
Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Automated Reasoning:
Logical Approaches

UMaine COS 470/570 – Introduction to AI

Spring 2019

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Automated reasoning

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Reasoning

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Reasoning = ability to make decision or infer
something from existing facts

I Automated reasoning:
I Search is one (very simple) kind
I Neural networks: non-symbolic
I Here: symbolic reasoning

I Encode knowledge in some representation
I Apply inference mechanisms) new knowledge

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Why not just search for everything?

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Realistic problems: search spaces very large,
potentially infinite

I Difficult to find heuristics
I Often problem has structure that can be exploited
I Often: 9 much knowledge about world, problem

I E.g., medicine
I Search: example of weak method:

I general purpose
I little knowledge

I Knowledge-based methods: strong methods

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Knowledge representation

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Knowledge

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Need way to represent & use the knowledge
I Many different representation schemes, inference

methods
I Theorem proving:

I Represent knowledge in a logical formalism
I Inference methods that knowledge) new knowledge

I Rule-based reasoners:
I Represent knowledge as “if–then” rules
I Apply the rules) new knowledge

I Planners:
I Represent knowledge as plan schemas, rules/logic,

. . .
I Use specialized planning techniques) plans

I Many others

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Kinds of knowledge

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Problem-specific: start, goal states, map, . . .
I Domain
I Problem-solving, other domain-independent
I Meta-knowledge: for explanation, learning, etc.

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Knowledge & agents

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I All agents have knowledge
I Some: built in to the agent’s structure

I e.g., reflex agent
I implicit knowledge

I Some augment with verbatim history
I Some: explicit knowledge representation

I Search agents
I Goal-based, utility-based agents

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Why explicit knowledge?

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Agent reuse: just replace knowledge
I Knowledge acquisition from humans
I Reasoning about it:

I by humans: proving properties about behavior, e.g.
I by agent itself: introspection, machine learning,

explanation, . . .

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Knowledge representation

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Knowledge representation:
1. system of representation, or. . .
2. way to represent particular concepts, or. . .
3. collection of knowledge an agent has (informally;

really knowledge base)
I Representations often formal:

I Rules about what can be stored
I Particular syntax, semantics

I Others interested in knowledge representation:
I psycologists
I philosophers

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Models and abstraction

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Knowledge representation models a world
I Abstraction of a world: some things are left out
I Focuses, limits reasoning

I Model’s creator:
I Determines salient features
I Determines granularity of model

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Knowledge representation criteria

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Criteria
I Easy for humans to understand
I Concise
I Context-independent
I Context-dependent
I Compositional
I Canonical
I Appropriate granularity
I Representational adequacy
I Inferential adequacy
I Acquisitional adequacy

I Trade-offs!

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Syntax, semantics, pragmatics

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Knowledge representation is a language
I Syntax: valid structure of sentences
I Semantics: meaning of sentences
I Pragmatics (sometimes): what the sentences mean

in context

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Kinds of knowledge representations

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Implicit/structural
I Procedural, but explicit:

I how to do something – like program
I good for instructions
I may be hard for humans to understand
I may be hard for the agent to understand and/or learn

I Declarative/explicit:
I represents what something is, what to do
I easy to extend, understand
I program can access its own knowledge:

introspection, learning
I harder to represent sometimes than procedural
I less efficient to “execute” than procedural

I Structured vs. unstructured

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

First-order logic

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Formal logic

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I A logic is a representation language with
precisely-defined syntax and semantics

I Sentences represent facts
I Syntax: describes the possible legal configurations

of elements that form valid sentences
I Semantics: one interpretation is facts to which the

sentences refer
I 9 many logics

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Inference

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Inference: creates new knowledge from old
I Human inferences – can be very broad, complex
I Machine inferences:

I smaller than might usually count
I anything that is not a direct match with the

knowledge base requires an inference

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Inference

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I A logic has associated reasoning mechanisms:
I Inference rules: create new sentence from existing

sentences
I Inference procedure: Produces new facts from old:

S0, S1, · · · , Sn ` A

I Theorem prover: uses inference rules to prove some
sentence

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Entailment

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Want to know:
I Does sentence A follow from a knowledge base K of

sentences?
I I.e., is A true if K is true?

I Entailment:
I K entails A iff A is necessarily true given K
I Written K |= S
I Note: |= could take � 1 inference
I For inference procedure i , written: KB |=i S

I Sound (truth-preserving) inference procedure:
produces only entailed sentences

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Proof

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Proof: record of operation of a sound inference
procedure

I Complete inference procedure P:

8s K |= s) K |=P s

I Proof theory: set of rules for deducing the
entailments of set of sentences (R&N)

Logic = syntax + semantics + proof theory

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Proof

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Proof: record of operation of a sound inference
procedure

I Complete inference procedure P:

8s K |= s) K |=P s

I Proof theory: set of rules for deducing the
entailments of set of sentences (R&N)

Logic = syntax + semantics + proof theory

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Proof

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Proof: record of operation of a sound inference
procedure

I Complete inference procedure P:

8s K |= s) K |=P s

I Proof theory: set of rules for deducing the
entailments of set of sentences (R&N)

Logic = syntax + semantics + proof theory

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Proof

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Proof: record of operation of a sound inference
procedure

I Complete inference procedure P:

8s K |= s) K |=P s

I Proof theory: set of rules for deducing the
entailments of set of sentences (R&N)

Logic = syntax + semantics + proof theory

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Proof

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Proof: record of operation of a sound inference
procedure

I Complete inference procedure P:

8s K |= s) K |=P s

I Proof theory: set of rules for deducing the
entailments of set of sentences (R&N)

Logic = syntax + semantics + proof theory

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Models

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Natural language sentences:
I Shared conventions, knowledge among speakers
I Meaning of sentence from these) truth, falsehood

I Truth in logic:
I One kind of truth: entailment – s is true given K iff

K |= s
I But what about the normal meaning of “true”?

I Meaning/truth beyond entailment:
I No inherent meaning of sentences
I Meaning (truth) of sentence S depends on some

interpretation
I Model: a world in which sentence is true given some

interpretation

K |= s iff all models of K are also models of s

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Models

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Natural language sentences:
I Shared conventions, knowledge among speakers
I Meaning of sentence from these) truth, falsehood

I Truth in logic:
I One kind of truth: entailment – s is true given K iff

K |= s
I But what about the normal meaning of “true”?

I Meaning/truth beyond entailment:
I No inherent meaning of sentences
I Meaning (truth) of sentence S depends on some

interpretation
I Model: a world in which sentence is true given some

interpretation
K |= s iff all models of K are also models of s

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Validity

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Valid sentence: true in all possible worlds (i.e., a
tautology)

I Valid inference: if premise true, conclusion must be
true in any world:

All humans are mortal and I am a human) I am
mortal All birds live underground and Tweety is a bird

) Tweety lives underground

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Soundness

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Tend to use sound interchangeably with valid, but not
really same

I Inference is sound if premises true and inference is
valid

I Argument (proof) is sound if all inferences are valid
and premises are true

I I.e., soundness is with respect to a model (world)

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Satisfiability

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Satisfiable sentence:
I Some interpretation in some world for which

sentence is true
I E.g.: My cat hates dogs.

I Non-satisfiable sentence
I No world in which sentence is true
I E.g.:

I I am mortal and I am not mortal.
I Every cat hates dogs and there is a cat that does not

hate dogs.

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Propositional Logic

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Propositional logic (calculus)

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Simplest kind of logic: “zeroth-order logic”
I Sentences = propositions
I Symbols stand for propositions
I Symbols, connectives) compound propositions
I No variables,) no quantification
I Ontological commitment: there are facts in world that

are true
I Epistemological commitment: a sentence is true or

false

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Syntax

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Elements of language:
I Symbols
I True, False
I Logical connectives, parentheses

I Recursive definition:
I True, False, symbol are propositions (atomic

sentences)
I If S, P and Q are sentences, then so are:

(S), P ^ Q, P _ Q, ¬P, P) Q, and P , Q

I Literal: atomic sentence or negated atomic sentence
I Precedence rules: ¬ > ^ > _ >)>,

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Semantics

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I True, False: fixed interpretation
I Propositions + connectives: “standard” compositional

semantics
I Propositions: whatever interpretation they are given

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Connectives

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

A ¬A
F T
T F

A B A _ B
F F F
F T T
T F T
T T T

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Connectives

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

A B A ^ B
F F F
F T F
T F F
T T T

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Implication

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

A B A) B
F F T
F T F
T F T
T T T

I Seems odd
I Think of it as: If A True, then I claim B is true, else I

make no claim
I Only time A) B is false is if B is false

I E.g.: Trump is president) he didn’t win the election
I Implication true when antecedent is false:

I E.g.: Clinton is president) she won the election
I Definition: P) Q ⌘ ¬P _ Q ⌘ ¬(P ^ ¬Q)

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Inference rules for propositional logic

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Double negation elimination:
¬¬A

A
I AND elimination (unidirectional only):

A1 ^ A2 ^ ... ^ An
Ai

I OR introduction (unidirectional only):
Ai

A1 _ A2 _ ... _ An

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Inference rules for propositional logic

