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Reasoning
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I Reasoning = ability to make decision or infer
something from existing facts

I Automated reasoning:
I Search is one (very simple) kind
I Neural networks: non-symbolic
I Here: symbolic reasoning

I Encode knowledge in some representation
I Apply inference mechanisms ) new knowledge
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Why not just search for everything?
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I Realistic problems: search spaces very large,
potentially infinite

I Difficult to find heuristics
I Often problem has structure that can be exploited
I Often: 9 much knowledge about world, problem

I E.g., medicine
I Search: example of weak method:

I general purpose
I little knowledge

I Knowledge-based methods: strong methods
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Knowledge representation

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Knowledge
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I Need way to represent & use the knowledge
I Many different representation schemes, inference

methods
I Theorem proving:

I Represent knowledge in a logical formalism
I Inference methods that knowledge ) new knowledge

I Rule-based reasoners:
I Represent knowledge as “if–then” rules
I Apply the rules ) new knowledge

I Planners:
I Represent knowledge as plan schemas, rules/logic,

. . .
I Use specialized planning techniques ) plans

I Many others
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Kinds of knowledge
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I Problem-specific: start, goal states, map, . . .
I Domain
I Problem-solving, other domain-independent
I Meta-knowledge: for explanation, learning, etc.
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Knowledge & agents
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I All agents have knowledge
I Some: built in to the agent’s structure

I e.g., reflex agent
I implicit knowledge

I Some augment with verbatim history
I Some: explicit knowledge representation

I Search agents
I Goal-based, utility-based agents
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Why explicit knowledge?
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I Agent reuse: just replace knowledge
I Knowledge acquisition from humans
I Reasoning about it:

I by humans: proving properties about behavior, e.g.
I by agent itself: introspection, machine learning,

explanation, . . .
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Knowledge representation
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I Knowledge representation:
1. system of representation, or. . .
2. way to represent particular concepts, or. . .
3. collection of knowledge an agent has (informally;

really knowledge base)
I Representations often formal:

I Rules about what can be stored
I Particular syntax, semantics

I Others interested in knowledge representation:
I psycologists
I philosophers
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Models and abstraction
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I Knowledge representation models a world
I Abstraction of a world: some things are left out
I Focuses, limits reasoning

I Model’s creator:
I Determines salient features
I Determines granularity of model
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Knowledge representation criteria
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I Criteria
I Easy for humans to understand
I Concise
I Context-independent
I Context-dependent
I Compositional
I Canonical
I Appropriate granularity
I Representational adequacy
I Inferential adequacy
I Acquisitional adequacy

I Trade-offs!
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Syntax, semantics, pragmatics
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I Knowledge representation is a language
I Syntax: valid structure of sentences
I Semantics: meaning of sentences
I Pragmatics (sometimes): what the sentences mean

in context
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Kinds of knowledge representations
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I Implicit/structural
I Procedural, but explicit:

I how to do something – like program
I good for instructions
I may be hard for humans to understand
I may be hard for the agent to understand and/or learn

I Declarative/explicit:
I represents what something is, what to do
I easy to extend, understand
I program can access its own knowledge:

introspection, learning
I harder to represent sometimes than procedural
I less efficient to “execute” than procedural

I Structured vs. unstructured
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First-order logic
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Formal logic
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I A logic is a representation language with
precisely-defined syntax and semantics

I Sentences represent facts
I Syntax: describes the possible legal configurations

of elements that form valid sentences
I Semantics: one interpretation is facts to which the

sentences refer
I 9 many logics
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Inference

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Inference: creates new knowledge from old
I Human inferences – can be very broad, complex
I Machine inferences:

I smaller than might usually count
I anything that is not a direct match with the

knowledge base requires an inference

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Inference
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I A logic has associated reasoning mechanisms:
I Inference rules: create new sentence from existing

sentences
I Inference procedure: Produces new facts from old:

S0, S1, · · · , Sn ` A

I Theorem prover: uses inference rules to prove some
sentence
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Entailment
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I Want to know:
I Does sentence A follow from a knowledge base K of

sentences?
I I.e., is A true if K is true?

