Automated Reasoning: Logical Approaches

UMaine COS 470/570 - Introduction to AI
Spring 2019

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Automated reasoning

Automated
reasoning
Knowledge representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Reasoning

- Reasoning = ability to make decision or infer something from existing facts
- Automated reasoning:
- Search is one (very simple) kind
- Neural networks: non-symbolic
- Here: symbolic reasoning
- Encode knowledge in some representation
- Apply inference mechanisms \Rightarrow new knowledge

Automated
 reasoning

Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Atificial
ntelligence

Why not just search for everything?

- Realistic problems: search spaces very large, potentially infinite
- Difficult to find heuristics
- Often problem has structure that can be exploited
- Often: \exists much knowledge about world, problem
- E.g., medicine
- Search: example of weak method:
- general purpose
- little knowledge
- Knowledge-based methods: strong methods

Automated
reasoning
Knowledge representation

Knowledge representation

Propositional Logic

Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Knowledge

- Need way to represent \& use the knowledge
- Many different representation schemes, inference methods
- Theorem proving:
- Represent knowledge in a logical formalism
- Inference methods that knowledge \Rightarrow new knowledge
- Rule-based reasoners:
- Represent knowledge as "if-then" rules
- Apply the rules \Rightarrow new knowledge
- Planners:
- Represent knowledge as plan schemas, rules/logic,

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

- Use specialized planning techniques \Rightarrow plans
- Many others

Kinds of knowledge

- Problem-specific: start, goal states, map, ...
- Domain
- Problem-solving, other domain-independent
- Meta-knowledge: for explanation, learning, etc.

Automated

reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Arficial
ntelligence

Knowledge \& agents

- All agents have knowledge
- Some: built in to the agent's structure
- e.g., reflex agent
- implicit knowledge
- Some augment with verbatim history
- Some: explicit knowledge representation
- Search agents
- Goal-based, utility-based agents

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Arficial
ntelligence

Why explicit knowledge?

- Agent reuse: just replace knowledge
- Knowledge acquisition from humans
- Reasoning about it:
- by humans: proving properties about behavior, e.g.
- by agent itself: introspection, machine learning, explanation, ...

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Atificial
ntelligence

Knowledge representation

- Knowledge representation:

1. system of representation, or...
2. way to represent particular concepts, or...
3. collection of knowledge an agent has (informally; really knowledge base)

- Representations often formal:
- Rules about what can be stored
- Particular syntax, semantics
- Others interested in knowledge representation:
- psycologists
- philosophers

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Models and abstraction

- Knowledge representation models a world
- Abstraction of a world: some things are left out
- Focuses, limits reasoning
- Model's creator:
- Determines salient features
- Determines granularity of model

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Atificial
ntelligence

Knowledge representation criteria

- Criteria
- Easy for humans to understand
- Concise
- Context-independent
- Context-dependent
- Compositional
- Canonical
- Appropriate granularity
- Representational adequacy
- Inferential adequacy
- Acquisitional adequacy
- Trade-offs!

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Syntax, semantics, pragmatics

- Knowledge representation is a language
- Syntax: valid structure of sentences
- Semantics: meaning of sentences
- Pragmatics (sometimes): what the sentences mean in context

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Arficial
ntelligence

Kinds of knowledge representations

- Implicit/structural
- Procedural, but explicit:
- how to do something - like program
- good for instructions
- may be hard for humans to understand
- may be hard for the agent to understand and/or learn
- Declarative/explicit:
- represents what something is, what to do
- easy to extend, understand
- program can access its own knowledge: introspection, learning
- harder to represent sometimes than procedural
- less efficient to "execute" than procedural
- Structured vs. unstructured

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example:

Arficial

Automated
reasoning
Knowledge representation

First-order logic

Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Formal logic

- A logic is a representation language with precisely-defined syntax and semantics
- Sentences represent facts
- Syntax: describes the possible legal configurations of elements that form valid sentences
- Semantics: one interpretation is facts to which the sentences refer
- \exists many logics

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Inference

- Inference: creates new knowledge from old
- Human inferences - can be very broad, complex
- Machine inferences:
- smaller than might usually count
- anything that is not a direct match with the knowledge base requires an inference

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Atificial
ntelligence

Inference

- A logic has associated reasoning mechanisms:
- Inference rules: create new sentence from existing sentences
- Inference procedure: Produces new facts from old:

$$
S_{0}, S_{1}, \cdots, S_{n} \vdash A
$$

- Theorem prover: uses inference rules to prove some sentence

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Atificial

Entailment

- Want to know:
- Does sentence A follow from a knowledge base K of sentences?
- I.e., is A true if K is true?
- Entailment:
- K entails A iff A is necessarily true given K
- Written $K \models S$
- Note: \models could take ≥ 1 inference
- For inference procedure i, written: $K B \models_{i} S$
- Sound (truth-preserving) inference procedure: produces only entailed sentences

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example:
Orca

Atificial
ntelligence

Proof

- Proof: record of operation of a sound inference procedure

Automated reasoning

Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Artificial

ntelligence

Proof

- Proof: record of operation of a sound inference procedure
- Complete inference procedure P :

$$
\forall s K \models s \Rightarrow K \models p s
$$

```
Automated reasoning
Knowledge representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca
```

Artificial
ntelligence

Proof

- Proof: record of operation of a sound inference procedure
- Complete inference procedure P :

$$
\forall s K \models s \Rightarrow K \models p s
$$

- Proof theory: set of rules for deducing the entailments of set of sentences (R\&N)

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Artificial
Intelligence

Proof

- Proof: record of operation of a sound inference procedure
- Complete inference procedure P :

$$
\forall s K \models s \Rightarrow K \models p s
$$

- Proof theory: set of rules for deducing the entailments of set of sentences (R\&N)

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Artificial
Intelligence

Proof

- Proof: record of operation of a sound inference procedure
- Complete inference procedure P :

$$
\forall s K \models s \Rightarrow K \models p s
$$

- Proof theory: set of rules for deducing the entailments of set of sentences (R\&N)
Logic = syntax + semantics + proof theory

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Artificial
ntelligence

Models

- Natural language sentences:
- Shared conventions, knowledge among speakers
- Meaning of sentence from these \Rightarrow truth, falsehood
- Truth in logic:
- One kind of truth: entailment - s is true given K iff $K \models s$
- But what about the normal meaning of "true"?
- Meaning/truth beyond entailment:
- No inherent meaning of sentences
- Meaning (truth) of sentence S depends on some interpretation
- Model: a world in which sentence is true given some interpretation

Models

- Natural language sentences:
- Shared conventions, knowledge among speakers
- Meaning of sentence from these \Rightarrow truth, falsehood
- Truth in logic:
- One kind of truth: entailment - s is true given K iff $K \models s$
- But what about the normal meaning of "true"?
- Meaning/truth beyond entailment:
- No inherent meaning of sentences
- Meaning (truth) of sentence S depends on some interpretation
- Model: a world in which sentence is true given some interpretation
$K \models s$ iff all models of K are also models of s

Validity

- Valid sentence: true in all possible worlds (i.e., a tautology)
- Valid inference: if premise true, conclusion must be true in any world:

All humans are mortal and I am a human $\Rightarrow I$ am mortal All birds live underground and Tweety is a bird \Rightarrow Tweety lives underground

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Soundness

- Tend to use sound interchangeably with valid, but not really same
- Inference is sound if premises true and inference is valid
- Argument (proof) is sound if all inferences are valid and premises are true
- I.e., soundness is with respect to a model (world)

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Satisfiability

- Satisfiable sentence:
- Some interpretation in some world for which sentence is true
- E.g.: My cat hates dogs.
- Non-satisfiable sentence
- No world in which sentence is true
- E.g.:
- I am mortal and I am not mortal.
- Every cat hates dogs and there is a cat that does not hate dogs.

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Propositional Logic

```
Automated reasoning
Knowledge representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca
```


Propositional logic (calculus)

- Simplest kind of logic: "zeroth-order logic"
- Sentences = propositions
- Symbols stand for propositions
- Symbols, connectives \Rightarrow compound propositions
- No variables, \therefore no quantification
- Ontological commitment: there are facts in world that are true
- Epistemological commitment: a sentence is true or false

Automated

Syntax

- Elements of language:
- Symbols
- True, False
- Logical connectives, parentheses
- Recursive definition:
- True, False, symbol are propositions (atomic sentences)
- If S, P and Q are sentences, then so are:

$$
(S), \quad P \wedge Q, \quad P \vee Q, \quad \neg P, \quad P \Rightarrow Q, \quad \text { and } P \Leftrightarrow Q
$$

- Literal: atomic sentence or negated atomic sentence
- Precedence rules: $\neg>\wedge>\vee>\Rightarrow>\Leftrightarrow$

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example:

Semantics

- True, False: fixed interpretation
- Propositions + connectives: "standard" compositional semantics
- Propositions: whatever interpretation they are given

```
Automated
reasoning
Knowledge representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca
```

Atificial

Connectives


```
Automated reasoning
Knowledge representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca
```

Artificial
ntelligence

Connectives

Automated
Reasoning:

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Artificial
ntelligence

Implication

- Seems odd
- Think of it as: If A True, then I claim B is true, else I make no claim
- Only time $A \Rightarrow B$ is false is if B is false
- E.g.: Trump is president \Rightarrow he didn't win the election
- Implication true when antecedent is false:
- E.g.: Clinton is president \Rightarrow she won the election
- Definition: $P \Rightarrow Q \equiv \neg P \vee Q \equiv \neg(P \wedge \neg Q)$

Inference rules for propositional logic

- Double negation elimination:

$$
\frac{\neg \neg A}{A}
$$

- AND elimination (unidirectional only):

$$
\frac{A_{1} \wedge A_{2} \wedge \ldots \wedge A_{n}}{A_{i}}
$$

- OR introduction (unidirectional only):

$$
\frac{A_{i}}{A_{1} \vee A_{2} \vee \ldots \vee A_{n}}
$$

```
Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example:
Orca
```


Inference rules for propositional logic

- De Morgan's laws:

$$
\begin{aligned}
& \frac{\neg(A \wedge B)}{\neg A \vee \neg B} \\
& \frac{\neg(A \vee B)}{\neg A \wedge \neg B}
\end{aligned}
$$

- Distributive:

$$
\begin{gathered}
\frac{A \vee(B \wedge C)}{(A \vee B) \wedge(A \vee C)} \\
\frac{A \wedge(B \vee C)}{(A \wedge B) \vee(A \wedge C)}
\end{gathered}
$$

Atificial
ntelligence

Inference rules for propositional logic

- Various others: ($0=$ false, $1=$ true $)$
- Null law:

$$
\frac{A \wedge 0}{0}, \frac{A \vee 1}{1}
$$

- Identity law:

$$
\frac{A \wedge 1}{A}, \frac{A \vee 0}{A}
$$

- Idempotent law:

$$
\frac{A \wedge A}{A}, \frac{A \vee A}{A}
$$

```
Automated
reasoning
Knowledge representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca
```

Atificial
ntelligence

Deduction

- Sound form of inference
- Modus ponens
- Form:
$A \Rightarrow B$
A

B

- Example:

$$
\text { Bird } \Rightarrow \text { Fly }
$$

Bird
Fly

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Atrificial
ntelligence

Deduction

- Modus tolens
- Form:

$$
\begin{aligned}
& A \Rightarrow B \\
& \neg B \\
& \neg A
\end{aligned}
$$

- Example:

Bird \Rightarrow Fly
\neg Fly
\neg Bird

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Artificial
ntelligence

Complexity of propositional inference

- Could build a truth table to prove conclusion
- 2^{n} rows - n propositional symbols - can we do better?
- General case: no - NP-complete problem
- Horn clauses: one class for which P-time algorithm exists

$$
P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n} \rightarrow Q
$$

- P_{i}, Q - non-negated atoms

Automated

Knowledge
representation
First-order logic

Problems with propositional calculus

- Too many propositions!
- No variables - no quantification

```
Automated
reasoning
```

Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Predicate Calculus

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

First-order predicate calculus

- Various names: first-order logic (FOL), first-order predicate calculus (FOPC), ...
- Ontological commitment
- world consists of objects that have properties
- various relations hold among objects
- \exists functions arguments (objects) \rightarrow objects
- FOPC can represent anything that can be programmed

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Atificial
Intelligence

Parts of predicate calculus

- Term: something signifying an object
- Symbol
- Variable
- Function (N.B.: not like function in programs!)
- Negation: NOT
- Connectives: AND (\wedge), OR (\vee), IMPLIES (\Rightarrow), and sometimes \Leftrightarrow or $\equiv,=$
- Quantifiers: existential (\exists) \& universal (\forall)

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Atificial
ntelligence

Literals, clauses, and sentences

- Literal: a term, a predicate applied to term(s), or negated predicate applied to term(s)
- Well-formed formulas (wffs): statements in the logic
- Literals are wffs
- If $A \& B$ are wffs so are:

$$
A \vee B \quad A \wedge B \quad A \Rightarrow B
$$

- Clause - a wff consisting of solely of a disjunction of literals
- Sentence: a wff with no free variables

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based reasoning

Description Logic Local DL example: Orca

Computable functions

- Problem:
- When proving a theorem, need to check truth/falsehood of predicates
- Ultimately, predicates have to match against knowledge base (possibly after some number of inferences)
- Some predicates: need infinite number of facts in the knowledge base! E.g., numeric predicates:

$$
\forall x, y \text { Pompeian }(x) \wedge \underset{\operatorname{dead}(x)}{\operatorname{born}(x, y)} \wedge \operatorname{less}(y, 79) \Rightarrow
$$

For this, we'd have to have an infinite number of facts in our KB:
less(78, 79), less(77, 79), less(76, 79) ...

- Solution: Evaluate as T or F by running a function on the computer, not matching to a knowledge base

Representing knowledge in FOPC

- Remember: symbols are just symbols and have no additional meaning
- Have a corpus of knowledge
- depends on domain, task, goals, etc.
- do not attempt to represent everything
- first specified in English, usually
- corpus will probably change as work on system
- Identify predicates that will be used

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based reasoning

Description Logic
Local DL example: Orca

Representing an example corpus

- John likes carrots. likes(John, Carrots)
- Mary likes carrots.
- John grows the vegetables he likes.
- Carrots are vegetables.
- When you like a vegetable, you grow it.
- To eat something, you have to own it.
- When you grow something, you own it.
- In order to grow something, you must own a garden.

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based reasoning

Description Logic
Local DL example: Orca

Representing an example corpus

- John likes carrots. likes(John, Carrots)
- Mary likes carrots. likes(Mary, Carrots)
- John grows the vegetables he likes.
- Carrots are vegetables.
- When you like a vegetable, you grow it.
- To eat something, you have to own it.
- When you grow something, you own it.
- In order to grow something, you must own a garden.

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Representing an example corpus

- John likes carrots. likes(John, Carrots)
- Mary likes carrots. likes(Mary, Carrots)
- John grows the vegetables he likes. $\forall x$ vegetable $(x) \wedge$ likes(John, $x) \rightarrow$ grows(John, x)
- Carrots are vegetables.
- When you like a vegetable, you grow it.
- To eat something, you have to own it.
- When you grow something, you own it.
- In order to grow something, you must own a garden.