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I De Morgan’s laws:

¬(A ^ B)

¬A _ ¬B

¬(A _ B)

¬A ^ ¬B
I Distributive:

A _ (B ^ C)

(A _ B) ^ (A _ C)

A ^ (B _ C)

(A ^ B) _ (A ^ C)

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Inference rules for propositional logic

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Various others: (0 = false, 1 = true)
I Null law:

A ^ 0
0

,
A _ 1

1
I Identity law:

A ^ 1
A

,
A _ 0

A
I Idempotent law:

A ^ A
A

,
A _ A

A

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Deduction

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Sound form of inference
I Modus ponens

I Form:

A) B
A

B

I Example:

Bird) Fly
Bird

Fly

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Deduction

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Modus tolens
I Form:

A) B
¬B

¬A

I Example:

Bird) Fly
¬Fly

¬Bird

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Complexity of propositional inference

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Could build a truth table to prove conclusion
I 2n rows – n propositional symbols – can we do

better?
I General case: no – NP-complete problem
I Horn clauses: one class for which P-time algorithm

exists
P1 ^ P2 ^ . . . ^ Pn ! Q

– Pi , Q – non-negated atoms

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Problems with propositional calculus

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Too many propositions!
I No variables – no quantification

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Predicate Calculus

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

First-order predicate calculus

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Various names: first-order logic (FOL), first-order
predicate calculus (FOPC), . . .

I Ontological commitment
I world consists of objects that have properties
I various relations hold among objects
I 9 functions arguments (objects) ! objects

I FOPC can represent anything that can be
programmed

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Parts of predicate calculus

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Term: something signifying an object
I Symbol
I Variable
I Function (N.B.: not like function in programs!)

I Negation: NOT
I Connectives: AND (^), OR (_), IMPLIES ()), and

sometimes , or ⌘, =
I Quantifiers: existential (9) & universal (8)

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Literals, clauses, and sentences

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Literal: a term, a predicate applied to term(s), or
negated predicate applied to term(s)

I Well-formed formulas (wffs): statements in the logic
I Literals are wffs
I If A & B are wffs so are:

A _ B A ^ B A) B

9A 8A

I Clause - a wff consisting of solely of a disjunction of
literals

I Sentence: a wff with no free variables

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Computable functions

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Problem:
I When proving a theorem, need to check

truth/falsehood of predicates
I Ultimately, predicates have to match against

knowledge base (possibly after some number of
inferences)

I Some predicates: need infinite number of facts in the
knowledge base! E.g., numeric predicates:

8x , y Pompeian(x) ^ born(x , y) ^ less(y , 79))
dead(x)

For this, we’d have to have an infinite number of facts
in our KB:

less(78, 79),less(77, 79),less(76, 79) . . .

I Solution: Evaluate as T or F by running a function on
the computer, not matching to a knowledge base

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Representing knowledge in FOPC

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Remember: symbols are just symbols and have no
additional meaning

I Have a corpus of knowledge
I depends on domain, task, goals, etc.
I do not attempt to represent everything
I first specified in English, usually
I corpus will probably change as work on system

I Identify predicates that will be used

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Representing an example corpus

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I John likes carrots. likes(John,Carrots)

I Mary likes carrots.

I John grows the vegetables he likes.
I Carrots are vegetables.

I When you like a vegetable, you grow it.
I To eat something, you have to own it.
I When you grow something, you own it.
I In order to grow something, you must own a garden.

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Representing an example corpus

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I John likes carrots. likes(John,Carrots)

I Mary likes carrots. likes(Mary,Carrots)

I John grows the vegetables he likes.
I Carrots are vegetables.

I When you like a vegetable, you grow it.
I To eat something, you have to own it.
I When you grow something, you own it.
I In order to grow something, you must own a garden.

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Representing an example corpus

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I John likes carrots. likes(John,Carrots)

I Mary likes carrots. likes(Mary,Carrots)

I John grows the vegetables he likes.
8x vegetable(x) ^ likes(John, x) ! grows(John, x)

I Carrots are vegetables.

I When you like a vegetable, you grow it.
I To eat something, you have to own it.
I When you grow something, you own it.
I In order to grow something, you must own a garden.

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Representing an example corpus

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I John likes carrots. likes(John,Carrots)

I Mary likes carrots. likes(Mary,Carrots)

I John grows the vegetables he likes.
8x vegetable(x) ^ likes(John, x) ! grows(John, x)

I Carrots are vegetables. vegetables(Carrots)
I When you like a vegetable, you grow it.
I To eat something, you have to own it.
I When you grow something, you own it.
I In order to grow something, you must own a garden.

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Representing an example corpus

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I John likes carrots. likes(John,Carrots)

I Mary likes carrots. likes(Mary,Carrots)

I John grows the vegetables he likes.
8x vegetable(x) ^ likes(John, x) ! grows(John, x)

I Carrots are vegetables. vegetables(Carrots)
I When you like a vegetable, you grow it.

8x , y vegetable(x) ^ person(y) ^ like(y , x) !
grows(y , x)

I To eat something, you have to own it.
I When you grow something, you own it.
I In order to grow something, you must own a garden.

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Representing an example corpus

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I John likes carrots. likes(John,Carrots)

I Mary likes carrots. likes(Mary,Carrots)

I John grows the vegetables he likes.
8x vegetable(x) ^ likes(John, x) ! grows(John, x)

I Carrots are vegetables. vegetables(Carrots)
I When you like a vegetable, you grow it.

8x , y vegetable(x) ^ person(y) ^ like(y , x) !
grows(y , x)

I To eat something, you have to own it.
Which (if either) of these:
8x , y person(x) ^ owns(x , y) ! eats(x , y)
8x , y person(x) ^ eats(x , y) ! owns(x , y)

I When you grow something, you own it.
I In order to grow something, you must own a garden.

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Representing an example corpus

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I John likes carrots. likes(John,Carrots)

I Mary likes carrots. likes(Mary,Carrots)

I John grows the vegetables he likes.
8x vegetable(x) ^ likes(John, x) ! grows(John, x)

I Carrots are vegetables. vegetables(Carrots)
I When you like a vegetable, you grow it.

8x , y vegetable(x) ^ person(y) ^ like(y , x) !
grows(y , x)

I To eat something, you have to own it.
Which (if either) of these:
8x , y person(x) ^ owns(x , y) ! eats(x , y)
8x , y person(x) ^ eats(x , y) ! owns(x , y)

I When you grow something, you own it.
8x , y person(x) ^ grows(x , y) ! owns(x , y)

I In order to grow something, you must own a garden.

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Representing an example corpus

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I John likes carrots. likes(John,Carrots)
I Mary likes carrots. likes(Mary,Carrots)
I John grows the vegetables he likes.

8x vegetable(x) ^ likes(John, x) ! grows(John, x)
I Carrots are vegetables. vegetables(Carrots)
I When you like a vegetable, you grow it.

8x , y vegetable(x) ^ person(y) ^ like(y , x) !
grows(y , x)

I To eat something, you have to own it.
Which (if either) of these:
8x , y person(x) ^ owns(x , y) ! eats(x , y)
8x , y person(x) ^ eats(x , y) ! owns(x , y)

I When you grow something, you own it.
8x , y person(x) ^ grows(x , y) ! owns(x , y)

I In order to grow something, you must own a garden.
Which?
8x9g, y garden(g) ^ owns(x , g) ! grows(x , y)
8x9g, y garden(g) ^ grows(x , y) ! owns(x , g)

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Rules of inference

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I modus ponens: If (A ! B) ^ A then B logically
follows.

I modus tolens: If (A ! B) ^ ¬B then ¬A logically
follows

I resolution: If (A _ B) ^ (¬B _ C) then (A _ C)
logically follows

I abduction: If (A ! B) ^ B then A (not sound
I induction: If

(instance(A, B) ^ P) ^ (instance(C, B) ^ P), then
instance(x , B) ! P (not sound

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Proof by deduction

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Put what you want to prove in the knowledge base
I Apply rules of inference in a systematic way
I Add inferences along the way to knowledge base

since made from sound inferences
I Need to make sure that matching is done correctly

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Miscellaneous FOPC topics

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Bijection (,): iff

A , B ⌘ (A) B) ^ (B) A)

I Equality
I Often used in FOPC to link two descriptions as

referring to the same object:

FatherOf(John) = Henry

I Often used in formulae; sometimes to make sure that
two things are not the same object:

9x , y Dog(x) ^ Dog(y) ^ ¬(x = y)

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Miscellaneous FOPC topics

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Lambda (�) expressions:
I Temporary functions/predicate expressions (as in

Lisp)

�x , y Nationality(x) 6= Nationality(y)^

SchoolYear(x) = SchoolYear(y)

(�x , y Nationality(x) 6= Nationality(y)^

SchoolYear(x) = SchoolYear(y))(Joe,Pierre)

I Doesn’t extend FOPC – can always replace lambda
exp. with expansion

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Miscellaneous FOPC topics

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Uniqueness quantifier 9!
I Ex:

9!President(x ,USA)

I Also doesn’t extend FOPC – just syntactic sugar for:

9President(x ,USA)^8y President(y ,USA)) x = y

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Theorem proving

AI
rtificial
ntelligence

Theorem Proving

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 2 / 41

• What good is it?
• Axioms – more or less self-evident things that are “given”
• Theorems

1. Must contain nothing that cannot be proven
2. Must be implied entirely by propositions other than itself in or

arising from the axioms
3. Two theorems proven from the same set of (consistent)

axioms cannot be contradictory

AI
rtificial
ntelligence

Theorem Proving

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 2 / 41

• What good is it?
• Axioms – more or less self-evident things that are “given”
• Theorems

1. Must contain nothing that cannot be proven
2. Must be implied entirely by propositions other than itself in or

arising from the axioms
3. Two theorems proven from the same set of (consistent)

axioms cannot be contradictory

• Theorem proving in this course:
� Unification
� Axioms
� Forward and backward proof
� Resolution theorem proving

AI
rtificial
ntelligence

Matching in Theorem Proving

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 3 / 41

• Where is matching needed?

