell's slides)

#### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

も日本 本語 本語 本語 本 白 \*

- Use hill-climbing, simulated annealing
- Complete assignment, allow violated constraints
- Operators: reassign variables
- Select any variable
- Value: use *min-conflicts* heuristic choose state w/ fewest constraints violated
- How good?
  - Result for (e.g.) n-queens

(From S. Russell's slides)

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



- Use hill-climbing, simulated annealing
- Complete assignment, allow violated constraints
- Operators: reassign variables
- Select any variable
- Value: use *min-conflicts* heuristic choose state w/ fewest constraints violated
- How good?
  - Result for (e.g.) n-queens
  - Can solve in almost  $\mathcal{O}(n)$  time with high probability

(From S. Russell's slides)

#### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



も日本 本語 本語 本語 本 白 \*

- Use hill-climbing, simulated annealing
- Complete assignment, allow violated constraints
- Operators: reassign variables
- Select any variable
- Value: use min-conflicts heuristic choose state w/ fewest constraints violated
- How good?
  - Result for (e.g.) n-queens
  - Can solve in almost  $\mathcal{O}(n)$  time with high probability
  - For almost any number of queens

(From S. Russell's slides)

#### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

# Miscellaneous

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

# Continuous variables

- Many real-world problems e.g., scheduling times for space applications, etc.
- If linear constraints: solvable by *linear programming* in polynomial time

Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



Copyright © 2017 UMaine School of Computing and Information Science

▲□▶▲□▶▲□▶▲□▶ = のへで

# Constrained Heuristic Search (CHS)

- Can we use even more heuristic information?
- CHS (Fox et al., 1989): Constraint graphs become states in state space search graph
- Operators: assign value, add/delete constraint, constrain domain of variable
- ► Heuristics: look for *textures* in graph ⇒ operator to apply

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへの

#### Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

# Application: Task assignment in CoDA

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

### CoDA

### Autonomous oceanographic sampling networks (AOSNs)

Constraint Satisfaction

Search

Constraint satisfaction problems

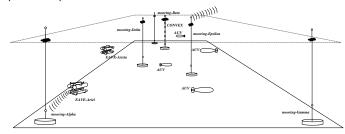
CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA




Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

### CoDA

 Autonomous oceanographic sampling networks (AOSNs)



### Constraint Satisfaction

Search

Constraint satisfaction problems

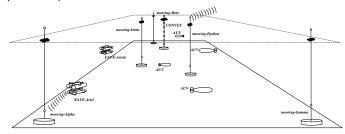
CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA




Copyright © 2017 UMaine School of Computing and Information Science

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 -

### CoDA

 Autonomous oceanographic sampling networks (AOSNs)



- Treat as multiagent systems (MAS): CoDA (Turner & Turner)
- Need task assignment: Constraint satisfaction problem
- Use CHS



ъ

### Constraint Satisfaction

Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA



## Overview

- Identify capabilities: of AUVs, needed for problem
- Create task-decomposition tree



Search

Constraint satisfaction problems

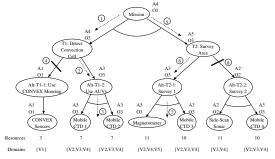
CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA




Copyright © 2017 UMaine School of Computing and Information Science

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

### Overview

- Identify capabilities: of AUVs, needed for problem
- Create task-decomposition tree



- VIPs: V1, capabilities={CONVEX sensors}, resources=5
  - V2, capabilities={Mobile CTD, Magnetometer}, resources=17
  - V3, capabilities={Mobile CTD, side-scan sonar}, resources=18
  - V4, capabilities={Mobile CTD, radio, camera, side-scan sonar, magnetometer}, resources=9
  - V5, capabilities={magnetometer}, resources=9

Constraint Satisfaction

#### Search

Constraint satisfaction problems

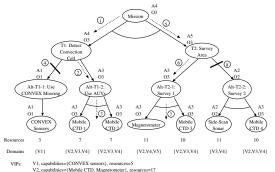
CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA




Copyright © 2017 UMaine School of Computing and Information Science

・ロト ・四ト ・ヨト・

# Overview

- Identify capabilities: of AUVs, needed for problem
- Create task-decomposition tree



Constraint Satisfaction

### Search

Constraint satisfaction problems

CSP formalism

Constraint Propagation

Special cases

Miscellaneous

Application: Task assignment in CoDA

tificial

ntelligence

State: TDT + constraint graph (initially empty)

V3, capabilities={Mobile CTD, side-scan sonar}, resources=18

V5, capabilities={magnetometer}, resources=9

- Operators: add to constraint graph, set value
- Perform CHS algorithm on constructed constraint

V4, capabilities={Mobile CTD, radio, camera, side-scan sonar, magnetometer}, resources=9

Copyright © 2017 UMaine School of Computing and Information Science

≣> ≣ •**१**२० <sup>4</sup>