Automated

Representing an example corpus

- John likes carrots. likes(John, Carrots)
- Mary likes carrots. likes(Mary, Carrots)
- John grows the vegetables he likes. $\forall x$ vegetable $(x) \wedge$ likes(John, $x) \rightarrow$ grows(John, x)
- Carrots are vegetables. vegetables(Carrots)
- When you like a vegetable, you grow it.
- To eat something, you have to own it.
- When you grow something, you own it.
- In order to grow something, you must own a garden.

Automated

Representing an example corpus

- John likes carrots. likes(John, Carrots)
- Mary likes carrots. likes(Mary, Carrots)
- John grows the vegetables he likes. $\forall x$ vegetable $(x) \wedge$ likes(John, $x) \rightarrow$ grows(John, x)
- Carrots are vegetables. vegetables(Carrots)
- When you like a vegetable, you grow it. $\forall x, y$ vegetable $(x) \wedge \operatorname{person}(y) \wedge \operatorname{like}(y, x) \rightarrow$ grows (y, x)
- To eat something, you have to own it.
- When you grow something, you own it.
- In order to grow something, you must own a garden.

Automated

Representing an example corpus

- John likes carrots. likes(John, Carrots)
- Mary likes carrots. likes(Mary, Carrots)
- John grows the vegetables he likes. $\forall x$ vegetable $(x) \wedge$ likes(John, $x) \rightarrow$ grows(John, x)
- Carrots are vegetables. vegetables(Carrots)
- When you like a vegetable, you grow it. $\forall x, y$ vegetable $(x) \wedge \operatorname{person}(y) \wedge \operatorname{like}(y, x) \rightarrow$ grows (y, x)
- To eat something, you have to own it. Which (if either) of these:
$\forall x, y$ person $(x) \wedge$ owns $(x, y) \rightarrow$ eats (x, y) $\forall x, y$ person $(x) \wedge$ eats $(x, y) \rightarrow$ owns (x, y)
- When you grow something, you own it.
- In order to grow something, you must own a garden.

Automated

Representing an example corpus

- John likes carrots. likes(John, Carrots)
- Mary likes carrots. likes(Mary, Carrots)
- John grows the vegetables he likes. $\forall x$ vegetable $(x) \wedge$ likes(John, $x) \rightarrow$ grows(John, x)
- Carrots are vegetables. vegetables(Carrots)
- When you like a vegetable, you grow it. $\forall x, y$ vegetable $(x) \wedge \operatorname{person}(y) \wedge \operatorname{like}(y, x) \rightarrow$ grows (y, x)
- To eat something, you have to own it. Which (if either) of these:
$\forall x, y$ person $(x) \wedge \operatorname{owns}(x, y) \rightarrow$ eats (x, y)
$\forall x, y$ person $(x) \wedge$ eats $(x, y) \rightarrow$ owns (x, y)
- When you grow something, you own it.
$\forall x, y$ person $(x) \wedge \operatorname{grows}(x, y) \rightarrow$ owns (x, y)
- In order to grow something, you must own a garden.

Automated reasoning

Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Artificial ntelligence

Representing an example corpus

- John likes carrots. likes(John, Carrots)
- Mary likes carrots. likes(Mary, Carrots)
- John grows the vegetables he likes.

$$
\forall x \text { vegetable }(x) \wedge \text { likes(John, } x) \rightarrow \text { grows(John, } x \text {) }
$$

- Carrots are vegetables. vegetables(Carrots)
- When you like a vegetable, you grow it.
$\forall x, y$ vegetable $(x) \wedge \operatorname{person}(y) \wedge \operatorname{like}(y, x) \rightarrow$ grows (y, x)
- To eat something, you have to own it. Which (if either) of these:
$\forall x, y$ person $(x) \wedge$ owns $(x, y) \rightarrow$ eats (x, y)
$\forall x, y$ person $(x) \wedge$ eats $(x, y) \rightarrow$ owns (x, y)
- When you grow something, you own it.
$\forall x, y$ person $(x) \wedge \operatorname{grows}(x, y) \rightarrow$ owns (x, y)
- In order to grow something, you must own a garden. Which?
$\forall x \exists g, y$ garden $(g) \wedge$ owns $(x, g) \rightarrow$ grows (x, y)
$\forall x \exists g, y$ garden $(g) \wedge \operatorname{grows}(x, y) \rightarrow$ owns (x, g)

Rules of inference

- modus ponens: If $(A \rightarrow B) \wedge A$ then B logically follows.
- modus tolens: If $(A \rightarrow B) \wedge \neg B$ then $\neg A$ logically follows
- resolution: If $(A \vee B) \wedge(\neg B \vee C)$ then $(A \vee C)$ logically follows
- abduction: If $(A \rightarrow B) \wedge B$ then $A \Leftarrow$ not sound
- induction: If
(instance $(A, B) \wedge P) \wedge($ instance $(C, B) \wedge P)$, then instance $(x, B) \rightarrow P \Leftarrow$ not sound

Automated reasoning

Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic Local DL example: Orca

Proof by deduction

- Put what you want to prove in the knowledge base
- Apply rules of inference in a systematic way
- Add inferences along the way to knowledge base since made from sound inferences
- Need to make sure that matching is done correctly

Automated
reasoning
Knowledge
representation
First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Artificial
ntelligence

Miscellaneous FOPC topics

- Bijection (\Leftrightarrow) : iff

$$
A \Leftrightarrow B \equiv(A \Rightarrow B) \wedge(B \Rightarrow A)
$$

- Equality
- Often used in FOPC to link two descriptions as referring to the same object:

$$
\text { FatherOf(John })=\text { Henry }
$$

- Often used in formulae; sometimes to make sure that two things are not the same object:

$$
\exists x, y \operatorname{D\circ g}(x) \wedge \operatorname{D\circ g}(y) \wedge \neg(x=y)
$$

Miscellaneous FOPC topics

- Lambda (λ) expressions:
- Temporary functions/predicate expressions (as in Lisp)

$$
\begin{gathered}
\lambda x, y \text { Nationality }(x) \neq \text { Nationality }(y) \wedge \\
\operatorname{SchoolYear}(x)=\operatorname{SchoolYear}(y) \\
(\lambda x, y \operatorname{Nationality}(x) \neq \operatorname{Nationality}(y) \wedge \\
\text { SchoolYear }(x)=\operatorname{SchoolYear}(y))(\text { Joe, Pierre })
\end{gathered}
$$

- Doesn't extend FOPC - can always replace lambda exp. with expansion

Miscellaneous FOPC topics

- Uniqueness quantifier \exists !
- Ex:

$$
\exists!\text { President(} x \text {, USA) }
$$

- Also doesn't extend FOPC - just syntactic sugar for:
$\exists \operatorname{President}(x$, USA $) \wedge \forall y \operatorname{President}(y$, USA $) \Rightarrow x=y$

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Atrificial
ntelligence

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Overview
Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- What good is it?
- Axioms - more or less self-evident things that are "given"
- Theorems

1. Must contain nothing that cannot be proven
2. Must be implied entirely by propositions other than itself in or arising from the axioms
3. Two theorems proven from the same set of (consistent) axioms cannot be contradictory

Overview
Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP
－What good is it？
－Axioms－more or less self－evident things that are＂given＂
－Theorems
1．Must contain nothing that cannot be proven
2．Must be implied entirely by propositions other than itself in or arising from the axioms
3．Two theorems proven from the same set of（consistent） axioms cannot be contradictory
－Theorem proving in this course：
－Unification
－Axioms
－Forward and backward proof
－Resolution theorem proving

Matching in Theorem Proving

Overview
Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- Where is matching needed?
- Determining if something is trivially true - i.e., in the KB
- Determining if something matches the antecedent (consequent)of an implication

Matching in Theorem Proving

Overview
Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem Proving
Conjunctive Normal
Form
RTP

- Where is matching needed?
- Determining if something is trivially true - i.e., in the KB
- Determining if something matches the antecedent (consequent)of an implication
- What properties should our match function have?
- Identical things match.
- Variables can match constants, unless the variable is already bound in an inconsistent way
- Should keep track of bindings so variables consistency can be checked, so instantiation of axioms can be done

Unerview
Onification
Proving
- Unification
Unification
Unification Theorem
Unification
- Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form

Unification

Overview

Unification
in Theorem

- Unification
- Unification
- Substitution in

Unification

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)

Proposition Match? Why?
dog(Pluto)

Unerview
Onification
Proving
- Unification
Unification
Unification Theorem
Unification
- Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form

Unification

Overview
Unification
in Theorem

- Unification
- Unification
- Substitution in

Unification
stitution in

Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal

RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)
Proposition Match? Why?
dog (Pluto) yes identical

Uner
Overview
Unification
Proving
Unification
Unification Theorem
Unifion Substitution in
Unification
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form

Unification

Overview

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in
- Substitution in

Unification
Unify Algorithm
eorem Proving

Resolution Theorem
Proving
Conjunctive Norma

RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)

Proposition	Match?	Why?
$\operatorname{dog}($ Pluto $)$	yes	identical
$\neg \operatorname{dog}($ Pluto $)$		

Uner
Overview
Unification
Proving
Unification
Unification Theorem
Unifion Substitution in
Unification
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form

Unification

Overview

Unification
ming in Theorem

- Unification

Unification

Unification

- Substitution in

Unification
Unify Algorithm

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)

Proposition	Match?	Why?
$\operatorname{dog}($ Pluto $)$	yes	identical
$\neg \operatorname{dog}($ Pluto $)$	no	negated literal

negated literal

Uner
Overview
Unification
Proving
Unification
Unification Thastitution in
Unification
Unification
－Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

Unification

Overview

Unification
ing in Theorem
－Unification
－Unification

Unification
－Substitution in
Unification
Unify Algorithm

－A particular kind of matching－Allow variables，track substitutions of things for variables
－Thing to match： dog（Pluto）

$$
\begin{array}{rll}
\text { Proposition } & \text { Match? } & \text { Why? } \\
\hline \operatorname{dog}(\text { Pluto }) & \text { yes } & \text { identical } \\
\neg \operatorname{dog}(\text { Pluto }) & \text { no } & \text { negated literal } \\
\operatorname{dog}(\text { Fido }) & &
\end{array}
$$

Uner
Overview
Unification
Proving
Unification
Unification Thastitution in
Unification
Unification
- Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

Unification

Overview

Unification
ming in Theorem

- Unification
- Unification
- Substitution in

Unification
stitution in

Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal

RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)

Proposition	Match?	Why?
$\operatorname{dog}($ Pluto $)$	yes	identical
$\neg \operatorname{dog}($ Pluto $)$	no	negated literal
$\operatorname{dog}($ Fido $)$	no	constant term mismatch

Unerview
Onification
Proving
- Unification
Unification
Unification Theorem
Unification
- Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form

Unification

Overview
Unification
ing in Theorem

- Unification
- Unification
- Substitution in

Unification
Substitution in

- Unify Algorithm

Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)

Proposition	Match?	Why?
$\operatorname{dog}($ Pluto $)$	yes	identical
$\neg \operatorname{dog}($ Pluto $)$	no	negated literal
$\operatorname{dog}($ Fido $)$	no	constant term mismatch
$\neg \operatorname{dog}($ Fido $)$		

$$
\neg \operatorname{dog}(\text { Pluto }) \quad \text { no } \quad \text { negated literal }
$$

$$
\operatorname{dog}(\text { Fido }) \quad \text { no } \quad \text { constant term mismatch }
$$

$$
\neg \operatorname{dog}(\text { Fido })
$$

Unerview
Onification
Proving
- Unification
Unification
Unification Theorem
Unification
- Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form

Unification

Overview

Unification
ing Theorem

- Unification
- Unification
- Substitution in

Unification
bstitution in

- Unify Algorithm

Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)

Proposition	Match?	Why?
$\operatorname{dog}($ Pluto $)$	yes	identical

$\neg \operatorname{dog}($ Pluto $)$ no negated literal
dog (Fido) no constant term mismatch
$\neg \operatorname{dog}($ Fido $) \quad$ no no syntactic match

Unification

Overview

Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)
Proposition Match? Why?
dog (Pluto) yes identical
$\neg \operatorname{dog}$ (Pluto) no negated literal
dog (Fido) no constant term mismatch
$\neg \operatorname{dog}($ Fido $) \quad$ no no syntactic match
cat(Pluto)

Unerview
Onification
Proving
- Unification
- Unification
Unification
- Substitution in
Unification
- Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

Unification

Overview

Unification
ming in Theorem

- Unification
- Unification
- Substitution in

Unification
Substitution in

- Unify Algorithm

Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)
Proposition Match? Why?
dog (Pluto) yes identical
$\neg \operatorname{dog}($ Pluto $)$ no negated literal
dog (Fido) no constant term mismatch
$\neg \operatorname{dog}($ Fido $)$ no no syntactic match
cat(Pluto) no predicate mismatch

Unification

Overview

Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving

Conjunctive Normal Form

RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)
Proposition Match? Why?
dog (Pluto) yes identical
$\neg \operatorname{dog}($ Pluto $)$ no negated literal
dog (Fido) no constant term mismatch
$\neg \operatorname{dog}($ Fido $)$ no no syntactic match
cat(Pluto) no predicate mismatch
\neg cat(Pluto)

Unification

Overview

Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving

Conjunctive Normal Form

RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)
Proposition Match? Why?
$\operatorname{dog}($ Pluto $)$ yes identical
$\neg \operatorname{dog}($ Pluto $)$ no negated literal
dog (Fido) no constant term mismatch
$\neg \operatorname{dog}($ Fido $)$ no no syntactic match cat(Pluto) no predicate mismatch
\neg cat(Pluto) no no syntactic match

Unerview
Ovification
Proving
Unification
Unification
Unification Unbstitution in
Unification in
Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form

Unification

Overview

Unification
ming in Theorem

- Unification
- Unification

Unification

- Substitution in

Unification
Unify Algorithm
Theorem Proving
Resolution Theorem Proving

Conjunctive Norma RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)
Proposition Match? Why?
dog (Pluto) yes identical
$\neg \operatorname{dog}$ (Pluto) no negated literal
dog (Fido) no constant term mismatch
$\neg \operatorname{dog}($ Fido $)$ no no syntactic match cat(Pluto) no predicate mismatch
\neg cat(Pluto) no no syntactic match
$\operatorname{dog}(x)$

Unerview
Onification
Proving
- Unification
- Unification
Unification
- Substitution in
Unification
- Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

Unification

Overview

Unification

- Mark
- Unification
- Unification
- Substitution in

Unification
Substitution in

- Unify Algorithm

Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)

Proposition	Match?	Why?
$\operatorname{dog}($ Pluto $)$	yes	identical
$\neg \operatorname{dog}($ Pluto $)$	no	negated literal
$\operatorname{dog}($ Fido $)$	no	constant term mismatch
$\neg \operatorname{dog}($ Fido $)$	no	no syntactic match
$\operatorname{cat}($ Pluto $)$	no	predicate mismatch
$\neg \operatorname{cat}($ Pluto $)$	no	no syntactic match
$\operatorname{dog}(x)$	yes	Pluto can subsitute for variable:
		$x /$ Pluto

Unerview
Ovification
Proving
- Unification
Unification
Unification Theorem
Unification
- Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form

Unification

Overview

Unification

- Makching in Theorem
- Unification
- Unification
- Substitution in

Unification
Substitution in

- Unify Algorithm

Theorem Proving
Resolution Theorem Proving

Conjunctive Norma RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)