� Determining if something is trivially true – i.e., in the KB
� Determining if something matches the antecedent

(consequent)of an implication

AI
rtificial
ntelligence

Matching in Theorem Proving

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 3 / 41

• Where is matching needed?

� Determining if something is trivially true – i.e., in the KB
� Determining if something matches the antecedent

(consequent)of an implication

• What properties should our match function have?

� Identical things match.
� Variables can match constants, unless the variable is already

bound in an inconsistent way
� Should keep track of bindings so variables consistency can

be checked, so instantiation of axioms can be done

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto)

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto)

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido)

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido)

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto)

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

¬cat(Pluto)

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

¬cat(Pluto) no no syntactic match

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

¬cat(Pluto) no no syntactic match
dog(x)

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

¬cat(Pluto) no no syntactic match
dog(x) yes Pluto can subsitute for variable:

x/Pluto

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

¬cat(Pluto) no no syntactic match
dog(x) yes Pluto can subsitute for variable:

x/Pluto
¬dog(x)

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

¬cat(Pluto) no no syntactic match
dog(x) yes Pluto can subsitute for variable:

x/Pluto
¬dog(x) no negated

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 5 / 41

• Basic idea for literals: check negation, check predicates, check
arguments

• Matching rules:

� symbols only match themselves
� variable can match anything X unless:

• X contains the variable
• the variable has been bound to something that doesn’t

itself match X

� Variable binding
� Subsitutions — also called a binding list or a unifier

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 6 / 41

• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto)

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 6 / 41

• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 6 / 41

• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
(equalto A A) (equalto ?x ?y)

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 6 / 41

• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
(equalto A A) (equalto ?x ?y) {x/A, y/A}

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 6 / 41

• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
(equalto A A) (equalto ?x ?y) {x/A, y/A}

(P ?x ?x) (P ?y ?z)

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 6 / 41

• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
(equalto A A) (equalto ?x ?y) {x/A, y/A}

(P ?x ?x) (P ?y ?z) {x/y, y/z}

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 6 / 41

• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
(equalto A A) (equalto ?x ?y) {x/A, y/A}

(P ?x ?x) (P ?y ?z) {x/y, y/z}
(owns Minnie ?y) (owns ?z Pluto)

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 6 / 41

• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
(equalto A A) (equalto ?x ?y) {x/A, y/A}

(P ?x ?x) (P ?y ?z) {x/y, y/z}
(owns Minnie ?y) (owns ?z Pluto) nil

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 7 / 41

• Order doesn’t matter: {x/y} ⌘ {y/x}
• Could have more complex substitutions:

� unify loves(x, y) with loves(Pluto,z)

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 7 / 41

• Order doesn’t matter: {x/y} ⌘ {y/x}
• Could have more complex substitutions:

� unify loves(x, y) with loves(Pluto,z)
� One possibility: {x/Pluto, y/z}

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 7 / 41

• Order doesn’t matter: {x/y} ⌘ {y/x}
• Could have more complex substitutions:

� unify loves(x, y) with loves(Pluto,z)
� One possibility: {x/Pluto, y/z}
� Another: {x/Pluto, y/Mickey, z/Mickey}

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 7 / 41

• Order doesn’t matter: {x/y} ⌘ {y/x}
• Could have more complex substitutions:

� unify loves(x, y) with loves(Pluto,z)
� One possibility: {x/Pluto, y/z}
� Another: {x/Pluto, y/Mickey, z/Mickey}
� Still another: {x/Pluto, y/ice-cream, z/ice-cream}

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 7 / 41

• Order doesn’t matter: {x/y} ⌘ {y/x}
• Could have more complex substitutions:

� unify loves(x, y) with loves(Pluto,z)
� One possibility: {x/Pluto, y/z}
� Another: {x/Pluto, y/Mickey, z/Mickey}
� Still another: {x/Pluto, y/ice-cream, z/ice-cream}

• Want most general unifier – Don’t over-commit!

AI
rtificial
ntelligence

Unify Algorithm

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 8 / 41

Unify(lit1,lit2,{blist}):

begin

if eql(lit1,lit2) then

return t, blist;

elsif lit1 is a variable then

if lit1 appears in lit2 then

return nil, blist;

elsif lit1 is bound in blist then

Unify(binding(lit1,blist),lit2,blist);

else

return t, blist+{lit1/lit2};

fi

elsif lit2 is a variable then

Unify(lit2,lit1,blist);

elsif lit1 or lit2 are both atoms or lists of di↵erent lengths

then return nil, blist;

else

match = t;

temp-blist = blist;

loop for i = 1 to length(lit1) do

match,temp-blist = Unify(lit1[i],lit2[i],temp-blist);

if match = nil then retun nil, blist;

else apply temp-blist to remainder of lit1 and lit2;

fi;

end loop;

return t, temp-blist;

fi;

end Unify;

AI
rtificial
ntelligence

Theorem Proving

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 9 / 41 AI
rtificial
ntelligence

Theorem Proving as Search

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 10 / 41

• State: axioms at the current moment
• Operators:

� Modus ponens, modus tolens, resolution
� Apply to axiom set) new axiom set (new state)

• Forward, backward search/proof

AI
rtificial
ntelligence

Example Axiom Set

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 11 / 41

1. human(Marcus)
2. Pompeian(Marcus)
3. born(Marcus, 40)

4. 8x human(x)) mortal(x)

5. 8x Pompeian(x)) died(x, 79)

6. erupted(volcano, 79)

7. 8x, t1, t2 mortal(x) ^ born(x, t1) ^ gt(t2 � t1, 150))
dead(x, t2)

8. now = 2014

9. 8x, t [alive(x, t)) ¬dead(x, t)] ^ [¬dead(x, t))
alive(x, t)]

10. 8x, t1, t2 died(x, t1) ^ gt(t2, t1)) dead(x, t2)

AI
rtificial
ntelligence

Is Marcus dead?

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 12 / 41

• Forward proof:

AI
rtificial
ntelligence

Is Marcus dead?

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 12 / 41

• Forward proof:
1. human(Marcus) axiom 1

AI
rtificial
ntelligence

Is Marcus dead?

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 12 / 41

• Forward proof:
1. human(Marcus) axiom 1
2. born(Marcus,40) axiom 3

AI
rtificial
ntelligence

Is Marcus dead?

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 12 / 41

• Forward proof:
1. human(Marcus) axiom 1
2. born(Marcus,40) axiom 3
3. mortal(Marcus) 1 & axiom 4

8x human(x)) mortal(x),
{x/Marcus}

AI
rtificial
ntelligence

Is Marcus dead?

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 12 / 41

• Forward proof:
1. human(Marcus) axiom 1
2. born(Marcus,40) axiom 3
3. mortal(Marcus) 1 & axiom 4

8x human(x)) mortal(x),
{x/Marcus}

4. now = 2014 axiom 8

AI
rtificial
ntelligence

Is Marcus dead?

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 12 / 41

• Forward proof:
1. human(Marcus) axiom 1
2. born(Marcus,40) axiom 3
3. mortal(Marcus) 1 & axiom 4

8x human(x)) mortal(x),
{x/Marcus}

4. now = 2014 axiom 8
5. dead(Marcus,2014) 3 & 2 & 4 & axiom 7

8x, t1, t2 mortal(x) ^ born(x, t1)^
gt(t2 � t1, 150)) dead(x, t2)

{x/Marcus, t1/40, t2/now, now/2014}

AI
rtificial
ntelligence

Forward vs Backward Proof

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 13 / 41

• May be difficult to constrain search:

� branching factor large
� no direction on which branch to take

• Backward proof – easier to constrain search (usually)

AI
rtificial
ntelligence

Backward Proof Example

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 14 / 41

Prove: Marcus is dead.