I Entailment:
I K entails A iff A is necessarily true given K
I Written K |= S
I Note: |= could take � 1 inference
I For inference procedure i , written: KB |=i S

I Sound (truth-preserving) inference procedure:
produces only entailed sentences
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Proof
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I Proof: record of operation of a sound inference
procedure

I Complete inference procedure P:

8s K |= s ) K |=P s

I Proof theory: set of rules for deducing the
entailments of set of sentences (R&N)

Logic = syntax + semantics + proof theory
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I Proof: record of operation of a sound inference
procedure

I Complete inference procedure P:

8s K |= s ) K |=P s

I Proof theory: set of rules for deducing the
entailments of set of sentences (R&N)

Logic = syntax + semantics + proof theory
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I Proof: record of operation of a sound inference
procedure

I Complete inference procedure P:

8s K |= s ) K |=P s

I Proof theory: set of rules for deducing the
entailments of set of sentences (R&N)

Logic = syntax + semantics + proof theory
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I Proof: record of operation of a sound inference
procedure

I Complete inference procedure P:

8s K |= s ) K |=P s

I Proof theory: set of rules for deducing the
entailments of set of sentences (R&N)
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I Proof: record of operation of a sound inference
procedure

I Complete inference procedure P:

8s K |= s ) K |=P s

I Proof theory: set of rules for deducing the
entailments of set of sentences (R&N)

Logic = syntax + semantics + proof theory
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Models
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I Natural language sentences:
I Shared conventions, knowledge among speakers
I Meaning of sentence from these ) truth, falsehood

I Truth in logic:
I One kind of truth: entailment – s is true given K iff

K |= s
I But what about the normal meaning of “true”?

I Meaning/truth beyond entailment:
I No inherent meaning of sentences
I Meaning (truth) of sentence S depends on some

interpretation
I Model: a world in which sentence is true given some

interpretation

K |= s iff all models of K are also models of s
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I Natural language sentences:
I Shared conventions, knowledge among speakers
I Meaning of sentence from these ) truth, falsehood

I Truth in logic:
I One kind of truth: entailment – s is true given K iff

K |= s
I But what about the normal meaning of “true”?

I Meaning/truth beyond entailment:
I No inherent meaning of sentences
I Meaning (truth) of sentence S depends on some

interpretation
I Model: a world in which sentence is true given some

interpretation
K |= s iff all models of K are also models of s
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Validity
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I Valid sentence: true in all possible worlds (i.e., a
tautology)

I Valid inference: if premise true, conclusion must be
true in any world:

All humans are mortal and I am a human ) I am
mortal All birds live underground and Tweety is a bird

) Tweety lives underground
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Soundness
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I Tend to use sound interchangeably with valid, but not
really same

I Inference is sound if premises true and inference is
valid

I Argument (proof) is sound if all inferences are valid
and premises are true

I I.e., soundness is with respect to a model (world)
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Satisfiability
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I Satisfiable sentence:
I Some interpretation in some world for which

sentence is true
I E.g.: My cat hates dogs.

I Non-satisfiable sentence
I No world in which sentence is true
I E.g.:

I I am mortal and I am not mortal.
I Every cat hates dogs and there is a cat that does not

hate dogs.
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Propositional Logic
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Propositional logic (calculus)
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I Simplest kind of logic: “zeroth-order logic”
I Sentences = propositions
I Symbols stand for propositions
I Symbols, connectives ) compound propositions
I No variables, ) no quantification
I Ontological commitment: there are facts in world that

are true
I Epistemological commitment: a sentence is true or

false
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Syntax
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I Elements of language:
I Symbols
I True, False
I Logical connectives, parentheses

I Recursive definition:
I True, False, symbol are propositions (atomic

sentences)
I If S, P and Q are sentences, then so are:

(S), P ^ Q, P _ Q, ¬P, P ) Q, and P , Q

I Literal: atomic sentence or negated atomic sentence
I Precedence rules: ¬ > ^ > _ >)>,
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Semantics
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I True, False: fixed interpretation
I Propositions + connectives: “standard” compositional

semantics
I Propositions: whatever interpretation they are given
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Connectives
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A ¬A
F T
T F

A B A _ B
F F F
F T T
T F T
T T T
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Connectives
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A B A ^ B
F F F
F T F
T F F
T T T
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Implication
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A B A ) B
F F T
F T F
T F T
T T T

I Seems odd
I Think of it as: If A True, then I claim B is true, else I

make no claim
I Only time A ) B is false is if B is false

I E.g.: Trump is president ) he didn’t win the election
I Implication true when antecedent is false:

I E.g.: Clinton is president ) she won the election
I Definition: P ) Q ⌘ ¬P _ Q ⌘ ¬(P ^ ¬Q)
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Inference rules for propositional logic
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I Double negation elimination:
¬¬A