Proposition	Match?	Why?
$\operatorname{dog}($ Pluto $)$	yes	identical
$\neg \operatorname{dog}($ Pluto $)$	no	negated literal
$\operatorname{dog}($ Fido $)$	no	constant term mismatch
$\neg \operatorname{dog}($ Fido $)$	no	no syntactic match
$\operatorname{cat}($ Pluto $)$	no	predicate mismatch
$\neg \operatorname{cat}($ Pluto $)$	no	no syntactic match
$\operatorname{dog}(x)$	yes	Pluto can subsitute for variable:
		x/Pluto
$\neg \operatorname{dog}(x)$		

Unerview
Ovification
Proving
- Unification
Unification
Unification Theorem
Unification
- Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form

Unification

Overview
Unification

- Mavching in Theorem
- Unification
- Unification
- Substitution in

Unification
Substitution in

- Unify Algorithm

Theorem Proving
Resolution Theorem Proving

Conjunctive Normal RTP

- A particular kind of matching - Allow variables, track substitutions of things for variables
- Thing to match: dog (Pluto)

Proposition	Match?	Why?
$\operatorname{dog}($ Pluto $)$	yes	identical
$\neg \operatorname{dog}($ Pluto $)$	no	negated literal
$\operatorname{dog}($ Fido $)$	no	constant term mismatch
$\neg \operatorname{dog}($ Fido $)$	no	no syntactic match
$\operatorname{cat}($ Pluto $)$	no	predicate mismatch
$\neg \operatorname{cat}($ Pluto $)$	no	no syntactic match
$\operatorname{dog}(x)$	yes	Pluto can subsitute for variable:
		x/Pluto
$\neg \operatorname{dog}(x)$	no	negated

Pluto can subsitute for variable:
negated

Uner
Overview
Unification
Proving
－Unification
Unification Theorem
Unification
Union in
Unification
－Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

Unification

Overview
Unification
－Makching in Theorem
－Unification
－Unification
－Substitution in
Unification
bstitution in
－Unify Algorithm
Theorem Proving
Resolution Theorem

Conjunctive Normal Form

RTP
－Basic idea for literals：check negation，check predicates，check arguments
－Matching rules：
－symbols only match themselves
－variable can match anything X unless：
－X contains the variable
－the variable has been bound to something that doesn＇t itself match X
－Variable binding
－Subsitutions－also called a binding list or a unifier

Substitution in Unification

Overview
Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- Substitution \equiv unifier
- Examples: Assume ?z is already bound to Mickey

A	B	unify (A, B)
$(\operatorname{dog} ? \mathrm{x})$	(dog Pluto)	

4ロ〉

Substitution in Unification

Overview
Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- Substitution \equiv unifier
- Examples: Assume ?z is already bound to Mickey

A	B	unify (A, B)
$($ dog ?x)	(dog Pluto)	$\{x /$ Pluto $\},\{\mathrm{x} \rightarrow$ Pluto $\}$,
		or $((\mathrm{x}$ Pluto $))$

Substitution in Unification

Overview

Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- Substitution \equiv unifier
- Examples: Assume ?z is already bound to Mickey

A	B	unify (A, B)
(dog ? x$)$	(dog Pluto)	$\{\mathrm{x} /$ Pluto $\},\{\mathrm{x} \rightarrow$ Pluto $\}$,
		or ((x Pluto))
(equalto A A)	(equalto ?x ?y)	

Substitution in Unification

Overview

Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- Substitution \equiv unifier
- Examples: Assume ?z is already bound to Mickey

A	B	unify (A, B)
$(\operatorname{dog} ? \mathrm{x})$	(dog Pluto)	$\{\mathrm{x} /$ Pluto $\},\{\mathrm{x} \rightarrow$ Pluto $\}$,
		or ((x Pluto))
(equalto A A)	(equalto ?x ? y$)$	$\{\mathrm{x} / \mathrm{A}, \mathrm{y} / \mathrm{A}\}$

Substitution in Unification

Overview

Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- Substitution \equiv unifier
- Examples: Assume ?z is already bound to Mickey

A	B	unify (A, B)
$($ dog ?x)	(dog Pluto)	$\{x /$ Pluto $\},\{\mathrm{x} \rightarrow$ Pluto $\}$
		or ((x Pluto))
(equalto A A)	(equalto ?x ?y)	$\{\mathrm{x} / \mathrm{A}, \mathrm{y} / \mathrm{A}\}$
(P ?x ?x)	(P ?y ?z)	

Substitution in Unification

Overview

Unification
－Matching in Theorem
Proving
－Unification
－Unification
－Substitution in
Unification
－Substitution in
Unification
－Unify Algorithm
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP
－Substitution \equiv unifier
－Examples：Assume ？z is already bound to Mickey

A	B	unify (A, B)
$($ dog ？x）	（dog Pluto）	$\{x /$ Pluto $\},\{\mathrm{x} \rightarrow$ Pluto $\}$,
		or（（x Pluto））
（equalto A A）	（equalto ？x ？y）	$\{\mathrm{x} / \mathrm{A}, \mathrm{y} / \mathrm{A}\}$
（P ？x ？$)$	（P ？？？z）	$\{\mathrm{x} / \mathrm{y}, \mathrm{y} / \mathrm{z}\}$

Substitution in Unification

Overview

Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Substitution \equiv unifier
- Examples: Assume ?z is already bound to Mickey

A	B	unify (A, B)
$($ dog ?x)	(dog Pluto)	$\{\mathrm{x} /$ Pluto $\},\{\mathrm{x} \rightarrow$ Pluto $\}$
		or $((\mathrm{x}$ Pluto))
(equalto A A)	(equalto ?x ?y)	$\{\mathrm{x} / \mathrm{A}, \mathrm{y} / \mathrm{A}\}$
(P ?x ?x)	(P ?y ?z)	$\{\mathrm{x} / \mathrm{y}, \mathrm{y} / \mathrm{z}\}$
(owns Minnie ?y)	(owns ?z Pluto)	

Substitution in Unification

Overview

Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Substitution \equiv unifier
- Examples: Assume ?z is already bound to Mickey

A	B	unify (A, B)
$($ dog ? x)	(dog Pluto)	$\{\mathrm{x} /$ Pluto $\},\{\mathrm{x} \rightarrow$ Pluto $\}$,
		or ((x Pluto))
(equalto A A)	(equalto ?x ?y)	$\{\mathrm{x} / \mathrm{A}, \mathrm{y} / \mathrm{A}\}$
(P ?x ? x)	(P ? ? ?z)	$\{\mathrm{x} / \mathrm{y}, \mathrm{y} / \mathrm{z}\}$
(owns Minnie ?y)	(owns ?z Pluto)	nil

Substitution in Unification

Overview
Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- Order doesn't matter: $\{x / y\} \equiv\{y / x\}$
- Could have more complex substitutions:
- unify loves (x, y) with loves(Pluto,z)

Substitution in Unification

Overview

Unification
－Matching in Theorem
Proving
－Unification
－Unification
－Substitution in
Unification
－Substitution in
Unification
－Unify Algorithm
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP
－Order doesn＇t matter：$\{x / y\} \equiv\{y / x\}$
－Could have more complex substitutions：
－unify loves (x, y) with loves（Pluto，z）
－One possibility：$\{x /$ Pluto，$y / z\}$

Substitution in Unification

Overview

Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- Order doesn't matter: $\{x / y\} \equiv\{y / x\}$
- Could have more complex substitutions:
- unify loves (x, y) with loves(Pluto,z)
- One possibility: $\{x /$ Pluto, $y / z\}$
- Another: $\{x /$ Pluto, $y /$ Mickey, $z /$ Mickey $\}$

Substitution in Unification

Overview

Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- Order doesn't matter: $\{\mathrm{x} / \mathrm{y}\} \equiv\{\mathrm{y} / \mathrm{x}\}$
- Could have more complex substitutions:
- unify loves (x, y) with loves(Pluto, $z)$
- One possibility: $\{x /$ Pluto, $y / z\}$
- Another: $\{x /$ Pluto, $y /$ Mickey, $z /$ Mickey $\}$
- Still another: $\{x /$ Pluto, $y / i c e-c r e a m, ~ z / i c e-c r e a m ~\}$

Substitution in Unification

Overview
Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem Proving
Conjunctive Normal Form

RTP

- Order doesn't matter: $\{x / y\} \equiv\{y / x\}$
- Could have more complex substitutions:
- unify loves (x, y) with loves(Pluto, $z)$
- One possibility: $\{x /$ Pluto, $y / z\}$
- Another: $\{x /$ Pluto, $y /$ Mickey, $z /$ Mickey $\}$
- Still another: $\{x /$ Pluto, $y / i c e-c r e a m, ~ z / i c e-c r e a m ~\} ~$
- Want most general unifier - Don't over-commit!

Unify Algorithm

Overview
Unification

- Matching in Theorem

Proving

- Unification
- Unification
- Substitution in

Unification

- Substitution in

Unification

- Unify Algorithm

Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

```
Unify(lit1,lit2,{blist }):
begin
    if eql(lit1,lit2) then
        return t, blist;
    elsif lit1 is a variable then
        if lit1 appears in lit2 then
            return nil, blist;
        elsif lit1 is bound in blist then
        Unify(binding(lit1,blist),lit2,blist);
        else
        return t, blist+{lit1/lit2};
            fi
```

elsif lit2 is a variable then Unify(lit2,lit1,blist);
elsif lit1 or lit2 are both atoms or lists of different lengths then return nil, blist;
else
match $=\mathrm{t} ;$
temp-blist $=$ blist;
loop for $\mathrm{i}=1$ to length(lit1) do
match,temp-blist $=$ Unify $($ lit1[i], lit2[i],temp-blist $)$;
if match $=$ nil then retun nil, blist;
else apply temp-blist to remainder of lit1 and lit2;
fi;
end loop;
return t , temp-blist;
fi;
end Unify;

Theorem Proving as Search

Overview

Unification
Theorem Proving

- Theorem Proving as

Search

- example
- Forward vs Backward

Proof

- Backward Proof

Example

- Contradictions

Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

- State: axioms at the current moment
- Operators:
- Modus ponens, modus tolens, resolution
- Apply to axiom set \Rightarrow new axiom set (new state)
- Forward, backward search/proof
${ }^{\dagger}{ }^{\prime}$ Artitical
ntelligence

Example Axiom Set

Overview

Unification
Theorem Proving

- Theorem Proving as

Search

- example
- Forward vs Backward

Proof

- Backward Proof

Example

- Contradictions

Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

1. human(Marcus)
2. Pompeian(Marcus)
3. $\operatorname{born}($ Marcus, 40$)$
4. $\forall x \operatorname{human}(x) \Rightarrow \operatorname{mortal}(x)$
5. $\forall x \operatorname{Pompeian}(x) \Rightarrow \operatorname{died}(x, 79)$
6. erupted(volcano, 79)
7. $\forall x, t_{1}, t_{2} \operatorname{mortal}(x) \wedge \operatorname{born}\left(x, t_{1}\right) \wedge g t\left(t_{2}-t_{1}, 150\right) \Rightarrow$ $\operatorname{dead}\left(x, t_{2}\right)$
8. $n o w=2014$
9. $\forall x, t[\operatorname{alive}(x, t) \Rightarrow \neg \operatorname{dead}(x, t)] \wedge[\neg \operatorname{dead}(x, t) \Rightarrow$ $\operatorname{alive}(x, t)$]
10. $\forall x, t_{1}, t_{2} \operatorname{died}\left(x, t_{1}\right) \wedge g t\left(t_{2}, t_{1}\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right)$

Overview

- Forward proof:

Unification
Theorem Proving

- Theorem Proving as

Search

- example
- Forward vs Backward

Proof

- Backward Proof

Example

- Contradictions

Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

4 ㅁ * 鸟 \equiv

Is Marcus dead?

Overview
Unification
Theorem Proving

- Theorem Proving as

Search

- example
- Forward vs Backward

Proof

- Backward Proof

Example

- Contradictions

Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

- Forward proof:

1. human(Marcus) || axiom 1
${ }^{4}$ Affificial
ntelligence

Is Marcus dead?

Is Marcus dead?

Overview
Unification
Theorem Proving
Theorem Proving as
Search
- example
Forward vs Backward
Proof
Backward Proof
Example
Contradictions
Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

- Forward proof:

1. human(Marcus)
axiom 1
2. born(Marcus,40)
3. mortal(Marcus)
axiom 3
1 \& axiom 4
$\forall x \operatorname{human}(x) \Rightarrow \operatorname{mortal}(x)$, \{x/Marcus $\}$

Is Marcus dead?

Overview
Unification
Theorem Proving

- Theorem Proving as

Search

- example
- Forward vs Backward

Proof

- Backward Proof

Example

- Contradictions

Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

- Forward proof:

1. human(Marcus)
2. born(Marcus,40)
3. mortal(Marcus)
4. $n o w=2014$
axiom 1
axiom 3
1 \& axiom 4
$\forall x \operatorname{human}(x) \Rightarrow \operatorname{mortal}(x)$, \{x/Marcus $\}$
axiom 8

Is Marcus dead?

Overview
Unification
Theorem Proving

- Theorem Proving as

Search

- example
- Forward vs Backward

Proof

- Backward Proof

Example

- Contradictions

Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- Forward proof:

1. human(Marcus)
2. born(Marcus,40)
3. mortal(Marcus)
4. $n o w=2014$
5. dead(Marcus,2014)
axiom 1
axiom 3
1 \& axiom 4
$\forall x \operatorname{human}(x) \Rightarrow \operatorname{mortal}(x)$,
\{x/Marcus $\}$
axiom 8
3 \& 2 \& 4 \& axiom 7
$\forall x, t_{1}, t_{2} \operatorname{mortal}(x) \wedge \operatorname{born}\left(x, t_{1}\right) \wedge$
$g t\left(t_{2}-t_{1}, 150\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right)$
$\{\mathrm{x} /$ Marcus, $\mathrm{t} 1 / 40, \mathrm{t} 2 /$ now, now/2014 $\}$

Forward vs Backward Proof

Overview
Unification
Theorem Proving

- Theorem Proving as

Search

- example
- Forward vs Backward

Proof

- Backward Proof

Example

- Contradictions

Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- May be difficult to constrain search:
- branching factor large
- no direction on which branch to take
- Backward proof - easier to constrain search (usually)

Backward Proof Example

Overview

Unification
Theorem Proving

- Theorem Proving as

Search

- example
- Forward vs Backward

Proof

- Backward Proof

Example

- Contradictions

Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

Prove: Marcus is dead.

1. human(Marcus)
2. Pompeian(Marcus)
3. $\operatorname{born}(M a r c u s, 40)$
4. $\forall x \operatorname{human}(x) \Rightarrow \operatorname{mortal}(x)$
5. $\forall x \operatorname{Pompeian}(x) \Rightarrow \operatorname{died}(x, 79)$
6. erupted(volcano, 79)
7. $\forall x, t_{1}, t_{2} \operatorname{mortal}(x) \wedge \operatorname{born}\left(x, t_{1}\right) \wedge g t\left(t_{2}-t_{1}, 150\right) \Rightarrow$ dead $\left(x, t_{2}\right)$
8. $n o w=2014$
9. $\forall x, t[\operatorname{alive}(x, t) \Rightarrow \neg \operatorname{dead}(x, t)] \wedge[\neg \operatorname{dead}(x, t) \Rightarrow$ alive (x, t)]
10. $\forall x, t_{1}, t_{2} \operatorname{died}\left(x, t_{1}\right) \wedge g t\left(t_{2}, t_{1}\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right)$

Contradictions in the Knowledge Base

Overview

Unification
Theorem Proving

- Theorem Proving as

Search

- example
- Forward vs Backward

Proof

- Backward Proof

Example

- Contradictions

Resolution Theorem
Proving
Conjunctive Normal Form

RTP

- What happens if your KB is inconsistent?
- Suppose your knowledge base is:

1. Raining \Rightarrow Cloudy
2. Rainbow $\Rightarrow \neg$ Cloudy
3. Rainbow
4. Raining

- Is this inconsistent?
- If so , is this a problem?