1. human(Marcus)
2. Pompeian(Marcus)
3. born(Marcus, 40)

4. 8x human(x)) mortal(x)

5. 8x Pompeian(x)) died(x, 79)

6. erupted(volcano, 79)

7. 8x, t1, t2 mortal(x) ^ born(x, t1) ^ gt(t2 � t1, 150))
dead(x, t2)

8. now = 2014

9. 8x, t [alive(x, t)) ¬dead(x, t)] ^ [¬dead(x, t))
alive(x, t)]

10. 8x, t1, t2 died(x, t1) ^ gt(t2, t1)) dead(x, t2)

AI
rtificial
ntelligence

Contradictions in the Knowledge Base

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 15 / 41

• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining) Cloudy 2. Rainbow) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

AI
rtificial
ntelligence

Contradictions in the Knowledge Base

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 15 / 41

• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining) Cloudy 2. Rainbow) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

� Suppose we conclude both ¬Cloudy & Cloudy

AI
rtificial
ntelligence

Contradictions in the Knowledge Base

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 15 / 41

• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining) Cloudy 2. Rainbow) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

� Suppose we conclude both ¬Cloudy & Cloudy

¬Cloudy

AI
rtificial
ntelligence

Contradictions in the Knowledge Base

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 15 / 41

• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining) Cloudy 2. Rainbow) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

� Suppose we conclude both ¬Cloudy & Cloudy

¬Cloudy
¬Cloudy _ exist(Leprechauns) since 1 _ A = A

AI
rtificial
ntelligence

Contradictions in the Knowledge Base

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 15 / 41

• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining) Cloudy 2. Rainbow) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

� Suppose we conclude both ¬Cloudy & Cloudy

¬Cloudy
¬Cloudy _ exist(Leprechauns) since 1 _ A = A
Cloudy) exist(Leprechauns) definition of)

AI
rtificial
ntelligence

Contradictions in the Knowledge Base

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 15 / 41

• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining) Cloudy 2. Rainbow) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

� Suppose we conclude both ¬Cloudy & Cloudy

¬Cloudy
¬Cloudy _ exist(Leprechauns) since 1 _ A = A
Cloudy) exist(Leprechauns) definition of)
exist(Leprechauns) Modus ponens with Cloudy

AI
rtificial
ntelligence

Contradictions in the Knowledge Base

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 15 / 41

• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining) Cloudy 2. Rainbow) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

� Suppose we conclude both ¬Cloudy & Cloudy

¬Cloudy
¬Cloudy _ exist(Leprechauns) since 1 _ A = A
Cloudy) exist(Leprechauns) definition of)
exist(Leprechauns) Modus ponens with Cloudy

If your axiom set is inconsistent, can prove anything!

AI
rtificial
ntelligence

Resolution Theorem Proving

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

• Overview

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 16 / 41 AI
rtificial
ntelligence

Resolution Theorem Proving (RTP)

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

• Overview

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 17 / 41

• A proof by refutation: Try to prove A by proving ¬A is false
• Prove false by showing a contradiction
• Uses only one inference rule
• Repeatedly apply resolution:

(A _ B) ^ (¬B _ C) ⌘ A _ C

� Need standardized knowledge base: conjunctive normal form
or implicative normal form

� Finding nil means contradiction (A ^ ¬A resolves to nil)

• Cannot use on an inconsistent knowledge base because can
prove anything

AI
rtificial
ntelligence

Conjunctive Normal Form (CNF)

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

• CNF

• Convert to CNF

• Example

• Eliminate Implications

• Negations
• Standardize Variable
Names

• Quantifiers to Left
• Skolemize Existential
Quantifiers

• Drop 8
• To CNF

• Rename Vars

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 18 / 41

• Need to make the all clauses in the same form so easy to apply
• Clauses contain only OR’s as operators
• Clauses are interpreted as ANDed together
• Use sound rules of inference, so consistency of the knowledge

base remains the same

AI
rtificial
ntelligence

Converting a Knowledge Base to CNF

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

• CNF

• Convert to CNF

• Example

• Eliminate Implications

• Negations
• Standardize Variable
Names

• Quantifiers to Left
• Skolemize Existential
Quantifiers

• Drop 8
• To CNF

• Rename Vars

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 19 / 41

1. Eliminate implications (!)
2. Reduce scope of ¬
3. Standardize (separate) variable names
4. Move quantifiers to the left
5. Skolemize existential quantifiers
6. Drop universal quantifiers
7. Change KB to conjunction of disjunctions
8. Standardize (separate) variable names (again)

AI
rtificial
ntelligence

Converting the Garden Example to CNF

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

• CNF

• Convert to CNF

• Example

• Eliminate Implications

• Negations
• Standardize Variable
Names

• Quantifiers to Left
• Skolemize Existential
Quantifiers

• Drop 8
• To CNF

• Rename Vars

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 20 / 41

• John likes carrots.

Like(John, Carrots)

• Mary likes carrots.

Like(Mary, Carrots)

• John grows the vegetables he likes.

8 x Like(John, x) ^ Vegetable(x) ! Grow(John, x)

• Carrots are vegetables.

Vegetable(Carrots)

• When you like a vegetable and you own it, you eat it.

8 x 8 y Like(x, y) ^ Vegetable(y) ^ Own(x, y) ! Eat(x, y)

• To eat something, you have to own it.

8 x 8 y Eat(x,y) ! Own(x, y)

• When you grow something, you own it.

8 x 8 y Grow(x,y) ! Own(x ,y)

• In order to grow something, you must own a garden.

8 x 8 y 9 g Grow(x, y) ! Own(x, g) ^ Garden(g)

AI
rtificial
ntelligence

Eliminate Implications: a ! b ⌘ ¬a _ b

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

• CNF

• Convert to CNF

• Example

• Eliminate Implications

• Negations
• Standardize Variable
Names

• Quantifiers to Left
• Skolemize Existential
Quantifiers

• Drop 8
• To CNF

• Rename Vars

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 21 / 41

8x8yEat(x, y) ! Own(x, y) 8x8y¬Eat(x, y) _ Own(x, y)

8x8yGrow(x, y) ! Own(x, y) 8x8y¬Grow(x, y) _ Own(x, y)

8x8y9gGrow(x, y) !
Own(x, g) ^ Garden(g)

8x8y9g¬Grow(x, y) _ [Own(x,
Garden(g)]

8x[Like(John, x)^
Vegetable(x)] ! Grow(John, x)

8x¬[Like(John, x) ^ Vegetable(x)]

_Grow(John, x)

8x8y[Like(x, y) ^ Vegetable(y)^
Own(x, y)] ! Eat(x, y)

8x8y¬[Like(x, y) ^ Vegetable(y)

Own(x, y)] _ Eat(x, y)

AI
rtificial
ntelligence

Reduce scope of ¬

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

• CNF

• Convert to CNF

• Example

• Eliminate Implications

• Negations
• Standardize Variable
Names

• Quantifiers to Left
• Skolemize Existential
Quantifiers

• Drop 8
• To CNF

• Rename Vars

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 22 / 41

• Use DeMorgan’s laws, ¬(¬p) = p
• For quantifiers:

� ¬8xP (x) = 9x¬P (x)

� ¬9xP (x) = 8x¬P (x)

• 8x¬[Like(John, x) ^ Vegetable(x)] _ Grow(John, x) ⌘

8x¬Like(John, x) _ ¬Vegetable(x) _ Grow(John, x)

• 8x8y¬[Like(x, y) ^ Vegetable(y) ^ Own(x, y)] _ Eat(x, y) ⌘

8x8y¬Like(x, y) _ ¬Vegetable(y) _ ¬Own(x, y) _ Eat(x, y)

AI
rtificial
ntelligence

Standardize Variable Names

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

• CNF

• Convert to CNF

• Example

• Eliminate Implications

• Negations
• Standardize Variable
Names

• Quantifiers to Left
• Skolemize Existential
Quantifiers

• Drop 8
• To CNF

• Rename Vars

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 23 / 41

• Give each variable in scope of quantifier a different name
• 8x8y¬Eat(x, y) _ Own(x, y)

• 8x18y1¬Grow(x1, y1) _ Own(x1, y1)

• 8x28y29g¬Grow(x2, y2) _ [Own(x2, g) ^ Garden(g)]

• 8x3¬Like(John, x3) _ ¬Vegetable(x3) _ Grow(John, x3)

• 8x48y4¬Like(x4, y4) _ Vegetable(y4) _ ¬Own(x4, y4) _
Eat(x4, y4)

AI
rtificial
ntelligence

Move quantifiers to the left

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

• CNF

• Convert to CNF

• Example

• Eliminate Implications

• Negations
• Standardize Variable
Names

• Quantifiers to Left
• Skolemize Existential
Quantifiers

• Drop 8
• To CNF

• Rename Vars

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 24 / 41

• Names are different, so scoping is no problem
• This does not require any changes to our example knowledge

base

AI
rtificial
ntelligence

Skolemize Existential Quantifiers

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

• CNF

• Convert to CNF

• Example

• Eliminate Implications

• Negations
• Standardize Variable
Names

• Quantifiers to Left
• Skolemize Existential
Quantifiers

• Drop 8
• To CNF

• Rename Vars

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 25 / 41

• Since 9 x means “there exists some x”, just invent a constant for
it – a Skolem constant

• Generally use sk1..skn for Skolem constants
• If inside universal quantifier, use Skolem function: a function of

that variable: e.g., sk1(x)
• 8x28y29g¬Grow(x2, y2) _ [Own(x2, g) ^ Garden(g)]