A
I AND elimination (unidirectional only):

A1 ^ A2 ^ ... ^ An
Ai

I OR introduction (unidirectional only):
Ai

A1 _ A2 _ ... _ An
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Inference rules for propositional logic

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I De Morgan’s laws:

¬(A ^ B)

¬A _ ¬B

¬(A _ B)

¬A ^ ¬B
I Distributive:

A _ (B ^ C)

(A _ B) ^ (A _ C)

A ^ (B _ C)

(A ^ B) _ (A ^ C)
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Inference rules for propositional logic
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I Various others: (0 = false, 1 = true)
I Null law:

A ^ 0
0

,
A _ 1

1
I Identity law:

A ^ 1
A

,
A _ 0

A
I Idempotent law:

A ^ A
A

,
A _ A

A
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Deduction
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I Sound form of inference
I Modus ponens

I Form:

A ) B
A

B

I Example:

Bird ) Fly
Bird

Fly
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Deduction
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I Modus tolens
I Form:

A ) B
¬B

¬A

I Example:

Bird ) Fly
¬Fly

¬Bird

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Complexity of propositional inference
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I Could build a truth table to prove conclusion
I 2n rows – n propositional symbols – can we do

better?
I General case: no – NP-complete problem
I Horn clauses: one class for which P-time algorithm

exists
P1 ^ P2 ^ . . . ^ Pn ! Q

– Pi , Q – non-negated atoms
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Problems with propositional calculus
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I Too many propositions!
I No variables – no quantification
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Predicate Calculus
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First-order predicate calculus
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I Various names: first-order logic (FOL), first-order
predicate calculus (FOPC), . . .

I Ontological commitment
I world consists of objects that have properties
I various relations hold among objects
I 9 functions arguments (objects) ! objects

I FOPC can represent anything that can be
programmed
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Parts of predicate calculus
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I Term: something signifying an object
I Symbol
I Variable
I Function (N.B.: not like function in programs!)

I Negation: NOT
I Connectives: AND (^), OR (_), IMPLIES ()), and

sometimes , or ⌘, =
I Quantifiers: existential (9) & universal (8)
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Literals, clauses, and sentences
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I Literal: a term, a predicate applied to term(s), or
negated predicate applied to term(s)

I Well-formed formulas (wffs): statements in the logic
I Literals are wffs
I If A & B are wffs so are:

A _ B A ^ B A ) B

9A 8A

I Clause - a wff consisting of solely of a disjunction of
literals

I Sentence: a wff with no free variables
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Computable functions

AI
rtificial

ntelligenceCopyright © 2017 UMaine School of Computing and Information Science

I Problem:
I When proving a theorem, need to check

truth/falsehood of predicates
I Ultimately, predicates have to match against

knowledge base (possibly after some number of
inferences)

I Some predicates: need infinite number of facts in the
knowledge base! E.g., numeric predicates:

8x , y Pompeian(x) ^ born(x , y) ^ less(y , 79) )
dead(x)

For this, we’d have to have an infinite number of facts
in our KB:

less(78, 79),less(77, 79),less(76, 79) . . .

I Solution: Evaluate as T or F by running a function on
the computer, not matching to a knowledge base
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Representing knowledge in FOPC
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I Remember: symbols are just symbols and have no
additional meaning

I Have a corpus of knowledge
I depends on domain, task, goals, etc.
I do not attempt to represent everything
I first specified in English, usually
I corpus will probably change as work on system

I Identify predicates that will be used
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Representing an example corpus
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I John likes carrots. likes(John,Carrots)

I Mary likes carrots.

I John grows the vegetables he likes.
I Carrots are vegetables.

I When you like a vegetable, you grow it.
I To eat something, you have to own it.
I When you grow something, you own it.
I In order to grow something, you must own a garden.
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I John likes carrots. likes(John,Carrots)

I Mary likes carrots. likes(Mary,Carrots)

I John grows the vegetables he likes.
8x vegetable(x) ^ likes(John, x) ! grows(John, x)

I Carrots are vegetables.