Contradictions in the Knowledge Base

Overview

Unification
Theorem Proving

- Theorem Proving as

Search

- example
- Forward vs Backward

Proof

- Backward Proof

Example

- Contradictions

Resolution Theorem Proving

Conjunctive Normal Form

RTP

- What happens if your KB is inconsistent?
- Suppose your knowledge base is:

1. Raining \Rightarrow Cloudy
2. Rainbow $\Rightarrow \neg$ Cloudy
3. Rainbow
4. Raining

- Is this inconsistent?
- If so , is this a problem?
- Suppose we conclude both \neg Cloudy \& Cloudy

Contradictions in the Knowledge Base

OverviewUnification
Theorem Proving

- Theorem Proving asSearch- example- Forward vs BackwardProof- Backward ProofExample- Contradictions
Resolution TheoremProving
Conjunctive NormalForm
RTP
- What happens if your KB is inconsistent?
- Suppose your knowledge base is:

1. Raining \Rightarrow Cloudy
2. Rainbow $\Rightarrow \neg$ Cloudy
3. Rainbow
4. Raining

- Is this inconsistent?
- If so, is this a problem?
- Suppose we conclude both \neg Cloudy \& Cloudy
\neg Cloudy

Contradictions in the Knowledge Base

Overview
Unification
Theorem Proving
Theorem Proving as
Search
- example
- Forward vs Backward
Proof
Exackward Proof
Example
Contradictions
Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

- What happens if your KB is inconsistent?
- Suppose your knowledge base is:

1. Raining \Rightarrow Cloudy
2. Rainbow $\Rightarrow \neg$ Cloudy
3. Rainbow
4. Raining

- Is this inconsistent?
- If so, is this a problem?
- Suppose we conclude both \neg Cloudy \& Cloudy
\neg Cloudy
\neg Cloudy \vee exist(Leprechauns) \quad since $1 \vee \mathrm{~A}=\mathrm{A}$

Contradictions in the Knowledge Base

Overview
Unification
Theorem Proving
Sheorem Proving as
Search
- example
- Forward vs Backward
Proof
Exackward Proof
Example
Contradictions
Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

- What happens if your KB is inconsistent?
- Suppose your knowledge base is:

1. Raining \Rightarrow Cloudy
2. Rainbow $\Rightarrow \neg$ Cloudy
3. Rainbow
4. Raining

- Is this inconsistent?
- If so, is this a problem?
- Suppose we conclude both \neg Cloudy \& Cloudy
\neg Cloudy
\neg Cloudy \vee exist(Leprechauns)
Cloudy \Rightarrow exist(Leprechauns) \quad definition of \Rightarrow

Contradictions in the Knowledge Base

Overview
Unification
Theorem Proving
Theorem Proving as
Search
－example
－Forward vs Backward
Proof
Exackward Proof
Example
Rentradictions
Resolution Theorem
Proving
Conjunctive Normal
Form
RTP

－What happens if your KB is inconsistent？
－Suppose your knowledge base is：
1．Raining \Rightarrow Cloudy
2．Rainbow $\Rightarrow \neg$ Cloudy
3．Rainbow
4．Raining
－Is this inconsistent？
－If so ，is this a problem？
－Suppose we conclude both \neg Cloudy \＆Cloudy
\neg Cloudy
\neg Cloudy \vee exist（Leprechauns）
Cloudy \Rightarrow exist（Leprechauns） since $1 \vee A=A$ exist（Leprechauns） definition of \Rightarrow
Modus ponens with Cloudy

Contradictions in the Knowledge Base

Overview

Unification
Theorem Proving
－Theorem Proving as
Search
－example
－Forward vs Backward
Proof
－Backward Proof
Example
－Contradictions
Resolution Theorem Proving

Conjunctive Normal Form

RTP
－What happens if your KB is inconsistent？
－Suppose your knowledge base is：
1．Raining \Rightarrow Cloudy
2．Rainbow $\Rightarrow \neg$ Cloudy
3．Rainbow
4．Raining
－Is this inconsistent？
－If so，is this a problem？
－Suppose we conclude both \neg Cloudy \＆Cloudy
\neg Cloudy
\neg Cloudy \vee exist（Leprechauns）
Cloudy \Rightarrow exist（Leprechauns） since $1 \vee A=A$ exist（Leprechauns） definition of \Rightarrow

If your axiom set is inconsistent，can prove anything！

U
Overview
Unification
Theorem Proving
Resolution Theorem
Proving
Overview
Conjunctive Normal
Form
RTP

Resolution Theorem Proving

Resolution Theorem Proving (RTP)

Overview
Unification
Theorem Proving
Resolution Theorem Proving

- Overview

Conjunctive Normal Form

RTP

- A proof by refutation: Try to prove A by proving $\neg A$ is false
- Prove false by showing a contradiction
- Uses only one inference rule
- Repeatedly apply resolution:
- Need standardized knowledge base: conjunctive normal form or implicative normal form
- Finding nil means contradiction ($A \wedge \neg A$ resolves to nil)
- Cannot use on an inconsistent knowledge base because can prove anything

$$
(A \vee B) \wedge(\neg B \vee C) \equiv A \vee C
$$

Conjunctive Normal Form (CNF)

Overview
Unification
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
- CNF
- Convert to CNF
- Example
- Eliminate Implications
- Negations
- Standardize Variable
Names
- Quantifiers to Left
- Skolemize Existential
Quantifiers
- Drop \forall
- To CNF
- Rename Vars
RTP

- Need to make the all clauses in the same form so easy to apply
- Clauses contain only OR's as operators
- Clauses are interpreted as ANDed together
- Use sound rules of inference, so consistency of the knowledge base remains the same

Converting a Knowledge Base to CNF

Overview
Unification
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
- CNF
- Convert to CNF
- Example
- Eliminate Implications
- Negations
- Standardize Variable
Names
- Quantifiers to Left
- Skolemize Existential
Quantifiers
- Drop \forall
- To CNF
- Rename Vars
RTP

1. Eliminate implications (\rightarrow)
2. Reduce scope of \neg
3. Standardize (separate) variable names
4. Move quantifiers to the left
5. Skolemize existential quantifiers
6. Drop universal quantifiers
7. Change KB to conjunction of disjunctions
8. Standardize (separate) variable names (again)

Converting the Garden Example to CNF

Overview
Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal

 Form- CNF
- Convert to CNF
- Example
- Eliminate Implications
- Negations
- Standardize Variable

Names

- Quantifiers to Left
- Skolemize Existential

Quantifiers

- Drop \forall
- To CNF
- Rename Vars

RTP

- John likes carrots.

Like(John, Carrots)

- Mary likes carrots.

Like(Mary, Carrots)

- John grows the vegetables he likes.
$\forall \mathrm{x}$ Like(John, x) $\wedge \operatorname{Vegetable(\mathrm {x})} \longrightarrow \operatorname{Grow}(J o h n, \mathrm{x})$
- Carrots are vegetables.

Vegetable(Carrots)

- When you like a vegetable and you own it, you eat it.
$\forall \mathrm{x} \forall \mathrm{y} \operatorname{Like}(\mathrm{x}, \mathrm{y}) \wedge \operatorname{Vegetable}(\mathrm{y}) \wedge \operatorname{Own}(\mathrm{x}, \mathrm{y}) \longrightarrow \operatorname{Eat}(\mathrm{x}, \mathrm{y})$
- To eat something, you have to own it.
$\forall \mathrm{x} \forall \mathrm{y} \operatorname{Eat}(\mathrm{x}, \mathrm{y}) \longrightarrow \operatorname{Own}(\mathrm{x}, \mathrm{y})$
- When you grow something, you own it.
$\forall \mathrm{x} \forall \mathrm{y} \operatorname{Grow}(\mathrm{x}, \mathrm{y}) \longrightarrow \operatorname{Own}(\mathrm{x}, \mathrm{y})$
- In order to grow something, you must own a garden.
$\forall \mathrm{x} \forall \mathrm{y} \exists \mathrm{g} \operatorname{Grow}(\mathrm{x}, \mathrm{y}) \longrightarrow \operatorname{Own}(\mathrm{x}, \mathrm{g}) \wedge \operatorname{Garden}(\mathrm{g})$

Eliminate Implications: $a \rightarrow b \equiv \neg a \vee b$

Overview
Unification
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
- CNF
- Convert to CNF
- Example
- Eliminate Implications
- Negations
- Standardize Variable
Names
- Quantifiers to Left
- Skolemize Existential
Quantifiers
- Drop \forall
- To CNF
- Rename Vars
RTP

$\forall x \forall y$ Eat $(x, y) \rightarrow$ Own (x, y)	$\forall x \forall y \neg \operatorname{Eat}(x, y) \vee$ Own (x, y)
$\forall x \forall y$ Grow $(x, y) \rightarrow$ Own (x, y)	$\forall x \forall y \neg \mathrm{Grow}(x, y) \vee$ Own (x, y)
$\begin{aligned} & \forall x \forall y \exists g_{\text {Grow }}(x, y) \rightarrow \\ & \text { Own }(x, g) \wedge \text { Garden }(g) \\ & \hline \end{aligned}$	$\begin{aligned} & \forall x \forall y \exists g \neg \operatorname{Grow}(x, y) \vee[\operatorname{Own}(x \\ & \text { Garden }(g)] \end{aligned}$
$\begin{aligned} & \forall x[\operatorname{Like}(\text { John }, x) \wedge \\ & \text { Vegetable }(x)] \rightarrow \text { Grow }(\text { John }, x) \end{aligned}$	$\begin{aligned} & \forall x \neg[\operatorname{Like}(\text { John }, x) \wedge \text { Vegetable }(x)] \\ & \vee \text { Grow }(\text { John }, x) \end{aligned}$
$\begin{aligned} & \forall x \forall y[\text { Like }(x, y) \wedge \text { Vegetable }(y) \wedge \\ & \text { Own }(x, y)] \rightarrow \operatorname{Eat}(x, y) \end{aligned}$	$\begin{gathered} \forall x \forall y \neg[\text { Like }(x, y) \wedge \text { Vegetable }(y) \\ \left.O_{\mathrm{wn}}(x, y)\right] \vee \operatorname{Eat}(x, y) \end{gathered}$

Reduce scope of \neg

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

- CNF
- Convert to CNF
- Example
- Eliminate Implications
- Negations
- Standardize Variable

Names

- Quantifiers to Left
- Skolemize Existential

Quantifiers

- Drop \forall
- To CNF
- Rename Vars

RTP

- Use DeMorgan's laws, $\neg(\neg p)=p$
- For quantifiers:

$$
\begin{aligned}
& \text { - } \neg \forall x P(x)=\exists x \neg P(x) \\
& \text { - } \neg \exists x P(x)=\forall x \neg P(x)
\end{aligned}
$$

- $\forall x \neg[\operatorname{Like}($ John,$x) \wedge \operatorname{Vegetable}(x)] \vee \operatorname{Grow}($ John,$x) \equiv$

$$
\forall x \neg \text { Like }(\text { John, } x) \vee \neg \operatorname{Vegetable}(x) \vee \operatorname{Grow}(\text { John, } x)
$$

- $\forall x \forall y \neg[\operatorname{Like}(x, y) \wedge \operatorname{Vegetable}(y) \wedge \operatorname{Own}(x, y)] \vee \operatorname{Eat}(x, y) \equiv$
$\forall x \forall y \neg \operatorname{Like}(x, y) \vee \neg \operatorname{Vegetable}(y) \vee \neg \operatorname{Own}(x, y) \vee \operatorname{Eat}(x, y)$

Standardize Variable Names

Overview
Unification

Theorem Proving

Resolution Theorem Proving

Conjunctive Normal

Form

- CNF
- Convert to CNF
- Example
- Eliminate Implications
- Negations
- Standardize Variable

Names

- Quantifiers to Left
- Skolemize Existential

Quantifiers

- Drop \forall
- To CNF
- Rename Vars

RTP

- Give each variable in scope of quantifier a different name
- $\forall x \forall y \neg \operatorname{Eat}(x, y) \vee \operatorname{Own}(x, y)$
- $\forall x_{1} \forall y_{1} \neg \operatorname{Grow}\left(x_{1}, y_{1}\right) \vee \operatorname{Own}\left(x_{1}, y_{1}\right)$
- $\forall x_{2} \forall y_{2} \exists g \neg \operatorname{Grow}\left(x_{2}, y_{2}\right) \vee\left[\operatorname{Own}\left(x_{2}, g\right) \wedge \operatorname{Garden}(g)\right]$
- $\forall x_{3} \neg$ Like $\left(J o h n, x_{3}\right) \vee \neg \operatorname{Vegetable}\left(x_{3}\right) \vee \operatorname{Grow}\left(J o h n, x_{3}\right)$
- $\forall x_{4} \forall y_{4} \neg \operatorname{Like}\left(x_{4}, y_{4}\right) \vee \operatorname{Vegetable}\left(y_{4}\right) \vee \neg \operatorname{Own}\left(x_{4}, y_{4}\right) \vee$ $\operatorname{Eat}\left(x_{4}, y_{4}\right)$

Move quantifiers to the left

Overview
Unification
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
- CNF
- Convert to CNF
- Example
- Eliminate Implications
- Negations
- Standardize Variable
Names
- Quantifiers to Left
- Skolemize Existential
Quantifiers
- Drop \forall
- To CNF
- Rename Vars
RTP

- Names are different, so scoping is no problem
- This does not require any changes to our example knowledge base

Skolemize Existential Quantifiers

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

- CNF
- Convert to CNF
- Example
- Eliminate Implications
- Negations
- Standardize Variable

Names

- Quantifiers to Left
- Skolemize Existential

Quantifiers

- Drop \forall
- To CNF
- Rename Vars

RTP

- Since $\exists x$ means "there exists some x ", just invent a constant for it - a Skolem constant
- Generally use sk1..skn for Skolem constants
- If inside universal quantifier, use Skolem function: a function of that variable: e.g., sk1(x)
- $\forall x_{2} \forall y_{2} \exists g \neg \operatorname{Grow}\left(x_{2}, y_{2}\right) \vee\left[\operatorname{Own}\left(x_{2}, g\right) \wedge \operatorname{Garden}(g)\right]$

$$
\begin{aligned}
& \equiv \\
& \forall x_{2} \forall y_{2} \neg \operatorname{Grow}\left(x_{2}, y_{2}\right) \vee\left[\operatorname{Own}\left(x_{2}, s k\left(x_{2}, y_{2}\right)\right) \wedge\right. \\
& \left.\operatorname{Garden}\left(\operatorname{sk}\left(x_{2}, y_{2}\right)\right)\right]
\end{aligned}
$$