⌘

8x28y2¬Grow(x2, y2) _ [Own(x2, sk(x2, y2)) ^
Garden(sk(x2, y2))]

AI
rtificial
ntelligence

Drop 8

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

• CNF

• Convert to CNF

• Example

• Eliminate Implications

• Negations
• Standardize Variable
Names

• Quantifiers to Left
• Skolemize Existential
Quantifiers

• Drop 8
• To CNF

• Rename Vars

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 26 / 41

• Can do this, since all variables are now universally quantified
• Like(John, Carrots)
• Like(Mary, Carrots)
• Vegetable(Carrots)
• ¬Eat(x, y) _ Own(x, y)

• ¬Grow(x1, y1) _ Own(x1, y1)

• ¬Grow(x2, y2) _ [Own(x2, sk(x2, y2)) ^ Garden(sk(x2, y2))]

• ¬Like(John, x3) _ ¬Vegetable(x3) _ Grow(John, x3)

• ¬Like(x4, y4) _ Vegetable(y4) _ ¬Own(x4, y4) _ Eat(x4, y4)

AI
rtificial
ntelligence

Change to a conjunct of disjuncts

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

• CNF

• Convert to CNF

• Example

• Eliminate Implications

• Negations
• Standardize Variable
Names

• Quantifiers to Left
• Skolemize Existential
Quantifiers

• Drop 8
• To CNF

• Rename Vars

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 27 / 41

• Change the whole set of statements to a conjunction of
disjunction by applying distributive property and dropping ANDs
between disjunctive clauses

� (a ^ b) _ c = (a _ c) ^ (b _ c)

• ¬Grow(x2, y2)_[Own(x2, sk(x2, y2))^Garden(sk(x2, y2))] ⌘
¬Grow(x2, y2) _ Own(x2, sk(x2, y2))

and
¬Grow(x2, y2) _ Garden(sk(x2, y2))

AI
rtificial
ntelligence

Give each variable a different name

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

• CNF

• Convert to CNF

• Example

• Eliminate Implications

• Negations
• Standardize Variable
Names

• Quantifiers to Left
• Skolemize Existential
Quantifiers

• Drop 8
• To CNF

• Rename Vars

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 28 / 41

• ¬Grow(x2, y2) _ Own(x2, sk(x2, y2))

• ¬Grow(x5, y5) _ Garden(sk(x5, y5))

AI
rtificial
ntelligence

Algorithm for Resolution Theorem Proving

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 29 / 41

1. Convert statements to conjunctive normal form
2. Pick two clauses and “resolve” them

• need to worry about matching variables
• don’t need to undo steps – steps are ignorable since only

making sound inferences

3. If resolvent is not nil, add resolvent to KB and go to 2.
Otherwise, have proved original statement by contradiction of
negation of that statement

AI
rtificial
ntelligence

RTP as Search

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 30 / 41

• Operators:
• Choice points:
• Backtracking:
• Search strategy:
• Heuristics:

AI
rtificial
ntelligence

How would we use unify in resolution?

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 31 / 41

• Suppose we want to resolve W(A,B) and
¬W (A, x) _ S(x) _ R(A, x)

• Can unify W(A,B) and W(A,x) if x = B, so have substitution
instance of B/x

• Using the substitution for the whole clause, we get
¬W (A, B) _ S(B) _ R(A, B)

• When resolve the two clauses, get: S(B) _ R(A, B)

AI
rtificial
ntelligence

Unifying Two Clauses

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 32 / 41

• Predicates must match (easiest thing to eliminate on)
• Arguments must match:

� if constant, or one in previous substitution, bound to that in
the clause

� if a variable, can try all possibilities

AI
rtificial
ntelligence

Resolution Theorem Proving Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 33 / 41

• Put knowledge base in CNF

� S(A, B)

� S(C, B)

� T (B)

� ¬Q(x, y) _ P (x, y)

� ¬R(x1, y1) _ P (x1, y1)

� ¬R(x2, y2) _ P (x2, sk1(x2, y2))

� ¬R(x3, y3) _ W (sk1(x3, y3))

� ¬S(A, x4) _ ¬T (x4) _ R(A, x4)

� ¬S(x5, y5) _ ¬T (y5) _ ¬P (x5, y5) _ Q(x5, y5)

• Negate the clause that you are trying to prove

� want to prove Q(A, B) – add ¬Q(A, B) to knowledge base
• Resolve clauses until come to nil

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4
– resolvent: ¬S(A,B) _ ¬T (B)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4
– resolvent: ¬S(A,B) _ ¬T (B)

– resolve with: S(A,B)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4
– resolvent: ¬S(A,B) _ ¬T (B)

– resolve with: S(A,B)

– substitution: nil

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4
– resolvent: ¬S(A,B) _ ¬T (B)

– resolve with: S(A,B)

– substitution: nil
– resolvent: ¬T (B)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4
– resolvent: ¬S(A,B) _ ¬T (B)

– resolve with: S(A,B)

– substitution: nil
– resolvent: ¬T (B)

– resolve with T(B) ! nil

AI
rtificial
ntelligence

Proof Tree

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 35 / 41

~Q(A,B)

~S(x5,y5) v ~T(y5) v ~P(x5,y5) v Q(x5,y5)

~S(A,B) v ~T(B) v ~P(A,B)

{x5/A,y5/B}

S(A,B)

 ~T(B) v ~P(A,B)

{}

T(B)

 ~P(A,B)

{}

~R(x1,y1) v P(x1,y1)
{x1/A,y1/B}

~R(A,B)

~S(A,x4) v ~T(x4) v R(A,x4)
{x4/B}

~S(A,B) v ~T(B)
S(A,B)

~T(B)

T(B)

nil
{}

{}

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 36 / 41

FOL CNF
1 human(Marcus)
2 Pompeian(Marcus)
3 born(Marcus, 40)

4 8x human(x))
mortal(x)

5 8x Pompeian(x))
died(x, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150)) dead(x, t2)

8 now = 2014

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 36 / 41

FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus)
3 born(Marcus, 40)

4 8x human(x))
mortal(x)

5 8x Pompeian(x))
died(x, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150)) dead(x, t2)

8 now = 2014

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 36 / 41

FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40)

4 8x human(x))
mortal(x)

5 8x Pompeian(x))
died(x, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150)) dead(x, t2)

8 now = 2014

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 36 / 41

FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x))
mortal(x)

5 8x Pompeian(x))
died(x, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150)) dead(x, t2)

8 now = 2014

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 36 / 41

FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x))
mortal(x)

¬human(x1) _ mortal(x1)

5 8x Pompeian(x))
died(x, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150)) dead(x, t2)

8 now = 2014

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 36 / 41

FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x))
mortal(x)

¬human(x1) _ mortal(x1)

5 8x Pompeian(x))
died(x, 79)

¬Pompeian(x2) _
died(x2, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150)) dead(x, t2)

8 now = 2014

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 36 / 41

FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x))
mortal(x)

¬human(x1) _ mortal(x1)

5 8x Pompeian(x))
died(x, 79)

¬Pompeian(x2) _
died(x2, 79)

6 erupted(volcano, 79) erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150)) dead(x, t2)

8 now = 2014

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 36 / 41

FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x))
mortal(x)

¬human(x1) _ mortal(x1)

5 8x Pompeian(x))
died(x, 79)

¬Pompeian(x2) _
died(x2, 79)

6 erupted(volcano, 79) erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150)) dead(x, t2)

¬mortal(x3) _
¬born(x3, t1) _ ¬gt(t2 �
t1, 150) _ dead(x3, t2)

8 now = 2014

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 36 / 41

FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x))
mortal(x)

¬human(x1) _ mortal(x1)

5 8x Pompeian(x))
died(x, 79)

¬Pompeian(x2) _
died(x2, 79)

6 erupted(volcano, 79) erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150)) dead(x, t2)

¬mortal(x3) _
¬born(x3, t1) _ ¬gt(t2 �
t1, 150) _ dead(x3, t2)

8 now = 2014 now = 2014

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 37 / 41

9 FOL: 8x, t [alive(x, t)) ¬dead(x, t)] ^ [¬dead(x, t))
alive(x, t)]

10 FOL: 8x, t1, t2 died(x, t1) ^ gt(t2, t1)) dead(x, t2)

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 37 / 41

9 FOL: 8x, t [alive(x, t)) ¬dead(x, t)] ^ [¬dead(x, t))
alive(x, t)]
CNF:
[¬alive(x4, t3)_¬dead(x4, t3)]^[dead(x4, t3)_alive(x4, t3)]
⌘
(a)¬alive(x4, t3) _ ¬dead(x4, t3)
(b)dead(x5, t4) _ alive(x5, t4)

10 FOL: 8x, t1, t2 died(x, t1) ^ gt(t2, t1)) dead(x, t2)

AI
rtificial
ntelligence

Another example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 37 / 41

9 FOL: 8x, t [alive(x, t)) ¬dead(x, t)] ^ [¬dead(x, t))
alive(x, t)]
CNF:
[¬alive(x4, t3)_¬dead(x4, t3)]^[dead(x4, t3)_alive(x4, t3)]
⌘
(a)¬alive(x4, t3) _ ¬dead(x4, t3)
(b)dead(x5, t4) _ alive(x5, t4)