I When you like a vegetable, you grow it.
I To eat something, you have to own it.
I When you grow something, you own it.
I In order to grow something, you must own a garden.
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I John likes carrots. likes(John,Carrots)

I Mary likes carrots. likes(Mary,Carrots)

I John grows the vegetables he likes.
8x vegetable(x) ^ likes(John, x) ! grows(John, x)

I Carrots are vegetables. vegetables(Carrots)
I When you like a vegetable, you grow it.
I To eat something, you have to own it.
I When you grow something, you own it.
I In order to grow something, you must own a garden.
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I John likes carrots. likes(John,Carrots)

I Mary likes carrots. likes(Mary,Carrots)

I John grows the vegetables he likes.
8x vegetable(x) ^ likes(John, x) ! grows(John, x)

I Carrots are vegetables. vegetables(Carrots)
I When you like a vegetable, you grow it.

8x , y vegetable(x) ^ person(y) ^ like(y , x) !
grows(y , x)

I To eat something, you have to own it.
I When you grow something, you own it.
I In order to grow something, you must own a garden.
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I John likes carrots. likes(John,Carrots)

I Mary likes carrots. likes(Mary,Carrots)

I John grows the vegetables he likes.
8x vegetable(x) ^ likes(John, x) ! grows(John, x)

I Carrots are vegetables. vegetables(Carrots)
I When you like a vegetable, you grow it.

8x , y vegetable(x) ^ person(y) ^ like(y , x) !
grows(y , x)

I To eat something, you have to own it.
Which (if either) of these:
8x , y person(x) ^ owns(x , y) ! eats(x , y)
8x , y person(x) ^ eats(x , y) ! owns(x , y)

I When you grow something, you own it.
I In order to grow something, you must own a garden.
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I John likes carrots. likes(John,Carrots)

I Mary likes carrots. likes(Mary,Carrots)

I John grows the vegetables he likes.
8x vegetable(x) ^ likes(John, x) ! grows(John, x)

I Carrots are vegetables. vegetables(Carrots)
I When you like a vegetable, you grow it.

8x , y vegetable(x) ^ person(y) ^ like(y , x) !
grows(y , x)

I To eat something, you have to own it.
Which (if either) of these:
8x , y person(x) ^ owns(x , y) ! eats(x , y)
8x , y person(x) ^ eats(x , y) ! owns(x , y)

I When you grow something, you own it.
8x , y person(x) ^ grows(x , y) ! owns(x , y)

I In order to grow something, you must own a garden.
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I John likes carrots. likes(John,Carrots)
I Mary likes carrots. likes(Mary,Carrots)
I John grows the vegetables he likes.

8x vegetable(x) ^ likes(John, x) ! grows(John, x)
I Carrots are vegetables. vegetables(Carrots)
I When you like a vegetable, you grow it.

8x , y vegetable(x) ^ person(y) ^ like(y , x) !
grows(y , x)

I To eat something, you have to own it.
Which (if either) of these:
8x , y person(x) ^ owns(x , y) ! eats(x , y)
8x , y person(x) ^ eats(x , y) ! owns(x , y)

I When you grow something, you own it.
8x , y person(x) ^ grows(x , y) ! owns(x , y)

I In order to grow something, you must own a garden.
Which?
8x9g, y garden(g) ^ owns(x , g) ! grows(x , y)
8x9g, y garden(g) ^ grows(x , y) ! owns(x , g)
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I modus ponens: If (A ! B) ^ A then B logically
follows.

I modus tolens: If (A ! B) ^ ¬B then ¬A logically
follows

I resolution: If (A _ B) ^ (¬B _ C) then (A _ C)
logically follows

I abduction: If (A ! B) ^ B then A ( not sound
I induction: If

(instance(A, B) ^ P) ^ (instance(C, B) ^ P), then
instance(x , B) ! P ( not sound
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I Put what you want to prove in the knowledge base
I Apply rules of inference in a systematic way
I Add inferences along the way to knowledge base

since made from sound inferences
I Need to make sure that matching is done correctly
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I Bijection (,): iff

A , B ⌘ (A ) B) ^ (B ) A)

I Equality
I Often used in FOPC to link two descriptions as

referring to the same object:

FatherOf(John) = Henry

I Often used in formulae; sometimes to make sure that
two things are not the same object:

9x , y Dog(x) ^ Dog(y) ^ ¬(x = y)
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I Lambda (�) expressions:
I Temporary functions/predicate expressions (as in

Lisp)

�x , y Nationality(x) 6= Nationality(y)^

SchoolYear(x) = SchoolYear(y)

(�x , y Nationality(x) 6= Nationality(y)^

SchoolYear(x) = SchoolYear(y))(Joe,Pierre)

I Doesn’t extend FOPC – can always replace lambda
exp. with expansion
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I Uniqueness quantifier 9!
I Ex:

9!President(x ,USA)

I Also doesn’t extend FOPC – just syntactic sugar for:

9President(x ,USA)^8y President(y ,USA) ) x = y
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• What good is it?
• Axioms – more or less self-evident things that are “given”
• Theorems

1. Must contain nothing that cannot be proven
2. Must be implied entirely by propositions other than itself in or

arising from the axioms
3. Two theorems proven from the same set of (consistent)

axioms cannot be contradictory
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• What good is it?
• Axioms – more or less self-evident things that are “given”
• Theorems

1. Must contain nothing that cannot be proven
2. Must be implied entirely by propositions other than itself in or

arising from the axioms
3. Two theorems proven from the same set of (consistent)

axioms cannot be contradictory

• Theorem proving in this course:
� Unification
� Axioms
� Forward and backward proof
� Resolution theorem proving
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• Where is matching needed?

� Determining if something is trivially true – i.e., in the KB
� Determining if something matches the antecedent

(consequent)of an implication
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• Where is matching needed?

� Determining if something is trivially true – i.e., in the KB
� Determining if something matches the antecedent

(consequent)of an implication

• What properties should our match function have?

� Identical things match.
� Variables can match constants, unless the variable is already

bound in an inconsistent way
� Should keep track of bindings so variables consistency can

be checked, so instantiation of axioms can be done
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto)
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical

AI
rtificial
ntelligence

Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 4 / 41

• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto)
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido)
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
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dog(Fido) no constant term mismatch
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto)
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

¬cat(Pluto)
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
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cat(Pluto) no predicate mismatch

¬cat(Pluto) no no syntactic match
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

¬cat(Pluto) no no syntactic match
dog(x)
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

¬cat(Pluto) no no syntactic match
dog(x) yes Pluto can subsitute for variable:

x/Pluto
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

¬cat(Pluto) no no syntactic match
dog(x) yes Pluto can subsitute for variable:

x/Pluto
¬dog(x)
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• A particular kind of matching – Allow variables, track
substitutions of things for variables

• Thing to match: dog(Pluto)
Proposition Match? Why?

dog(Pluto) yes identical
¬dog(Pluto) no negated literal

dog(Fido) no constant term mismatch
¬dog(Fido) no no syntactic match
cat(Pluto) no predicate mismatch

¬cat(Pluto) no no syntactic match
dog(x) yes Pluto can subsitute for variable:

x/Pluto
¬dog(x) no negated
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• Basic idea for literals: check negation, check predicates, check
arguments

• Matching rules:

� symbols only match themselves
� variable can match anything X unless:

• X contains the variable
• the variable has been bound to something that doesn’t

itself match X

� Variable binding
� Subsitutions — also called a binding list or a unifier
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• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto)
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• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
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• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
(equalto A A) (equalto ?x ?y)
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• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
(equalto A A) (equalto ?x ?y) {x/A, y/A}
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• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
(equalto A A) (equalto ?x ?y) {x/A, y/A}

(P ?x ?x) (P ?y ?z)

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 6 / 41

• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
(equalto A A) (equalto ?x ?y) {x/A, y/A}

(P ?x ?x) (P ?y ?z) {x/y, y/z}

AI
rtificial
ntelligence

Substitution in Unification

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 6 / 41

• Substitution ⌘ unifier
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• Substitution ⌘ unifier
• Examples: Assume ?z is already bound to Mickey

A B unify(A,B)
(dog ?x) (dog Pluto) {x/Pluto}, {x!Pluto},

or ((x Pluto))
(equalto A A) (equalto ?x ?y) {x/A, y/A}

(P ?x ?x) (P ?y ?z) {x/y, y/z}
(owns Minnie ?y) (owns ?z Pluto) nil
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• Order doesn’t matter: {x/y} ⌘ {y/x}
• Could have more complex substitutions:

� unify loves(x, y) with loves(Pluto,z)
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• Order doesn’t matter: {x/y} ⌘ {y/x}
• Could have more complex substitutions:

� unify loves(x, y) with loves(Pluto,z)
� One possibility: {x/Pluto, y/z}
� Another: {x/Pluto, y/Mickey, z/Mickey}
� Still another: {x/Pluto, y/ice-cream, z/ice-cream}
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• Order doesn’t matter: {x/y} ⌘ {y/x}
• Could have more complex substitutions:

� unify loves(x, y) with loves(Pluto,z)
� One possibility: {x/Pluto, y/z}
� Another: {x/Pluto, y/Mickey, z/Mickey}
� Still another: {x/Pluto, y/ice-cream, z/ice-cream}

• Want most general unifier – Don’t over-commit!