Overview
Unification
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
- CNF
- Convert to CNF
- Example
- Eliminate Implications
- Negations
- Standardize Variable
Names
- Quantifiers to Left
- Skolemize Existential
Quantifiers
- Drop \forall
- To CNF
- Rename Vars
RTP

Drop \forall

- Can do this, since all variables are now universally quantified
- Like(John, Carrots)
- Like(Mary, Carrots)
- Vegetable(Carrots)
- $\neg \operatorname{Eat}(x, y) \vee \operatorname{Own}(x, y)$
- $\neg \operatorname{Grow}\left(x_{1}, y_{1}\right) \vee \operatorname{Own}\left(x_{1}, y_{1}\right)$
- $\neg \operatorname{Grow}\left(x_{2}, y_{2}\right) \vee\left[\operatorname{Own}\left(x_{2}, \operatorname{sk}\left(x_{2}, y_{2}\right)\right) \wedge \operatorname{Garden}\left(\operatorname{sk}\left(x_{2}, y_{2}\right)\right)\right]$
- $\quad \neg$ Like $\left(J o h n, ~ x_{3}\right) \vee \neg \operatorname{Vegetable}\left(x_{3}\right) \vee \operatorname{Grow}\left(J o h n, x_{3}\right)$
- \neg Like $\left(x_{4}, y_{4}\right) \vee \operatorname{Vegetable}\left(y_{4}\right) \vee \neg \operatorname{Own}\left(x_{4}, y_{4}\right) \vee \operatorname{Eat}\left(x_{4}, y_{4}\right)$

Change to a conjunct of disjuncts

Overview
Unification
Theorem ProvingResolution TheoremProving
Conjunctive Normal
Form

- CNF
- Convert to CNF
- Example
- Eliminate Implications
- Negations
- Standardize Variable
Names
- Quantifiers to Left
- Skolemize Existential
Quantifiers
- Drop \forall
- To CNF
- Rename Vars
- Change the whole set of statements to a conjunction of disjunction by applying distributive property and dropping ANDs between disjunctive clauses
- $(a \wedge b) \vee c=(a \vee c) \wedge(b \vee c)$
- $\neg \operatorname{Grow}\left(x_{2}, y_{2}\right) \vee\left[\operatorname{Own}\left(x_{2}, \operatorname{sk}\left(x_{2}, y_{2}\right)\right) \wedge \operatorname{Garden}\left(\operatorname{sk}\left(x_{2}, y_{2}\right)\right)\right] \equiv$
$\neg \operatorname{Grow}\left(x_{2}, y_{2}\right) \vee \operatorname{Own}\left(x_{2}, \operatorname{sk}\left(x_{2}, y_{2}\right)\right)$
and
$\neg \operatorname{Grow}\left(x_{2}, y_{2}\right) \vee \operatorname{Garden}\left(\operatorname{sk}\left(x_{2}, y_{2}\right)\right)$

Give each variable a different name

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal

Form

－CNF
－Convert to CNF
－Example
－Eliminate Implications
－Negations
－Standardize Variable
Names
－Quantifiers to Left
－Skolemize Existential
Quantifiers
－Drop \forall
－To CNF
－Rename Vars
RTP
－$\neg \operatorname{Grow}\left(x_{2}, y_{2}\right) \vee \operatorname{Own}\left(x_{2}, \operatorname{sk}\left(x_{2}, y_{2}\right)\right)$
－$\neg \operatorname{Grow}\left(x_{5}, y_{5}\right) \vee \operatorname{Garden}\left(s k\left(x_{5}, y_{5}\right)\right)$

Algorithm for Resolution Theorem Proving

Overview
Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

1. Convert statements to conjunctive normal form
2. Pick two clauses and "resolve" them

- need to worry about matching variables
- don't need to undo steps - steps are ignorable since only making sound inferences

3. If resolvent is not nil, add resolvent to KB and go to 2 . Otherwise, have proved original statement by contradiction of negation of that statement

RTP as Search

Overview
Unification
Theorem Proving
Resolution Theorem Proving Conjunctive Normal Form RTP Algorithm －RTP as Search －Unify in RTP －Unifying Two Clauses －Example －Proof Tree －Another example －Control Strategies －Properties of RTP －Question Answering

－Question Answering
${ }^{\prime}$ Artificial
ntelligence
\＆ロ〉

How would we use unify in resolution?

Overview
Unification
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
RTP
- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

- Suppose we want to resolve $\mathrm{W}(\mathrm{A}, \mathrm{B})$ and $\neg W(A, x) \vee S(x) \vee R(A, x)$
- Can unify $\mathrm{W}(\mathrm{A}, \mathrm{B})$ and $\mathrm{W}(\mathrm{A}, \mathrm{x})$ if $\mathrm{x}=\mathrm{B}$, so have substitution instance of B / x
- Using the substitution for the whole clause, we get
$\neg W(A, B) \vee S(B) \vee R(A, B)$
- When resolve the two clauses, get: $S(B) \vee R(A, B)$

Unifying Two Clauses

Overview

Unification

Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- Predicates must match (easiest thing to eliminate on)
- Arguments must match:
- if constant, or one in previous substitution, bound to that in the clause
- if a variable, can try all possibilities

Resolution Theorem Proving Example

Overview

Unification
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal Form

RTP

－Algorithm
－RTP as Search
－Unify in RTP
－Unifying Two Clauses
－Example
－Proof Tree
－Another example
－Control Strategies
－Properties of RTP
－Question Answering
－Put knowledge base in CNF
－$S(A, B)$
－$S(C, B)$
－$T(B)$
－$\neg Q(x, y) \vee P(x, y)$
－$\neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right)$
－$\neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right)$
－$\neg R\left(x_{3}, y_{3}\right) \vee W\left(s k 1\left(x_{3}, y_{3}\right)\right)$
－$\neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right)$
－$\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
－Negate the clause that you are trying to prove
－want to prove $Q(A, B)$－add $\neg Q(A, B)$ to knowledge base
－Resolve clauses until come to nil

Resolving on the Example

Overview	
Unification	
Theorem Proving	
Resolution Theorem Proving	
Conjunctive Normal Form	
RTP	
- Algorithm - RTP as Search - Unify in RTP - Unifying Two Clauses - Example - Proof Tree - Another example - Control Strategies - Properties of RTP - Question Answering	$\begin{aligned} & S(A, B) \\ & S(C, B) \\ & T(B) \\ & \neg Q(x, y) \vee P(x, y) \\ & \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\ & \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\ & \neg R\left(x_{3}, y_{3}\right) \vee W\left(s k 1\left(x_{3}, y_{3}\right)\right) \\ & \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\ & \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\ & \vee Q\left(x_{5}, y_{5}\right) \end{aligned}$

- prove $\neg Q(A, B)$

Resolving on the Example

Overview
Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal

Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$
- prove $\neg Q(A, B)$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, s k 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

Resolving on the Example

Overview
Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

Resolving on the Example

Overview
Unification
Theorem Proving
Resolution Theorem

Proving

Conjunctive Normal

Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

Resolving on the Example

Overview
Unification
Theorem Proving
Resolution Theorem

Proving

Conjunctive Normal

Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, s k 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(s k 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

resolve resolvent win

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem

Proving

Conjunctive Normal

Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$
- substitutions: nil

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem

Proving

Conjunctive Normal

Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$
- substitutions: nil
- $\neg T(B) \vee \neg P(A, B)$

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal

 Form
RIP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$
- substitutions: nil
- $\neg T(B) \vee \neg P(A, B)$
- resolve with: $T(B)$

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal

 Form
RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$
- substitutions: nil
- $\neg T(B) \vee \neg P(A, B)$
- resolve with: $T(B)$
- substitutions: nil

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, s k 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem

Proving

Conjunctive Normal

Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(s k 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$
- substitutions: nil
- $\neg T(B) \vee \neg P(A, B)$
- resolve with: $T(B)$
- substitutions: nil
- resolvent: $\neg P(A, B)$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal

Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$
- substitutions: nil
$-\neg T(B) \vee \neg P(A, B)$
- resolve with: $T(B)$
- substitutions: nil
- resolvent: $\neg P(A, B)$
- resolve with: $\neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right)$

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal

Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$
- substitutions: nil
$-\neg T(B) \vee \neg P(A, B)$
- resolve with: $T(B)$
- substitutions: nil
- resolvent: $\neg P(A, B)$
- resolve with: $\neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right)$
- substitution: $A / x_{1}, B / y_{5}$

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem

Proving

Conjunctive Normal

Form

RIP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, s k 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(s k 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$
- substitutions: nil
$-\neg T(B) \vee \neg P(A, B)$
- resolve with: $T(B)$
- substitutions: nil
- resolvent: $\neg P(A, B)$
- resolve with: $\neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right)$
- substitution: $A / x_{1}, B / y_{5}$
- resolvent: $\neg R(A, B)$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal

Form

RIP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, s k 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(s k 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$
- substitutions: nil
$-\neg T(B) \vee \neg P(A, B)$
- resolve with: $T(B)$
- substitutions: nil
- resolvent: $\neg P(A, B)$
- resolve with: $\neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right)$
- substitution: $A / x_{1}, B / y_{5}$
- resolvent: $\neg R(A, B)$
- resolve with $\neg S\left(A, x_{4}\right) \vee T\left(x_{4}\right) \vee R\left(A, x_{4}\right)$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal

Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, s k 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(s k 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$
- substitutions: nil
$-\neg T(B) \vee \neg P(A, B)$
- resolve with: $T(B)$
- substitutions: nil
- resolvent: $\neg P(A, B)$
- resolve with: $\neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right)$
- substitution: $A / x_{1}, B / y_{5}$
- resolvent: $\neg R(A, B)$
- resolve with $\neg S\left(A, x_{4}\right) \vee T\left(x_{4}\right) \vee R\left(A, x_{4}\right)$
- substitution: B / x_{4}

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem

Proving

Conjunctive Normal

Form

RTP

－Algorithm
－RTP as Search
－Unify in RTP
－Unifying Two Clauses
－Example
－Proof Tree
－Another example
－Control Strategies
－Properties of RTP
－Question Answering

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

－prove $\neg Q(A, B)$
－resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
－substitutions：$A / x_{5}, B / y_{5}$－only looking at the Q＇s and then must apply throughout when resolve
－resolvent：$\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
－resolve resolvent with $S(A, B)$
－substitutions：nil
－$\neg T(B) \vee \neg P(A, B)$
－resolve with：$T(B)$
－substitutions：nil
－resolvent：$\neg P(A, B)$
－resolve with：$\neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right)$
－substitution：$A / x_{1}, B / y_{5}$
－resolvent：$\neg R(A, B)$
－resolve with $\neg S\left(A, x_{4}\right) \vee T\left(x_{4}\right) \vee R\left(A, x_{4}\right)$
－substitution：B / x_{4}
－resolvent：$\neg S(A, B) \vee \neg T(B)$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem

Proving

Conjunctive Normal

Form

RTP

－Algorithm
－RTP as Search
－Unify in RTP
－Unifying Two Clauses
－Example
－Proof Tree
－Another example
－Control Strategies
－Properties of RTP
－Question Answering

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

－prove $\neg Q(A, B)$
－resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
－substitutions：$A / x_{5}, B / y_{5}$－only looking at the Q＇s and then must apply throughout when resolve
－resolvent：$\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
－resolve resolvent with $S(A, B)$
－substitutions：nil
－$\neg T(B) \vee \neg P(A, B)$
－resolve with：$T(B)$
－substitutions：nil
－resolvent：$\neg P(A, B)$
－resolve with：$\neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right)$
－substitution：$A / x_{1}, B / y_{5}$
－resolvent：$\neg R(A, B)$
－resolve with $\neg S\left(A, x_{4}\right) \vee T\left(x_{4}\right) \vee R\left(A, x_{4}\right)$
－substitution：B / x_{4}
－resolvent：$\neg S(A, B) \vee \neg T(B)$
－resolve with：$S(A, B)$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem

Proving

Conjunctive Normal

Form

RTP

－Algorithm
－RTP as Search
－Unify in RTP
－Unifying Two Clauses
－Example
－Proof Tree
－Another example
－Control Strategies
－Properties of RTP
－Question Answering

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

－prove $\neg Q(A, B)$
－resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
－substitutions：$A / x_{5}, B / y_{5}$－only looking at the Q＇s and then must apply throughout when resolve
－resolvent：$\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
－resolve resolvent with $S(A, B)$
－substitutions：nil
－$\neg T(B) \vee \neg P(A, B)$
－resolve with：$T(B)$
－substitutions：nil
－resolvent：$\neg P(A, B)$
－resolve with：$\neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right)$
－substitution：$A / x_{1}, B / y_{5}$
－resolvent：$\neg R(A, B)$
－resolve with $\neg S\left(A, x_{4}\right) \vee T\left(x_{4}\right) \vee R\left(A, x_{4}\right)$
－substitution：B / x_{4}
－resolvent：$\neg S(A, B) \vee \neg T(B)$
－resolve with：$S(A, B)$
－substitution：nil

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem

Proving

Conjunctive Normal

Form

RTP

－Algorithm
－RTP as Search
－Unify in RTP
－Unifying Two Clauses
－Example
－Proof Tree
－Another example
－Control Strategies
－Properties of RTP
－Question Answering

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

－prove $\neg Q(A, B)$
－resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
－substitutions：$A / x_{5}, B / y_{5}$－only looking at the Q＇s and then must apply throughout when resolve
－resolvent：$\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
－resolve resolvent with $S(A, B)$
－substitutions：nil
－$\neg T(B) \vee \neg P(A, B)$
－resolve with：$T(B)$
－substitutions：nil
－resolvent：$\neg P(A, B)$
－resolve with：$\neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right)$
－substitution：$A / x_{1}, B / y_{5}$
－resolvent：$\neg R(A, B)$
－resolve with $\neg S\left(A, x_{4}\right) \vee T\left(x_{4}\right) \vee R\left(A, x_{4}\right)$
－substitution：B / x_{4}
－resolvent：$\neg S(A, B) \vee \neg T(B)$
－resolve with：$S(A, B)$
－substitution：nil
－resolvent：$\neg T(B)$

Resolving on the Example

Overview

Unification
Theorem Proving
Resolution Theorem

Proving

Conjunctive Normal

Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

$$
\begin{aligned}
& S(A, B) \\
& S(C, B) \\
& T(B) \\
& \neg Q(x, y) \vee P(x, y) \\
& \neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right) \\
& \neg R\left(x_{2}, y_{2}\right) \vee P\left(x_{2}, \operatorname{sk} 1\left(x_{2}, y_{2}\right)\right) \\
& \neg R\left(x_{3}, y_{3}\right) \vee W\left(\operatorname{sk} 1\left(x_{3}, y_{3}\right)\right) \\
& \neg S\left(A, x_{4}\right) \vee \neg T\left(x_{4}\right) \vee R\left(A, x_{4}\right) \\
& \neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee \neg P\left(x_{5}, y_{5}\right) \\
& \vee Q\left(x_{5}, y_{5}\right)
\end{aligned}
$$