10 FOL: 8x, t1, t2 died(x, t1) ^ gt(t2, t1)) dead(x, t2)
CNF: ¬died(x6, t5) _ ¬gt(t6, t5) _ dead(x6, t6)

AI
rtificial
ntelligence

Marcus CNF

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 38 / 41

1. human(Marcus)
2. Pompeian(Marcus)
3. born(Marcus, 40)

4. ¬human(x1) _ mortal(x1)

5. ¬Pompeian(x2) _ died(x2, 79)

6. erupted(volcano, 79)

7. ¬mortal(x3) _ ¬born(x3, t1) _ ¬gt(t2 � t1, 150) _
dead(x3, t2)

8. now = 2014

9. ¬alive(x4, t3) _ ¬dead(x4, t3)
10. dead(x5, t4) _ alive(x5, t4)
11. ¬died(x6, t5) _ ¬gt(t6, t5) _ dead(x6, t6)

Prove: dead(Marcus)

AI
rtificial
ntelligence

Control Strategies

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 39 / 41

• Only try clauses with complementary literals
• Unit preference strategy
• Set-of-support
• Eliminate clauses which cannot change value of knowledge base

� tautologies
� subsumed clauses

• P(x) subsumes P (y) _ Q(z) since if P(x) is true it doesn’t
make any difference if Q(x) is true – assuming P(x) is true
since in the knowledge base

• P(x) subsumes P(A) since variable is more general than
the constant

AI
rtificial
ntelligence

Properties of RTP

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 40 / 41

• Is it complete?

� Semi-decidable – with appropriate control strategies (e.g.,
set-of-support and unit-preference)

• Time complexity?
• Space complexity?

AI
rtificial
ntelligence

Question Answering

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 41 / 41

• Yes/no questions

� turn question into statement
� if can prove, answer is “yes”
� if can’t prove, try proving negation for “no”

• Fill in the blank questions (wh-questions)

� use an existentially-quantified variable in the question
� negate the question and see what variable is bound to

• Green’s trick:

� do not negate, but mark so can distinguish from other clauses
� when left with only clause, see what variable is bound to

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Rule-based reasoning

AI
rtificial
ntelligence

Expert Systems

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 2 / 32

• What is an “expert system”?
• Also called knowledge-based systems
• Strong vs weak methods
• Feigenbaum, Shortliffe, Buchanan, J. McDermott, others: create

specialists, not generalists

AI
rtificial
ntelligence

Characteristics

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 3 / 32

• Expert-level performance
• Clean separation of knowledge and program (“inference engine”)
• Highly domain-specific, specialty very narrow
• Often: meta-knowledge
• Often: handles uncertainty
• Highly knowledge-intensive

AI
rtificial
ntelligence

Rule-based Expert Systems

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 4 / 32

• Based on production systems [Post, 1943]
• Rules:

� productions: rewrite rules
� if condition+ then action+
� test/action pairs, antecedent/consequent, LHS/RHS

• Working memory – contains positive literals
• Control system
• Forward chaining of rules

AI
rtificial
ntelligence

Benefits of production systems

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 5 / 32

• Equivalent to Turing machines
• Separates knowledge and program
• Modular
• Standard knowledge representation
• Simpler than full-fledged FOPC; more efficient than theorem

prover
• Physical symbol system

AI
rtificial
ntelligence

Modifications to Production System

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 6 / 32

• Backward- as well as forward-chaining of rules
• Uncertainty management

� Literals: (predicate attribute value CF)
(IDENTITY $ORG1 STREPTOCOCCUS 700)

� Rules: add a certainty associated with rule
If it is cloudy and the barometer is falling
Then there is suggestive evidence (.7) that it will rain

• User interface
• Meta knowledge

AI
rtificial
ntelligence

Modifications to Production System

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 7 / 32

InterfaceUser Inference Engine

Working
Memory

Rule Base

AI
rtificial
ntelligence

Kinds of RBES

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 8 / 32

• Classified by domain

AI
rtificial
ntelligence

Kinds of RBES

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 8 / 32

• Classified by domain
• ...by type of task:

� synthesis/construction
� analysis/categorization

AI
rtificial
ntelligence

Kinds of RBES

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 8 / 32

• Classified by domain
• ...by type of task:

� synthesis/construction
� analysis/categorization

• ...by reasoning style:

� Forward chaining
� Backward chaining

AI
rtificial
ntelligence

Kinds of RBES

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 8 / 32

• Classified by domain
• ...by type of task:

� synthesis/construction
� analysis/categorization

• ...by reasoning style:

� Forward chaining
� Backward chaining

• ...by exact or probabilistic or fuzzy reasoning

AI
rtificial
ntelligence

Forward-Chaining RBES

Overview

Forward-Chaining
RBES

• Overview

• Example

• Triggering

• Rete Network

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 9 / 32 AI
rtificial
ntelligence

Forward-Chaining RBES

Overview

Forward-Chaining
RBES

• Overview

• Example

• Triggering

• Rete Network

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 10 / 32

• Control cycle:

� Find rules whose antecedents are true: triggered rules
� Select one: conflict resolution
� Fire the rule to take some action

• Continue forever or until some goal is achieved
• Used for synthesis, often, or process control

AI
rtificial
ntelligence

Example: Winston’s “Bagger” Program

Overview

Forward-Chaining
RBES

• Overview

• Example

• Triggering

• Rete Network

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 11 / 32

• Toy forward chainer – domain = bagging groceries
• Steps in this process:

1. Check what customer has and suggest additions
2. Bag large items, putting large bottles in first
3. Bag medium items, putting frozen food in freezer bags
4. Bag small items wherever there is room

• Working memory:

� Needs to have information about:

• items already bagged
• unbagged items
• which step (context) we’re in

AI
rtificial
ntelligence

Example: Winston’s “Bagger” Program

Overview

Forward-Chaining
RBES

• Overview

• Example

• Triggering

• Rete Network

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 12 / 32

• Representation: could be literals, could have more structure than
that

• Initial state:
Step: check-order

Bagged: nil

Unbagged: bread, Glop brand cheese, granola,

ice cream

• Also need information about the world; this might be in the form
of a table for this problem:

Object Size Container Frozen?
bread M bag nil
Glop S jar nil
granola L box nil
ice cream M box t
Pepsi L bottle nil
potato chips M bag nil

AI
rtificial
ntelligence

Example: Winston’s “Bagger” Program

Overview

Forward-Chaining
RBES

• Overview

• Example

• Triggering

• Rete Network

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 13 / 32

Conflict resolution strategies – possibilities:

• specificity ordering:
� if two rules conflict and one is more specific than the other,

use it
� Rule 1 is more specific than Rule 2 if Rule 1’s antecedent

literals are a superset of Rule 2’s (assuming conjunction)

• rule ordering – implicit in rule base (unless using a rete net)
• data ordering – look at some data first (rete does this, sort of)
• size of antecedent – prefer rules with larger antecedent, since it’s

likely to be more specific
• recency – least/most recently used (depending on needs of

designer)
• context-limiting

AI
rtificial
ntelligence

Example: Winston’s “Bagger” Program

Overview

Forward-Chaining
RBES

• Overview

• Example

• Triggering

• Rete Network

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 14 / 32

• Rules in form of IF-THEN pairs
• Examples:

R1: if step = check-order &

exists bag of chips &

not exists soft drink bottle

then add bottle of pepsi to order

R2: if step = check-order

then step = bag-large-items

R3: if step = bag-large-items &

exists large item to be bagged &

exists large bottle to be bagged &

exists bag with < 6 large items

then put bottle in bag

AI
rtificial
ntelligence

Example: Winston’s “Bagger” Program

Overview

Forward-Chaining
RBES

• Overview

• Example

• Triggering

• Rete Network

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 15 / 32

• Initial state:
Step: check-order

Bagged: nil

Unbagged: bread, Glop brand cheese, granola,

ice cream

• World info:
Object Size Container Frozen?