- prove $\neg Q(A, B)$
- resolve $\neg Q(A, B)$ with $\neg S\left(x_{5}, y_{5}\right) \vee \neg T\left(y_{5}\right) \vee$ $\neg P\left(x_{5}, y_{5}\right) \vee Q\left(x_{5}, y_{5}\right)$
- substitutions: $A / x_{5}, B / y_{5}$ - only looking at the Q's and then must apply throughout when resolve
- resolvent: $\neg S(A, B) \vee \neg T(B) \vee \neg P(A, B)$
- resolve resolvent with $S(A, B)$
- substitutions: nil
- $\neg T(B) \vee \neg P(A, B)$
- resolve with: $T(B)$
- substitutions: nil
- resolvent: $\neg P(A, B)$
- resolve with: $\neg R\left(x_{1}, y_{1}\right) \vee P\left(x_{1}, y_{1}\right)$
- substitution: $A / x_{1}, B / y_{5}$
- resolvent: $\neg R(A, B)$
- resolve with $\neg S\left(A, x_{4}\right) \vee T\left(x_{4}\right) \vee R\left(A, x_{4}\right)$
- substitution: B / x_{4}
- resolvent: $\neg S(A, B) \vee \neg T(B)$
- resolve with: $S(A, B)$
- substitution: nil
- resolvent: $\neg T(B)$
- resolve with $\mathrm{T}(\mathrm{B}) \rightarrow$ nil

Proof Tree

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal
Form

RTP

－Algorithm
－RTP as Search
－Unify in RTP
－Unifying Two Clauses
－Example
－Proof Tree
－Another example
－Control Strategies
－Properties of RTP
－Question Answering

Copyright（c） 2017 UMaine School of Computing and Information Science－35／41

Another example

Overview
Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

	FOL	CNF
1	human(Marcus)	
2	Pompeian(Marcus)	
3	$\operatorname{born}($ Marcus, 40)	
4	$\begin{aligned} & \forall x \quad \operatorname{human}(x) \\ & \operatorname{mortal}(x) \end{aligned}$	
5	$\begin{aligned} & \forall x \quad \text { Pompeian }(x) \\ & \operatorname{died}(x, 79) \end{aligned}$	
6	erupted(volcano, 79)	
7	$\forall x, t_{1}, t_{2} \quad \operatorname{mortal}(x)$	
	$\operatorname{born}\left(x, t_{1}\right) \quad \wedge \quad g t\left(t_{2}\right.$	
8	$\begin{aligned} & \left.t_{1}, 150\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right) \\ & \text { now }=2014 \end{aligned}$	

Another example

Overview
Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

Another example

Overview
Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

	FOL		CNF
	human(Marcus)		human(Marcus) Pompeian(Marcus)
2	Pompeian(Marcus)		
3	$\operatorname{born}($ Marcus, 40)		
4	$\forall x \quad \operatorname{human}(x)$	\Rightarrow	
	$\operatorname{mortal}(x)$		
5	$\begin{aligned} & \forall x \quad \text { Pompeian }(x) \\ & \operatorname{died}(x, 79) \end{aligned}$	\Rightarrow	
6	erupted(volcano, 79)		
7	$\forall x, t_{1}, t_{2} \quad \operatorname{mortal}(x)$	\wedge	
	$\operatorname{born}\left(x, t_{1}\right) \quad \wedge \quad g t\left(t_{2}\right.$	-	
	$\left.t_{1}, 150\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right)$		
8	now $=2014$		

Another example

Overview
Unification

Theorem Proving

Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

Another example

Overview
Unification

Theorem Proving

Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

FOL			CNF
1	human(Marcus)		human(Marcus)
2	Pompeian(Marcus)		Pompeian(Marcus)
3	$\operatorname{born}($ Marcus, 40)		$\operatorname{born}($ Marcus, 40)
4	$\begin{aligned} & \forall x \quad \operatorname{human}(x) \\ & \operatorname{mortal}(x) \end{aligned}$	\Rightarrow	$\neg \operatorname{human}\left(x_{1}\right) \vee \operatorname{mortal}\left(x_{1}\right)$
5	$\begin{aligned} & \forall x \quad \text { Pompeian }(x) \\ & \operatorname{died}(x, 79) \end{aligned}$	\Rightarrow	
6	erupted(volcano, 79)		
7	$\begin{aligned} & \forall x, t_{1}, t_{2} \quad \text { mortal }(x) \\ & \operatorname{born}\left(x, t_{1}\right) \wedge \quad \wedge \quad g t\left(t_{2}\right. \\ & \left.t_{1}, 150\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right) \end{aligned}$	\wedge	
8	now $=2014$		

Another example

Overview

Unification

Theorem Proving

Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

FOL			CNF
1	human(Marcus)		human(Marcus)
2	Pompeian(Marcus)		Pompeian(Marcus)
3	$\operatorname{born}($ Marcus, 40)		$\operatorname{born}($ Marcus, 40)
4	$\begin{aligned} & \forall x \quad \text { human }(x) \\ & \operatorname{mortal}(x) \end{aligned}$	\Rightarrow	$\neg \operatorname{human}\left(x_{1}\right) \vee \operatorname{mortal}\left(x_{1}\right)$
5	$\begin{aligned} & \forall x \quad \text { Pompeian }(x) \\ & \operatorname{died}(x, 79) \end{aligned}$	\Rightarrow	$\begin{aligned} & \neg \text { Pompeian }\left(x_{2}\right) \\ & \operatorname{died}\left(x_{2}, 79\right) \end{aligned}$
6	erupted(volcano, 79)		
7	$\begin{array}{lr} \forall x, t_{1}, t_{2} & \text { mortal }(x) \\ \operatorname{born}\left(x, t_{1}\right) & \wedge \quad g t\left(t_{2}\right. \end{array}$	\wedge	
	$\left.t_{1}, 150\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right)$		
8	now $=2014$		

Another example

Overview

Unification

Theorem Proving

Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

FOL			CNF
1	human(Marcus)		human(Marcus)
2	Pompeian(Marcus)		Pompeian(Marcus)
3	born(Marcus, 40)		$\operatorname{born}($ Marcus, 40)
4	$\begin{aligned} & \forall x \quad \operatorname{human}(x) \\ & \operatorname{mortal}(x) \end{aligned}$	\Rightarrow	$\neg \operatorname{human}\left(x_{1}\right) \vee$ mortal $\left(x_{1}\right)$
5	$\begin{aligned} & \forall x \quad \text { Pompeian }(x) \\ & \operatorname{died}(x, 79) \end{aligned}$	\Rightarrow	$\begin{aligned} & \neg \text { Pompeian }\left(x_{2}\right) \\ & \operatorname{died}\left(x_{2}, 79\right) \end{aligned}$
6	erupted(volcano, 79)		erupted(volcano, 79)
7	$\begin{aligned} & \forall x, t_{1}, t_{2} \quad \operatorname{mortal}(x) \\ & \operatorname{born}\left(x, t_{1}\right) \wedge \quad \operatorname{gt}\left(t_{2}\right. \\ & \left.t_{1}, 150\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right) \end{aligned}$	\wedge	
	now $=2014$		

Another example

Overview

Unification

Theorem Proving

Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

FOL			CNF
1	human(Marcus)		human(Marcus)
2	Pompeian(Marcus)		Pompeian(Marcus)
3	born(Marcus, 40)		$\operatorname{born}(M a r c u s, 40)$
4	$\begin{aligned} & \forall x \quad \operatorname{human}(x) \\ & \operatorname{mortal}(x) \end{aligned}$	\Rightarrow	$\neg \operatorname{human}\left(x_{1}\right) \vee$ mortal $\left(x_{1}\right)$
5	$\begin{aligned} & \forall x \quad \text { Pompeian }(x) \\ & \operatorname{died}(x, 79) \end{aligned}$	\Rightarrow	$\begin{aligned} & \neg \text { Pompeian }\left(x_{2}\right) \\ & \operatorname{died}\left(x_{2}, 79\right) \end{aligned}$
6	erupted(volcano, 79)		erupted(volcano, 79)
7	$\forall x, t_{1}, t_{2} \quad \operatorname{mortal}(x)$	\wedge	$\neg \operatorname{mortal}\left(x_{3}\right) \quad \vee$
	$\operatorname{born}\left(x, t_{1}\right) \wedge \wedge g t\left(t_{2}\right.$	-	$\neg \operatorname{born}\left(x_{3}, t_{1}\right) \vee \neg g t\left(t_{2}-\right.$
	$\left.t_{1}, 150\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right)$		$\left.t_{1}, 150\right) \vee \operatorname{dead}\left(x_{3}, t 2\right)$
	now $=2014$		

Another example

Overview

Unification

Theorem Proving

Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

FOL			CNF
1	human(Marcus)		human(Marcus)
2	Pompeian(Marcus)		Pompeian(Marcus)
3	$\operatorname{born}($ Marcus, 40)		$\operatorname{born}(M a r c u s, 40)$
4	$\begin{aligned} & \forall x \quad \operatorname{human}(x) \\ & \operatorname{mortal}(x) \end{aligned}$	\Rightarrow	$\neg \operatorname{human}\left(x_{1}\right) \vee$ mortal $\left(x_{1}\right)$
5	$\begin{aligned} & \forall x \quad \text { Pompeian }(x) \\ & \operatorname{died}(x, 79) \end{aligned}$	\Rightarrow	$\begin{aligned} & \neg \text { Pompeian }\left(x_{2}\right) \\ & \operatorname{died}\left(x_{2}, 79\right) \end{aligned}$
6	erupted(volcano, 79)		erupted(volcano, 79)
7	$\forall x, t_{1}, t_{2} \quad \operatorname{mortal}(x)$	\wedge	$\neg \operatorname{mortal}\left(x_{3}\right) \quad \vee$
	$\operatorname{born}\left(x, t_{1}\right) \wedge g^{\prime}\left(t_{2}\right.$	-	$\neg \operatorname{born}\left(x_{3}, t_{1}\right) \vee \neg g t\left(t_{2}-\right.$
	$\left.t_{1}, 150\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right)$		$\left.t_{1}, 150\right) \vee \operatorname{dead}\left(x_{3}, t 2\right)$
	now $=2014$		now $=2014$

Another example

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal
Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

$$
\begin{aligned}
& 9 \quad \text { FOL: } \forall x, t[\operatorname{alive}(x, t) \Rightarrow \neg \operatorname{dead}(x, t)] \wedge[\neg \operatorname{dead}(x, t) \Rightarrow \\
& \quad \operatorname{alive}(x, t)]
\end{aligned}
$$

10 FOL: $\forall x, t_{1}, t_{2} \operatorname{died}\left(x, t_{1}\right) \wedge g t\left(t_{2}, t_{1}\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right)$

Another example

Overview
Unification

Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

9 FOL: $\forall x, t[\operatorname{alive}(x, t) \Rightarrow \neg \operatorname{dead}(x, t)] \wedge[\neg \operatorname{dead}(x, t) \Rightarrow$ alive (x, t)]
CNF:
$\left[\neg \operatorname{alive}\left(x_{4}, t_{3}\right) \vee \neg \operatorname{dead}\left(x_{4}, t_{3}\right)\right] \wedge\left[\operatorname{dead}\left(x_{4}, t_{3}\right) \vee \operatorname{alive}\left(x_{4}, t_{3}\right)\right]$
(a) $\neg \operatorname{alive}\left(x_{4}, t_{3}\right) \vee \neg \operatorname{dead}\left(x_{4}, t_{3}\right)$
(b)dead $\left(x_{5}, t_{4}\right) \vee$ alive $\left(x_{5}, t_{4}\right)$

10 FOL: $\forall x, t_{1}, t_{2} \operatorname{died}\left(x, t_{1}\right) \wedge g t\left(t_{2}, t_{1}\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right)$

Another example

Overview
Unification

Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

9 FOL: $\forall x, t[\operatorname{alive}(x, t) \Rightarrow \neg \operatorname{dead}(x, t)] \wedge[\neg \operatorname{dead}(x, t) \Rightarrow$ alive (x, t)]
CNF:
$\left[\neg \operatorname{alive}\left(x_{4}, t_{3}\right) \vee \neg \operatorname{dead}\left(x_{4}, t_{3}\right)\right] \wedge\left[\operatorname{dead}\left(x_{4}, t_{3}\right) \vee \operatorname{alive}\left(x_{4}, t_{3}\right)\right]$
(a) $\neg \operatorname{alive}\left(x_{4}, t_{3}\right) \vee \neg \operatorname{dead}\left(x_{4}, t_{3}\right)$
(b)dead $\left(x_{5}, t_{4}\right) \vee$ alive $\left(x_{5}, t_{4}\right)$

10 FOL: $\forall x, t_{1}, t_{2} \operatorname{died}\left(x, t_{1}\right) \wedge g t\left(t_{2}, t_{1}\right) \Rightarrow \operatorname{dead}\left(x, t_{2}\right)$ CNF: $\neg \operatorname{died}\left(x_{6}, t_{5}\right) \vee \neg g t\left(t_{6}, t_{5}\right) \vee \operatorname{dead}\left(x_{6}, t_{6}\right)$

Marcus CNF

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

1. human(Marcus)
2. Pompeian(Marcus)
3. $\operatorname{born}(M a r c u s, 40)$
4. $\neg \operatorname{human}\left(x_{1}\right) \vee \operatorname{mortal}\left(x_{1}\right)$
5. \neg Pompeian $\left(x_{2}\right) \vee \operatorname{died}\left(x_{2}, 79\right)$
6. erupted(volcano, 79)
7. $\neg \operatorname{mortal}\left(x_{3}\right) \vee \neg \operatorname{born}\left(x_{3}, t_{1}\right) \vee \neg g t\left(t_{2}-t_{1}, 150\right) \vee$ $\operatorname{dead}\left(x_{3}, t 2\right)$
8. $n o w=2014$
9. $\neg \operatorname{alive}\left(x_{4}, t_{3}\right) \vee \neg \operatorname{dead}\left(x_{4}, t_{3}\right)$
10. $\operatorname{dead}\left(x_{5}, t_{4}\right) \vee \operatorname{alive}\left(x_{5}, t_{4}\right)$
11. $\neg \operatorname{died}\left(x_{6}, t_{5}\right) \vee \neg g t\left(t_{6}, t_{5}\right) \vee \operatorname{dead}\left(x_{6}, t_{6}\right)$

Prove: dead(Marcus)

Control Strategies

Overview
Unification
Theorem Proving
Resolution Theorem
Proving
Conjunctive Normal
Form
RTP
- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering

- Only try clauses with complementary literals
- Unit preference strategy
- Set-of-support
- Eliminate clauses which cannot change value of knowledge base
- tautologies
- subsumed clauses
- $\mathrm{P}(\mathrm{x})$ subsumes $P(y) \vee Q(z)$ since if $\mathrm{P}(\mathrm{x})$ is true it doesn't make any difference if $Q(x)$ is true - assuming $P(x)$ is true since in the knowledge base
- $P(x)$ subsumes $P(A)$ since variable is more general than the constant

Properties of RTP

Overview
Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- Is it complete?
- Semi-decidable - with appropriate control strategies (e.g., set-of-support and unit-preference)
- Time complexity?
- Space complexity?

Question Answering

Overview

Unification
Theorem Proving
Resolution Theorem Proving

Conjunctive Normal Form

RTP

- Algorithm
- RTP as Search
- Unify in RTP
- Unifying Two Clauses
- Example
- Proof Tree
- Another example
- Control Strategies
- Properties of RTP
- Question Answering
- Yes/no questions
- turn question into statement
- if can prove, answer is "yes"
- if can't prove, try proving negation for "no"
- Fill in the blank questions (wh-questions)
- use an existentially-quantified variable in the question
- negate the question and see what variable is bound to
- Green's trick:
- do not negate, but mark so can distinguish from other clauses
- when left with only clause, see what variable is bound to
ntelligence

Rule-based reasoning

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Expert Systems

Overview

- Expert Systems
- Characteristics
- RBES
- Benefits
- Production Systems
- Kinds of RBES

Forward-Chaining RBES

Backward-Chaining RBES

Examples

- What is an "expert system"?
- Also called knowledge-based systems
- Strong vs weak methods
- Feigenbaum, Shortliffe, Buchanan, J. McDermott, others: create specialists, not generalists

Characteristics

Overview

- Expert Systems
- Characteristics
- RBES
- Benefits
- Production Systems
- Kinds of RBES

Forward-Chaining RBES

Backward-Chaining RBES

Examples

- Expert-level performance
- Clean separation of knowledge and program ("inference engine")
- Highly domain-specific, specialty very narrow
- Often: meta-knowledge
- Often: handles uncertainty
- Highly knowledge-intensive

Rule-based Expert Systems

Overview

- Expert Systems
- Characteristics
- RBES
- Benefits
- Production Systems
- Kinds of RBES

Forward-Chaining RBES

Backward-Chaining RBES

Examples

- Based on production systems [Post, 1943]
- Rules:
- productions: rewrite rules
- if condition+ then action+
- test/action pairs, antecedent/consequent, LHS/RHS
- Working memory - contains positive literals
- Control system
- Forward chaining of rules

Benefits of production systems

Overview

- Expert Systems
- Characteristics
- RBES
- Benefits
- Production Systems
- Kinds of RBES

Forward-Chaining RBES
Backward-Chaining RBES

Examples

- Equivalent to Turing machines
- Separates knowledge and program
- Modular
- Standard knowledge representation
- Simpler than full-fledged FOPC; more efficient than theorem prover
- Physical symbol system

Modifications to Production System

Overview

- Expert Systems
- Characteristics
- RBES
- Benefits
- Production Systems
- Kinds of RBES

Forward-Chaining RBES
Backward-Chaining RBES

Examples

- Backward- as well as forward-chaining of rules
- Uncertainty management
- Literals: (predicate attribute value CF) (IDENTITY \$ORG1 STREPTOCOCCUS 700)
- Rules: add a certainty associated with rule If it is cloudy and the barometer is falling
Then there is suggestive evidence (.7) that it will rain
- User interface
- Meta knowledge

Overview

- Expert Systems
- Characteristics
- RBES
- Benefits
- Production Systems
- Kinds of RBES

Forward-Chaining RBES

Backward-Chaining RBES

Examples

Modifications to Production System

Overview

- Expert Systems
- Characteristics
- RBES
- Benefits
- Production Systems
- Kinds of RBES

Forward-Chaining RBES
Backward-Chaining RBES

Examples

- Classified by domain

Overview

- Expert Systems
- Characteristics
- RBES
- Benefits
- Production Systems
- Kinds of RBES

Forward-Chaining RBES
Backward-Chaining RBES

Examples

- Classified by domain
- ...by type of task:
- synthesis/construction
- analysis/categorization
${ }^{1}$ Atrificial
ntelligence

のQल

Overview

－Expert Systems
－Characteristics
－RBES
－Benefits
－Production Systems
－Kinds of RBES
Forward－Chaining RBES
Backward－Chaining RBES

Examples
－Classified by domain
－．．．by type of task：
－synthesis／construction
－analysis／categorization
－．．．by reasoning style：
－Forward chaining
－Backward chaining

Kinds of RBES

Overview

－Expert Systems
－Characteristics
－RBES
－Benefits
－Production Systems
－Kinds of RBES
Forward－Chaining RBES

Backward－Chaining RBES

Examples
－Classified by domain
－．．．by type of task：
－synthesis／construction
－analysis／categorization
－．．．by reasoning style：
－Forward chaining
－Backward chaining
－．．．by exact or probabilistic or fuzzy reasoning

1
Overview

Forward-Chaining RBES

- Overview
- Example
- Triggering
- Rete Network

Backward-Chaining RBES

Examples

Forward-Chaining RBES

Artificial
ntelligence

Forward-Chaining RBES

Overview
Forward-Chaining RBES

- Overview
- Example
- Triggering
- Rete Network

Backward-Chaining RBES

Examples

- Control cycle:
- Find rules whose antecedents are true: triggered rules
- Select one: conflict resolution
- Fire the rule to take some action
- Continue forever or until some goal is achieved
- Used for synthesis, often, or process control

Artificial
ntelligence

Example: Winston's "Bagger" Program

Overview

Forward-Chaining RBES

- Overview
- Example
- Triggering
- Rete Network

Backward-Chaining RBES

Examples

- Toy forward chainer - domain = bagging groceries
- Steps in this process:

1. Check what customer has and suggest additions
2. Bag large items, putting large bottles in first
3. Bag medium items, putting frozen food in freezer bags
4. Bag small items wherever there is room

- Working memory:
- Needs to have information about:
- items already bagged
- unbagged items
- which step (context) we're in

Example：Winston＇s＂Bagger＂Program

Overview

Forward－Chaining RBES
－Overview
－Example
－Triggering
－Rete Network
Backward－Chaining RBES

Examples
－Representation：could be literals，could have more structure than that
－Initial state：

```
Step: check-order
Bagged: nil
Unbagged: bread, Glop brand cheese, granola,
ice cream
```

－Also need information about the world；this might be in the form of a table for this problem：

Object	Size	Container	Frozen？
bread	M	bag	nil
Glop	S	jar	nil
granola	L	box	nil
ice cream	M	box	t
Pepsi	L	bottle	nil
potato chips	M	bag	nil

Example：Winston＇s＂Bagger＂Program

Conflict resolution strategies－possibilities：

Overview
Forward－Chaining RBES
－Overview
－Example
－Triggering
－Rete Network
Backward－Chaining RBES

Examples
－specificity ordering：
－if two rules conflict and one is more specific than the other， use it
－Rule 1 is more specific than Rule 2 if Rule 1＇s antecedent literals are a superset of Rule 2＇s（assuming conjunction）
－rule ordering－implicit in rule base（unless using a rete net）
－data ordering－look at some data first（rete does this，sort of）
－size of antecedent－prefer rules with larger antecedent，since it＇s likely to be more specific
－recency－least／most recently used（depending on needs of designer）
－context－limiting

Example: Winston's "Bagger" Program

Overview

Forward-Chaining RBES

- Overview
- Example
- Triggering
- Rete Network

Backward-Chaining RBES

Examples

- Rules in form of IF-THEN pairs
- Examples:

```
R1: if step = check-order &
    exists bag of chips &
    not exists soft drink bottle
    then add bottle of pepsi to order
```

$$
\begin{aligned}
\text { R2: } & \text { if step = check-order } \\
& \text { then step = bag-large-items }
\end{aligned}
$$

R3: if step = bag-large-items \&
exists large item to be bagged \&
exists large bottle to be bagged \&

$$
\text { exists bag with < } 6 \text { large items }
$$

then put bottle in bag

Example: Winston's "Bagger" Program

Overview

Forward-Chaining RBES

- Overview
- Example
- Triggering
- Rete Network

Backward-Chaining RBES

Examples

- Initial state:

Step: check-order
Bagged: nil
Unbagged: bread, Glop brand cheese, granola, ice cream

- World info:

Object	Size	Container	Frozen?

bread	M	bag	nil
Glop	S	jar	nil
granola	L	box	nil
ice cream	M	box	t
Pepsi	L	bottle	nil
potato chips	M	bag	nil

Finding Triggered Rules

Overview
Forward-Chaining RBES

- Overview
- Example
- Triggering
- Rete Network

Backward-Chaining RBES

Examples

- Possibly very time-consuming
- Observations:
- Rules often share LHS elements (literals)
- Rules don't usually change over short term
- When WM changes: usually only a few changes per cycle
- Forgy: build a rete network based on the rules
- Rete records state of WM, rules in network - update on change

Forward-Chaining RBES

- Overview
- Example
- Triggering
- Rete Network

Backward-Chaining RBES

Examples

Rete Network

> Nothing triggered<<

\gg Nothing triggered<<

1
Overview

Forward-Chaining RBES

Backward-Chaining
RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

Backward-Chaining RBES

Attificial
ntelligence

Backward－Chaining RBES

Overview

Forward－Chaining RBES

Backward－Chaining RBES
－Overview
－How Does It Work？
－Example
－Uncertainty
－Certainty Factors
Examples
－Synthesis：pick a solution
－Analysis：gather evidence，form best hypothesis－e．g．，medical diagnosis
－Work backward from goal：focus question－asking on relevant facts，tests
－Need uncertainty management
－Follow all（relevant）lines of reasoning：no conflict resolution

Overview

Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

- Sort of like a backward-chaining theorem prover
- Want to conclude something about x :
- Is x in WM? Then conclude something from that.
- Are there rules that conclude something about x ? Then for each rule:
- Try to conclude something about each antecedent (backchain).
- If that's possible, fire the rule, giving some evidence for x.
- Combine evidence for and against x.

Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

Example: Zoo World

- Goal: id(Animal1,?x)
- Initial state 1:
color(Animal1,tawny),
eye-direction(Animal1,forward),
teeth-shape(Animal1, pointed),
eats(Animal1,meat),
hair(Animal1), dark-spots(Animal1)
- Initial state 2:

```
color(Animal1,tawny),
eye-direction(Animal1,forward),
teeth-shape(Animal1,pointed),
eats(Animal1,meat),
hair(Animal1)
```


Uncertainty Handling

Overview
Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

- Obvious way: probability theory
- Need some way to assess belief, given some evidence

Uncertainty Handling

Overview

Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

- Obvious way: probability theory
- Need some way to assess belief, given some evidence
- Bayes' rule:

$$
\begin{gathered}
P(H \mid E)=\frac{P(E \mid H) \cdot P(H)}{P(E)} \\
\text { where } P(E)=P(E \mid H) \cdot P(H)+P(E \mid \neg H) \cdot P(\neg H)
\end{gathered}
$$

Uncertainty Handling

Overview

Forward－Chaining RBES

Backward－Chaining RBES
－Overview
－How Does It Work？
－Example
－Uncertainty
－Certainty Factors
Examples
－Obvious way：probability theory
－Need some way to assess belief，given some evidence
－Bayes＇rule：

$$
\begin{gathered}
P(H \mid E)=\frac{P(E \mid H) \cdot P(H)}{P(E)} \\
\text { where } P(E)=P(E \mid H) \cdot P(H)+P(E \mid \neg H) \cdot P(\neg H)
\end{gathered}
$$

－Example：
－H：Joey has lung cancer
－E：Joey smokes
$P($ lung $-C a \mid$ smoking $)=\frac{P(\text { smoking } \mid \text { lung }-C a) \cdot P(\text { lung }-C a)}{P(\text { smoking })}$

Uncertainty Handling

Overview

Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

- General form:

$$
P\left(H_{i} \mid E\right)=\frac{P\left(E \mid H_{i}\right) \cdot P\left(H_{i}\right)}{\sum P\left(E \mid H_{j}\right) \cdot P\left(H_{j}\right)}
$$

- And with some prior evidence E and a new observation e :

$$
P(H \mid e, E)=P(H \mid e) \cdot \frac{P(E \mid e, H)}{P(E \mid e)}
$$

Problems with Bayesian approach

Overview

Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

- There are problems with Bayesian probability for expert systems (in dispute recently)
- Probabilities may be difficult to obtain
- $P(E), P(H), P(E \mid H)$ may be hard to get in general - for example, where $\mathrm{E}=$ cough, or $\mathrm{H}=$ AIDS
- empirical evidence suggests that people are not very good at estimating probabilities [Tversky \& Kahneman, e.g.]
- Size of set of probabilities needed $O\left(2^{n}\right)$
- Even if we could obtain them - requires too much space
- ...and too much time to use, and compute

Problems with Bayesian approach

Overview

Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

- In the general case, we're interested in

$$
P\left(H \mid E_{1} \wedge E_{2} \wedge \ldots \wedge E_{n}\right)
$$

which is completely impractical to get

- Also assumes that $P\left(H_{1}\right), P\left(H_{2}\right), \ldots$ are disjoint probability distributions, that is, that H_{i} are independent and that they cover the set of all hypotheses!
- Bayesian nets address many of these problems in a different formalism

A Kludge: Certainty Factors

Overview

Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

- Approximation to probability theory
- MYCIN (e.g.): $C F[H, E]=M B[H, E]-M D[H, E]$
- Since rule only supports/denies one fact: need only one number to give CF for H given E
- One CF per literal, one per rule

Combining Certainty Factors

Overview

Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

- Formally, when two rules give evidence about same literal:

$$
\begin{gathered}
M B\left[H, s_{1} \wedge s_{2}\right]=0 \text { if } M D=1 \\
M B\left[H, s_{1}\right]+M B\left[H, s_{2}\right] \cdot\left(1-M B\left[H, s_{1}\right]\right)
\end{gathered}
$$

- Similarly for MD
- Simple update function!

Example

Overview

Forward－Chaining RBES

Backward－Chaining RBES
－Overview
－How Does It Work？
－Example
－Uncertainty
－Certainty Factors
Examples
－Rule A：If x then s_{1}
Rule B：If y then s_{2}
Rule C：If s_{1} then H
Rule D：If s_{2} then H
－suppose $M B\left[H, s_{1}\right]=0.3, M D=0 \Rightarrow C F=0.3$
－now rule B fires，giving $M B\left[H, s_{2}\right]$ as，say， 0.2 ：

$$
\begin{gathered}
M B\left[H, s_{1} \wedge s_{2}\right]=0.3+0.2 \cdot 0.7=0.44 \\
M D=0 \\
C F=0.44
\end{gathered}
$$

Certainty Factors

Overview

Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

- How to compute $C F(A \wedge B)$ for rule antecedents?

$$
\begin{aligned}
& \qquad M B\left[H_{1} \wedge H_{2}, E\right]=\min \left(M B\left[H_{1}, E\right], M B\left[H_{2}, E\right]\right. \\
& \text { and for } C F(A \vee B) \text { : } \\
& \qquad M B\left[H_{1} \wedge H_{2}, E\right]=\max \left(M B\left[H_{1}, E\right], M B\left[H_{2}, E\right]\right.
\end{aligned}
$$

Certainty Factors

Overview

Forward－Chaining RBES

Backward－Chaining RBES
－Overview
－How Does It Work？
－Example
－Uncertainty
－Certainty Factors
Examples
－How to update certainty based on rule firing？
－Two things to consider：MB／MD in antecedents（computed as above）and the CF of the rule：

$$
M B[H, S]=M B^{\prime}[H, S] \cdot \max (0, C F[S, E])
$$

where $M B^{\prime}[H, S]$ is how much you＇d believe S if E were completely believed（i．e．，the rule CF），and $C F[S, E]$ is the certainty you have in S given all the evidence．
－Essentially：you multiply the CF of the rule times the CF of the evidence

Overview
Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

- More recently (1986), it's been found that CFs aren't in conflict with basic probability theory
- Why, then, do they work and Bayesian techniques seem not to?