--

bread M bag nil

Glop S jar nil

granola L box nil

ice cream M box t

Pepsi L bottle nil

potato chips M bag nil

AI
rtificial
ntelligence

Finding Triggered Rules

Overview

Forward-Chaining
RBES

• Overview

• Example

• Triggering

• Rete Network

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 16 / 32

• Possibly very time-consuming
• Observations:

� Rules often share LHS elements (literals)
� Rules don’t usually change over short term
� When WM changes: usually only a few changes per cycle

• Forgy: build a rete network based on the rules
• Rete records state of WM, rules in network – update on change

AI
rtificial
ntelligence

Rete Network

Overview

Forward-Chaining
RBES

• Overview

• Example

• Triggering

• Rete Network

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 17 / 32

Initial Rete Network

Fire Rule 1

constraint

A B

D

CA=B

E

add EA=D

A(1)
A(2)

B(2)
B(3)

A(2)
B(2)

C(5)

A=B=E

A=B=C add D

delete A

>>Nothing triggered<<

User asserts D(2)

>>Rule 1 triggered

A B

D

CA=B

E

add EA=D

A(1)
A(2)

B(2)
B(3)

A(2)
B(2)

C(5)

A=B=E

A=B=C add D

delete A

D(2) A(2)
D(2)

D(2) A(2)
D(2)

E(2)

>>Rule 3 triggered<<

A B

D

CA=B

E

add EA=D

A(1)
A(2)

B(2)
B(3)

A(2)
B(2)

C(5)

A=B=E

A=B=C add D

delete A

A(2)
B(2)
E(2)

A B

D

CA=B

E

add EA=D

B(2)
B(3)

B(2) C(5)

A=B=E

A=B=C add D

delete A

Fire Rule 3

A(1)

>>Nothing triggered<<

1) A(x) & B(x) & C(x) ==> D(x)
2) A(x) & B(y) & D(x) ==> E(x)
3) A(x) & B(x) & E(x) ==> not A(x)

Rule base: Iniital WM: A(1), A(2), B(2), B(3), C(5)

AI
rtificial
ntelligence

Backward-Chaining RBES

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 18 / 32

AI
rtificial
ntelligence

Backward-Chaining RBES

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 19 / 32

• Synthesis: pick a solution
• Analysis: gather evidence, form best hypothesis – e.g., medical

diagnosis
• Work backward from goal: focus question–asking on relevant

facts, tests
• Need uncertainty management
• Follow all (relevant) lines of reasoning: no conflict resolution

AI
rtificial
ntelligence

How Does It Work?

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 20 / 32

• Sort of like a backward-chaining theorem prover
• Want to conclude something about x:

� Is x in WM? Then conclude something from that.
� Are there rules that conclude something about x? Then for

each rule:

• Try to conclude something about each antecedent
(backchain).

• If that’s possible, fire the rule, giving some evidence for x.

� Combine evidence for and against x.

AI
rtificial
ntelligence

Example: Zoo World

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 21 / 32

• Goal: id(Animal1,?x)
• Initial state 1:

color(Animal1,tawny),

eye-direction(Animal1,forward),

teeth-shape(Animal1,pointed),

eats(Animal1,meat),

hair(Animal1), dark-spots(Animal1)

• Initial state 2:
color(Animal1,tawny),

eye-direction(Animal1,forward),

teeth-shape(Animal1,pointed),

eats(Animal1,meat),

hair(Animal1)

AI
rtificial
ntelligence

Uncertainty Handling

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 22 / 32

• Obvious way: probability theory
• Need some way to assess belief, given some evidence

AI
rtificial
ntelligence

Uncertainty Handling

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 22 / 32

• Obvious way: probability theory
• Need some way to assess belief, given some evidence
• Bayes’ rule:

P (H | E) =
P (E | H) · P (H)

P (E)

where P (E) = P (E | H) · P (H) + P (E | ¬H) · P (¬H)

AI
rtificial
ntelligence

Uncertainty Handling

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 22 / 32

• Obvious way: probability theory
• Need some way to assess belief, given some evidence
• Bayes’ rule:

P (H | E) =
P (E | H) · P (H)

P (E)

where P (E) = P (E | H) · P (H) + P (E | ¬H) · P (¬H)

• Example:

� H: Joey has lung cancer
� E: Joey smokes

P (lung�Ca | smoking) =
P (smoking | lung�Ca) · P (lung�Ca)

P (smoking)

AI
rtificial
ntelligence

Uncertainty Handling

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 23 / 32

• General form:

P (Hi | E) =
P (E | Hi) · P (Hi)�
P (E | Hj) · P (Hj)

• And with some prior evidence E and a new observation e:

P (H | e, E) = P (H | e) · P (E | e, H)

P (E | e)

AI
rtificial
ntelligence

Problems with Bayesian approach

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 24 / 32

• There are problems with Bayesian probability for expert systems
(in dispute recently)

• Probabilities may be difficult to obtain

� P(E), P(H), P(E| H) may be hard to get in general – for
example, where E = cough, or H = AIDS

� empirical evidence suggests that people are not very good at
estimating probabilities [Tversky & Kahneman, e.g.]

• Size of set of probabilities needed O(2
n
)

� Even if we could obtain them – requires too much space
� ...and too much time to use, and compute

AI
rtificial
ntelligence

Problems with Bayesian approach

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 25 / 32

• In the general case, we’re interested in

P (H | E1 ^ E2 ^ ... ^ En)

which is completely impractical to get
• Also assumes that P (H1), P (H2), ... are disjoint probability

distributions, that is, that Hi are independent and that they cover
the set of all hypotheses!

• Bayesian nets address many of these problems in a different
formalism

AI
rtificial
ntelligence

A Kludge: Certainty Factors

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 26 / 32

• Approximation to probability theory
• MYCIN (e.g.): CF [H, E] = MB[H, E] � MD[H, E]

• Since rule only supports/denies one fact: need only one number
to give CF for H given E

• One CF per literal, one per rule

AI
rtificial
ntelligence

Combining Certainty Factors

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 27 / 32

• Formally, when two rules give evidence about same literal:

MB[H, s1 ^ s2] = 0 if MD = 1,

MB[H, s1] + MB[H, s2] · (1 � MB[H, s1])

• Similarly for MD
• Simple update function!

AI
rtificial
ntelligence

Example

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 28 / 32

• Rule A: If x then s1

Rule B: If y then s2

Rule C: If s1 then H
Rule D: If s2 then H

• suppose MB[H, s1] = 0.3, MD = 0) CF = 0.3
• now rule B fires, giving MB[H, s2] as, say, 0.2:

MB[H, s1 ^ s2] = 0.3 + 0.2 · 0.7 = 0.44

MD = 0

CF = 0.44

AI
rtificial
ntelligence

Certainty Factors

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 29 / 32

• How to compute CF (A ^ B) for rule antecedents?

MB[H1 ^ H2, E] = min(MB[H1, E], MB[H2, E]

and for CF (A _ B):

MB[H1 ^ H2, E] = max(MB[H1, E], MB[H2, E]

AI
rtificial
ntelligence

Certainty Factors

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 30 / 32

• How to update certainty based on rule firing?

� Two things to consider: MB/MD in antecedents (computed as
above) and the CF of the rule:

MB[H, S] = MB�
[H, S] · max(0, CF [S, E])

where MB�
[H, S] is how much you’d believe S if E were

completely believed (i.e., the rule CF), and CF [S, E] is the
certainty you have in S given all the evidence.

� Essentially: you multiply the CF of the rule times the CF of the
evidence

AI
rtificial
ntelligence

Certainty Factors

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 31 / 32

• More recently (1986), it’s been found that CFs aren’t in conflict
with basic probability theory

• Why, then, do they work and Bayesian techniques seem not to?

AI
rtificial
ntelligence

Certainty Factors

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 31 / 32

• More recently (1986), it’s been found that CFs aren’t in conflict
with basic probability theory

• Why, then, do they work and Bayesian techniques seem not to?

� Heuristics
� They assume rule independence – conditional probabilities

are 0
� The knowledge engineer has to ensure this
� Leads to compound antecedents, but...
� ...makes it tractable and modular

• Many recent expert systems are based on Bayesian networks

AI
rtificial
ntelligence

Example Expert Systems

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 32 / 32

• DENDRAL
• R1/XCON [J. McDermott] – DEC
• MYCIN, EMYCIN, ONCOCIN, PUFF, VM, CENTAUR, MDX,

MDX2,...
• Blackboard systems

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Description Logic

AI
rtificial
ntelligence

Description logics

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 37 / 46

• Logic:

� very general, good semantics, but:
� cumbersome
� intractable, not decidable

• Frames and semantic nets (“network representations”):

� specialized reasoning, intuitive, but:
� semantics lacking/inconsistent

• Brachman’s KL-ONE system: attempted to add rigor to network
representations

• Gave rise to what is now called description logics

AI
rtificial
ntelligence

Basics

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 38 / 46

• Concerned with concepts and roles
• Concepts correspond to sets of individuals
• Primitive concepts:

� e.g., Car, Human, etc.
� equivalent to: Car(x), etc., in FOL

AI
rtificial
ntelligence

Basics

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 38 / 46

• Concerned with concepts and roles
• Concepts correspond to sets of individuals
• Primitive concepts:

� e.g., Car, Human, etc.
� equivalent to: Car(x), etc., in FOL

• Roles:

� Like slots in frames
� E.g., hasChildren

AI
rtificial
ntelligence

Basics

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 38 / 46

• Concerned with concepts and roles
• Concepts correspond to sets of individuals
• Primitive concepts:

� e.g., Car, Human, etc.
� equivalent to: Car(x), etc., in FOL

• Roles:

� Like slots in frames
� E.g., hasChildren

• Complex (compound) concepts:

� Built by composition from other concepts and roles
� Often intersection of concepts (�) as operator
� Different composition operators) different logics

AI
rtificial
ntelligence

Tbox and Abox

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 39 / 46

• Knowledge in a DL system divided into two “boxes”
• Tbox (terminological box):

� definitions – the ontology, i.e.
� consists of concepts – e.g., Human
� relatively static across problems

AI
rtificial
ntelligence

Tbox and Abox

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 39 / 46

• Knowledge in a DL system divided into two “boxes”
• Tbox (terminological box):