Certainty Factors

Overview

Forward-Chaining RBES

Backward-Chaining RBES

- Overview
- How Does It Work?
- Example
- Uncertainty
- Certainty Factors

Examples

- More recently (1986), it's been found that CFs aren't in conflict with basic probability theory
- Why, then, do they work and Bayesian techniques seem not to?
- Heuristics
- They assume rule independence - conditional probabilities are 0
- The knowledge engineer has to ensure this
- Leads to compound antecedents, but...
- ...makes it tractable and modular
- Many recent expert systems are based on Bayesian networks

Overview
Forward-Chaining RBES

Backward-Chaining RBES

Examples

- DENDRAL
- R1/XCON [J. McDermott] - DEC
- MYCIN, EMYCIN, ONCOCIN, PUFF, VM, CENTAUR, MDX, MDX2,...
- Blackboard systems

Atrificial
ntelligence

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example: Orca

Description logics

Structured KRep

Frames

Semantic Networks

CD

Cyc
Description Logics
－Tbox and Abox
－Examples
－Counting
－Inference in DL
－Different DLs
－CLASSIC
－Uses
－Logic：
－very general，good semantics，but：
－cumbersome
－intractable，not decidable
－Frames and semantic nets（＂network representations＂）：
－specialized reasoning，intuitive，but：
－semantics lacking／inconsistent
－Brachman＇s KL－ONE system：attempted to add rigor to network representations
－Gave rise to what is now called description logics

F
Structured KRep
Frames
Semantic Networks
CD
Cyc
Description Logics
- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses

Basics

- Concerned with concepts and roles
- Concepts correspond to sets of individuals
- Primitive concepts:
- e.g., Car, Human, etc.
- equivalent to: $\operatorname{Car}(x)$, etc., in FOL

(
Structured KRep
Frames
Semantic Networks
CD
Cyc
Description Logics
- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses

Basics

- Concerned with concepts and roles
- Concepts correspond to sets of individuals
- Primitive concepts:
- e.g., Car, Human, etc.
- equivalent to: $\operatorname{Car}(x)$, etc., in FOL
- Roles:
- Like slots in frames
- E.g., hasChildren

Structured KRep

Frames

Semantic Networks

CD

Сус

Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Concerned with concepts and roles
- Concepts correspond to sets of individuals
- Primitive concepts:
- e.g., Car, Human, etc.
- equivalent to: $\operatorname{Car}(x)$, etc., in FOL
- Roles:
- Like slots in frames
- E.g., hasChildren
- Complex (compound) concepts:
- Built by composition from other concepts and roles
- Often intersection of concepts (\square) as operator
- Different composition operators \Rightarrow different logics

Tbox and Abox

Structured KRep
Frames
Semantic Networks
CD
Cyc
Description Logics
－Tbox and Abox
－Examples
－Counting
－Inference in DL
－Different DLs
－CLASSIC
－Uses
－Knowledge in a DL system divided into two＂boxes＂
－Tbox（terminological box）：
－definitions－the ontology，i．e．
－consists of concepts－e．g．，Human
－relatively static across problems

Tbox and Abox

Structured KRep

Frames

Semantic Networks

$C D$

Сус
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Knowledge in a DL system divided into two "boxes"
- Tbox (terminological box):
- definitions - the ontology, i.e.
- consists of concepts - e.g., Human
- relatively static across problems
- Abox (assertion box):
- facts about current problem
- instances of concepts - e.g., Human (Roy)
- dynamic across, even within problems

Structured KRep

- Woman:

Frames
Semantic Networks
$C D$
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses

引 \equiv

Structured KRep
Frames
Semantic Networks
CD
Сус
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Woman:

$$
\text { Woman } \equiv \text { Person } \sqcap \text { Female }
$$

Structured KRep

Frames

Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Woman:

$$
\text { Woman } \equiv \text { Person } \sqcap \text { Female }
$$

- Parent:

Artificial
ntelligence
\qquad

Structured KRep

Frames

Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Woman:

$$
\text { Woman } \equiv \text { Person } \sqcap \text { Female }
$$

- Parent:

$$
\text { Parent } \equiv \text { Person } \sqcap \exists \text { hasChild.Person }
$$

Structured KRep

Frames

Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Woman:

$$
\text { Woman } \equiv \text { Person } \sqcap \text { Female }
$$

- Parent:

$$
\text { Parent } \equiv \text { Person } \sqcap \exists \text { hasChild.Person }
$$

- Mother:

Tbox Examples

Structured KRep

Frames

Semantic Networks
CD
Сус
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Woman:

$$
\text { Woman } \equiv \text { Person } \sqcap \text { Female }
$$

- Parent:

$$
\text { Parent } \equiv \text { Person } \sqcap \exists \text { hasChild.Person }
$$

- Mother:

Mother \equiv Parent \sqcap Woman

Structured KRep

Frames

Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Woman:

$$
\text { Woman } \equiv \text { Person } \sqcap \text { Female }
$$

- Parent:

$$
\text { Parent } \equiv \text { Person } \sqcap \exists \text { hasChild.Person }
$$

- Mother:

$$
\text { Mother } \equiv \text { Parent } \sqcap \text { Woman }
$$

- Students who take COS 470:

Tbox Examples

Structured KRep

Frames

Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Woman:

$$
\text { Woman } \equiv \text { Person } \sqcap \text { Female }
$$

- Parent:

$$
\text { Parent } \equiv \text { Person } \sqcap \exists \text { hasChild.Person }
$$

- Mother:

$$
\text { Mother } \equiv \text { Parent } \sqcap \text { Woman }
$$

- Students who take COS 470:

$$
\text { Student } \sqcap \exists c l a s s S c h e d u l e .(\exists c o n t a i n s . C O S 470)
$$

Structured KRep

- Joe is Harry's son:

Frames
Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses

Structured KRep

- Joe is Harry's son:

Frames
Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
hasSon(Harry, Joe)

Structured KRep
Frames
Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Joe is Harry's son:
hasSon(Harry, Joe)
- Roy is a professor:

Artificial
ntelligence

Structured KRep

- Joe is Harry's son:
hasSon(Harry, Joe)

Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses

Frames

Professor (Roy)

Structured KRep

- Joe is Harry's son:
hasSon(Harry, Joe)

Semantic Networks

Сус
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses

Frames

- Roy is a professor:

Professor (Roy)
Person(Roy) \sqcap hasRole(Roy, Professor)

Abox Examples

Structured KRep

Frames

Semantic Networks
CD
Сус
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Joe is Harry's son:
hasSon(Harry, Joe)
- Roy is a professor:

$$
\begin{gathered}
\text { Professor(Roy) } \\
\text { Person(Roy) } \sqcap \text { hasRole(Roy,Professor) } \\
\text { (Person } \sqcap \exists \text { hasRole.Professor)(Roy) }
\end{gathered}
$$

Structured KRep
Frames
Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Some logics can count, too
- E.g.: "A mother with two female and at least one male children":

Structured KRep

Frames

Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- Some logics can count, too
- E.g.: "A mother with two female and at least one male children":

Mother $\sqcap=2($ hasChild.Female $) ~ \sqcap \geq 1$ (hasChild.Male)

Structured KRep
Frames
Semantic Networks
CD
Cyc
Description Logics
- Tbox and Abox
- Examples
- Inferenting in DL
- Different DLs
- CLASSIC
- Uses

Inference in DL

- Reasoning in DL systems occurs in context of Tbox and Abox
- Tbox reasoning: subsumption
- Is concept $A \sqsubseteq$ concept B ?
- E.g.:

$$
\begin{aligned}
& \text { Mother } \equiv \text { Person } \sqcap \text { Female } \sqcap \exists \text { hasChild.Person } \\
& \text { Parent } \equiv \text { Person } \sqcap \exists \text { hasChild.Person } \\
& \text { Mother } \sqsubseteq \text { Parent }
\end{aligned}
$$

- Can be much more complicated and indirect
- Abox reasoning: classification
- Is A an instance of concept B ?
- Often other kinds of reasoning, too

Different DLs

Structured KRep

Frames

Semantic Networks
CD
Cyc
Description Logics
－Tbox and Abox
－Examples
－Counting
－Inference in DL
－Different DLs
－CLASSIC
－Uses
－DL really comprised of a family of logics
－Basic is $\mathcal{A L}$（ascription language）
－Add other operators，get new languages－e．g．， $\mathcal{A} \mathcal{L U}$ would be $\mathcal{A L}$ plus union，etc．
－Simple DLs：decidable，（relatively）efficient inferences
－More expressive DLs：give up efficiency，even decidability

Example Implementation: CLASSIC

Structured KRep
Frames
Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- The CLASSIc language is an implementation of a $\operatorname{DL}(\mathcal{A L}$?)

Example Implementation: CLASSIC

Structured KRep

Frames

Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- The CLASSIc language is an implementation of a DL ($\mathcal{A} \mathcal{L}$?)
- Example: a bachelor

Afificial
ntelligence

Example Implementation: CLASSIC

Structured KRep

Frames

Semantic Networks

CD

Сус
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses
- The CLASSIC language is an implementation of a DL ($\mathcal{A L}$?)
- Example: a bachelor

$$
\text { Bachelor }=\text { And(Unmarried, Adult, Male) }
$$

Afificial
ntelligence

Example Implementation：CLASSIC

Structured KRep
Frames
Semantic Networks

CD

Cyc
Description Logics
－Tbox and Abox
－Examples
－Counting
－Inference in DL
－Different DLs
－CLASSIC
－Uses
－The CLASSIc language is an implementation of a DL（ $\mathcal{A L}$ ？$)$
－Example：a bachelor
Bachelor = And(Unmarried, Adult, Male)
－（From R\＆N）Men with at least three sons who are all unemployed and married to doctors，and at most two daughters who are all professors in physics or math departments：

Structured KRep
Frames
Semantic Networks
CD
Cyc
Description Logics

- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses

Example Implementation: CLASSIC

- The CLASSIC language is an implementation of a DL ($\mathcal{A L}$?)
- Example: a bachelor

$$
\text { Bachelor }=\text { And(Unmarried, Adult, Male) }
$$

- (From R\&N) Men with at least three sons who are all unemployed and married to doctors, and at most two daughters who are all professors in physics or math departments:

And (Man, AtLeast (3, Son), AtMost (2, Daughter) ,
All (Son, And (Unemployed, Married, All(Spouse,Doctor))),
All (Daughter, And (Professor, Fills(Department, Physics,Math))))

F
Structured KRep
Frames
Semantic Networks
CD
Cyc
Description Logics
- Tbox and Abox
- Examples
- Counting
- Inference in DL
- Different DLs
- CLASSIC
- Uses

Uses

- General-purpose knowledge representation
- Natural language processing
- Reasoning in intelligent databases: entity-relation models
- Web Ontology Language (OWL):
- Part of semantic Web
- Associate machine-understandable semantics with Web pages
- One language is OWL-DL
- Complete and decidable

Local DL example: Orca

Automated
reasoning
Knowledge representation

First-order logic
Propositional Logic
Predicate Calculus
Theorem proving
Rule-based
reasoning
Description Logic
Local DL example:
Orca

Example Orca DL

```
Definition=(SOME expectsPresenceOf Salinity)
Certainty=0.401
Definition=(SOME expectsPresenceOf OceanSurface)
Certainty=0.436
Definition=(SOME expectsPresenceOf
    (AND Thruster (SOME hasAdvisedValue ShoreBased)))
Certainty=0.769
Definition=(SOME expectsPresenceOf
    (AND Location
    (SOME hasNumber
                                    (AND Float
                                    (D-FILLER hasNumericValue
```

$$
\begin{aligned}
& \text { (D-LITERAL 19.115639 (D-BASE-TYPE float))) } \\
& \text { (D-FILLER hasUnitOfMeasure } \\
& \text { (D-LITERAL somerandomstring } \\
& \text { (D-BASE-TYPE string))))) }
\end{aligned}
$$

(SOME hasNumber
(AND Integer
(D-FILLER hasNumericValue
(D-LITERAL 31 (D-BASE-TYPE integer)))
(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring (D-BASE-TYPE string)))))))
Certainty=0. 482

Definition=(SOME expectsPresenceOf
(AND Survey (SOME hasDegreeExpected Mine)
(SOME definesGoal ActiveMission)))
Certainty $=0.125$

Definition=(SOME expectsPresenceOf
(AND DetectSubmarine
(D-FILLER hasEventDescription

```
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))
```

Certainty=0. 243
Definition=(SOME hasFuzzyFeature
(AND Danger
(SOME hasFuzzyMembershipFunction
(AND TrapezoidalFunction
(SOME hasLocalMaxAt Number)
(SOME hasLocalMaxAt
(AND Float
(D-FILLER hasNumericValue (D-LITERAL 24.848389 (D-BASE-TYPE
http://www.w3.org/2001/XMLSchema\#flo:
(D-FILLER hasUnitOfMeasure (D-LITERAL somerandomstring (D-BASE-TYPE
http://www.w3.org/2001/XMLSchema\#str: (SOME hasLocalMinAt Number)
(SOME hasLocalMinAt
(AND Integer
(D-FILLER hasNumericValue (D-LITERAL 5 (D-BASE-TYPE http://www.w3. org/2001/XMLSchema\#int (D-FILLER hasUnitOfMeasure (D-LITERAL somerandomstring (D-BASE-TYPE http://www.w3.org/2001/XMLSchema\#str:
Certainty=0. 334

```
Definition=(AND (SOME hasActivePeriod EnteringContext)
    (SOME hasOperationalSetting
                    (AND SelfDepth (SOME hasAdvisedValue Medium))))
```

Certainty=0.943
Definition=(AND
(SOME definesGoal
(AND SamplingComplete
(D-FILLER hasEventDescription
(D-LITERAL somerandomstring (D-BASE-TYPE
http://www.w3.org/2001/XMLSchema\#string)))))
(SOME hasCost Medium) (SOME hasDegreeExpected High)
(SOME hasImportance High)
(SOME isAchievedBy (AND Maneuver (SOME hasActor PeerAgent))))
Certainty $=0.559$

Definition=(AND
(SOME respondsWithAction
(AND CommunicateStatus (SOME hasObject (AND NavigationComputer (SOME hasCost
(AND SelfBatteryLevel
(SOME hasStateValue Medium)))))
(SOME hasActor AdversaryAgent)
(SOME isSampleTargetOf PeerAgent)))
(SOME hasImportance Medium)
(SOME handlesEvent
(AND SensorFailure
(D-FILLER hasEventDescription
(D-LITERAL somerandomstring (D-BASE-TYPE http://www.w3.org/2001/XMLSchema\#string))))))
Certainty=0.124

Definition=(AND
(SOME handlesEvent
(AND PowerFailure
(SOME hasStateValue
(AND ThrusterFailure
(D-FILLER hasEventDescription
(D-LITERAL somerandomstring (D-BASE-TYPE
http://www.w3.org/2001/XMLSchema\#string)))))))
(SOME hasImportance Low)
(SOME respondsWithAction
(AND MaintainPosition (SOME hasActor Agent))))
Certainty=0.904

Definition=(SOME definesAction
(AND Thruster
(SOME hasObject
(AND PeerAgent (SOME hasNumber Targeted)))
(SOME hasSpeed AdversaryAgent)))
Certainty=0. 655

Definition=(SOME definesAction
(AND MaintainPosition
(SOME hasDirection
(AND Number (SOME handlesEvent Submarine)))
(SOME hasSpeed
(AND Float
(SOME hasObject
(AND Navigate
(SOME hasActor AdversaryAgent)))))
(SOME definesGoal Thruster)))
Certainty $=0.117$