� definitions – the ontology, i.e.
� consists of concepts – e.g., Human
� relatively static across problems

• Abox (assertion box):

� facts about current problem
� instances of concepts – e.g., Human(Roy)
� dynamic across, even within problems

AI
rtificial
ntelligence

Tbox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 40 / 46

• Woman:

AI
rtificial
ntelligence

Tbox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 40 / 46

• Woman:
Woman ⌘ Person � Female

AI
rtificial
ntelligence

Tbox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 40 / 46

• Woman:
Woman ⌘ Person � Female

• Parent:

AI
rtificial
ntelligence

Tbox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 40 / 46

• Woman:
Woman ⌘ Person � Female

• Parent:

Parent ⌘ Person � 9hasChild.Person

AI
rtificial
ntelligence

Tbox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 40 / 46

• Woman:
Woman ⌘ Person � Female

• Parent:

Parent ⌘ Person � 9hasChild.Person

• Mother:

AI
rtificial
ntelligence

Tbox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 40 / 46

• Woman:
Woman ⌘ Person � Female

• Parent:

Parent ⌘ Person � 9hasChild.Person

• Mother:
Mother ⌘ Parent � Woman

AI
rtificial
ntelligence

Tbox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 40 / 46

• Woman:
Woman ⌘ Person � Female

• Parent:

Parent ⌘ Person � 9hasChild.Person

• Mother:
Mother ⌘ Parent � Woman

• Students who take COS 470:

AI
rtificial
ntelligence

Tbox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 40 / 46

• Woman:
Woman ⌘ Person � Female

• Parent:

Parent ⌘ Person � 9hasChild.Person

• Mother:
Mother ⌘ Parent � Woman

• Students who take COS 470:

Student � 9classSchedule.(9contains.COS470)

AI
rtificial
ntelligence

Abox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 41 / 46

• Joe is Harry’s son:

AI
rtificial
ntelligence

Abox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 41 / 46

• Joe is Harry’s son:

hasSon(Harry, Joe)

AI
rtificial
ntelligence

Abox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 41 / 46

• Joe is Harry’s son:

hasSon(Harry, Joe)

• Roy is a professor:

AI
rtificial
ntelligence

Abox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 41 / 46

• Joe is Harry’s son:

hasSon(Harry, Joe)

• Roy is a professor:

Professor(Roy)

AI
rtificial
ntelligence

Abox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 41 / 46

• Joe is Harry’s son:

hasSon(Harry, Joe)

• Roy is a professor:

Professor(Roy)

Person(Roy) � hasRole(Roy,Professor)

AI
rtificial
ntelligence

Abox Examples

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 41 / 46

• Joe is Harry’s son:

hasSon(Harry, Joe)

• Roy is a professor:

Professor(Roy)

Person(Roy) � hasRole(Roy,Professor)

(Person � 9hasRole.Professor)(Roy)

AI
rtificial
ntelligence

Counting

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 42 / 46

• Some logics can count, too
• E.g.: “A mother with two female and at least one male children”:

AI
rtificial
ntelligence

Counting

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 42 / 46

• Some logics can count, too
• E.g.: “A mother with two female and at least one male children”:

Mother� = 2(hasChild.Female)� � 1(hasChild.Male)

AI
rtificial
ntelligence

Inference in DL

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 43 / 46

• Reasoning in DL systems occurs in context of Tbox and Abox
• Tbox reasoning: subsumption

� Is concept A � concept B?
� E.g.:

Mother ⌘ Person � Female � 9hasChild.Person
Parent ⌘ Person � 9hasChild.Person
Mother � Parent

� Can be much more complicated and indirect

• Abox reasoning: classification

� Is A an instance of concept B?

• Often other kinds of reasoning, too

AI
rtificial
ntelligence

Different DLs

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 44 / 46

• DL really comprised of a family of logics
• Basic is AL (ascription language)
• Add other operators, get new languages – e.g., ALU would be

AL plus union, etc.
• Simple DLs: decidable, (relatively) efficient inferences
• More expressive DLs: give up efficiency, even decidability

AI
rtificial
ntelligence

Example Implementation: CLASSIC

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 45 / 46

• The CLASSIC language is an implementation of a DL (AL?)

AI
rtificial
ntelligence

Example Implementation: CLASSIC

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 45 / 46

• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor

AI
rtificial
ntelligence

Example Implementation: CLASSIC

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 45 / 46

• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor

Bachelor = And(Unmarried, Adult, Male)

AI
rtificial
ntelligence

Example Implementation: CLASSIC

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 45 / 46

• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor

Bachelor = And(Unmarried, Adult, Male)
• (From R&N) Men with at least three sons who are all unemployed

and married to doctors, and at most two daughters who are all
professors in physics or math departments:

AI
rtificial
ntelligence

Example Implementation: CLASSIC

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 45 / 46

• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor

Bachelor = And(Unmarried, Adult, Male)
• (From R&N) Men with at least three sons who are all unemployed

and married to doctors, and at most two daughters who are all
professors in physics or math departments:

And(Man,AtLeast(3,Son),AtMost(2,Daughter),

All(Son,And(Unemployed, Married,

All(Spouse,Doctor))),

All(Daughter,And(Professor,

Fills(Department,Physics,Math))))

AI
rtificial
ntelligence

Uses

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 46 / 46

• General-purpose knowledge representation
• Natural language processing
• Reasoning in intelligent databases: entity-relation models
• Web Ontology Language (OWL):

� Part of semantic Web
� Associate machine-understandable semantics with Web

pages
� One language is OWL-DL
� Complete and decidable

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Local DL example: Orca

Example Orca DL

--
Definition=(SOME expectsPresenceOf Salinity)
Certainty=0.401
--
Definition=(SOME expectsPresenceOf OceanSurface)
Certainty=0.436
--
Definition=(SOME expectsPresenceOf

(AND Thruster (SOME hasAdvisedValue ShoreBased)))
Certainty=0.769
--
Definition=(SOME expectsPresenceOf

(AND Location
(SOME hasNumber

(AND Float
(D-FILLER hasNumericValue

1

(D-LITERAL 19.115639 (D-BASE-TYPE float)))
(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE string)))))

(SOME hasNumber
(AND Integer

(D-FILLER hasNumericValue
(D-LITERAL 31 (D-BASE-TYPE integer)))

(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE string)))))))

Certainty=0.482
--
Definition=(SOME expectsPresenceOf

(AND Survey (SOME hasDegreeExpected Mine)
(SOME definesGoal ActiveMission)))

Certainty=0.125
--
Definition=(SOME expectsPresenceOf

(AND DetectSubmarine
(D-FILLER hasEventDescription

2

(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))

Certainty=0.243
--
Definition=(SOME hasFuzzyFeature

(AND Danger
(SOME hasFuzzyMembershipFunction

(AND TrapezoidalFunction
(SOME hasLocalMaxAt Number)
(SOME hasLocalMaxAt

(AND Float
(D-FILLER hasNumericValue
(D-LITERAL 24.848389
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#float)))

(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))

(SOME hasLocalMinAt Number)

3

(SOME hasLocalMinAt
(AND Integer

(D-FILLER hasNumericValue
(D-LITERAL 5
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#integer)))

(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))))))

Certainty=0.334
--
Definition=(AND (SOME hasActivePeriod EnteringContext)

(SOME hasOperationalSetting
(AND SelfDepth (SOME hasAdvisedValue Medium))))

Certainty=0.943
--
Definition=(AND

(SOME definesGoal
(AND SamplingComplete

(D-FILLER hasEventDescription

4

(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))

(SOME hasCost Medium) (SOME hasDegreeExpected High)
(SOME hasImportance High)
(SOME isAchievedBy (AND Maneuver (SOME hasActor PeerAgent))))

Certainty=0.559
--
Definition=(AND

(SOME respondsWithAction
(AND CommunicateStatus

(SOME hasObject
(AND NavigationComputer

(SOME hasCost
(AND SelfBatteryLevel

(SOME hasStateValue Medium)))))
(SOME hasActor AdversaryAgent)
(SOME isSampleTargetOf PeerAgent)))

(SOME hasImportance Medium)
(SOME handlesEvent

(AND SensorFailure

5

(D-FILLER hasEventDescription
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string))))))

Certainty=0.124
--
Definition=(AND

(SOME handlesEvent
(AND PowerFailure

(SOME hasStateValue
(AND ThrusterFailure

(D-FILLER hasEventDescription
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))))

(SOME hasImportance Low)
(SOME respondsWithAction

(AND MaintainPosition (SOME hasActor Agent))))
Certainty=0.904
--
Definition=(SOME definesAction

6

(AND Thruster
(SOME hasObject

(AND PeerAgent (SOME hasNumber Targeted)))
(SOME hasSpeed AdversaryAgent)))

Certainty=0.655
--
Definition=(SOME definesAction

(AND MaintainPosition
(SOME hasDirection

(AND Number (SOME handlesEvent Submarine)))
(SOME hasSpeed

(AND Float
(SOME hasObject

(AND Navigate
(SOME hasActor AdversaryAgent)))))

(SOME definesGoal Thruster)))
Certainty=0.117

7