AI
rtificial
ntelligence

Unify Algorithm

Overview

Unification
• Matching in Theorem
Proving

• Unification

• Unification
• Substitution in
Unification
• Substitution in
Unification

• Unify Algorithm

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 8 / 41

Unify(lit1,lit2,{blist}):

begin

if eql(lit1,lit2) then

return t, blist;

elsif lit1 is a variable then

if lit1 appears in lit2 then

return nil, blist;

elsif lit1 is bound in blist then

Unify(binding(lit1,blist),lit2,blist);

else

return t, blist+{lit1/lit2};

fi

elsif lit2 is a variable then

Unify(lit2,lit1,blist);

elsif lit1 or lit2 are both atoms or lists of di↵erent lengths

then return nil, blist;

else

match = t;

temp-blist = blist;

loop for i = 1 to length(lit1) do

match,temp-blist = Unify(lit1[i],lit2[i],temp-blist);

if match = nil then retun nil, blist;

else apply temp-blist to remainder of lit1 and lit2;

fi;

end loop;

return t, temp-blist;

fi;

end Unify;
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• State: axioms at the current moment
• Operators:

� Modus ponens, modus tolens, resolution
� Apply to axiom set ) new axiom set (new state)

• Forward, backward search/proof
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1. human(Marcus)
2. Pompeian(Marcus)
3. born(Marcus, 40)

4. 8x human(x) ) mortal(x)

5. 8x Pompeian(x) ) died(x, 79)

6. erupted(volcano, 79)

7. 8x, t1, t2 mortal(x) ^ born(x, t1) ^ gt(t2 � t1, 150) )
dead(x, t2)

8. now = 2014

9. 8x, t [alive(x, t) ) ¬dead(x, t)] ^ [¬dead(x, t) )
alive(x, t)]

10. 8x, t1, t2 died(x, t1) ^ gt(t2, t1) ) dead(x, t2)
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• Forward proof:
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• Forward proof:
1. human(Marcus) axiom 1
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• Forward proof:
1. human(Marcus) axiom 1
2. born(Marcus,40) axiom 3
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• Forward proof:
1. human(Marcus) axiom 1
2. born(Marcus,40) axiom 3
3. mortal(Marcus) 1 & axiom 4

8x human(x) ) mortal(x),
{x/Marcus}

AI
rtificial
ntelligence

Is Marcus dead?

Overview

Unification

Theorem Proving
• Theorem Proving as
Search

• example
• Forward vs Backward
Proof
• Backward Proof
Example

• Contradictions

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

Copyright c� 2017 UMaine School of Computing and Information Science – 12 / 41

• Forward proof:
1. human(Marcus) axiom 1
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8x human(x) ) mortal(x),
{x/Marcus}

4. now = 2014 axiom 8
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• Forward proof:
1. human(Marcus) axiom 1
2. born(Marcus,40) axiom 3
3. mortal(Marcus) 1 & axiom 4

8x human(x) ) mortal(x),
{x/Marcus}

4. now = 2014 axiom 8
5. dead(Marcus,2014) 3 & 2 & 4 & axiom 7

8x, t1, t2 mortal(x) ^ born(x, t1)^
gt(t2 � t1, 150) ) dead(x, t2)

{x/Marcus, t1/40, t2/now, now/2014}
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• May be difficult to constrain search:

� branching factor large
� no direction on which branch to take

• Backward proof – easier to constrain search (usually)
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Prove: Marcus is dead.

1. human(Marcus)
2. Pompeian(Marcus)
3. born(Marcus, 40)

4. 8x human(x) ) mortal(x)

5. 8x Pompeian(x) ) died(x, 79)

6. erupted(volcano, 79)

7. 8x, t1, t2 mortal(x) ^ born(x, t1) ^ gt(t2 � t1, 150) )
dead(x, t2)

8. now = 2014

9. 8x, t [alive(x, t) ) ¬dead(x, t)] ^ [¬dead(x, t) )
alive(x, t)]

10. 8x, t1, t2 died(x, t1) ^ gt(t2, t1) ) dead(x, t2)
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• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining ) Cloudy 2. Rainbow ) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?
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• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining ) Cloudy 2. Rainbow ) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

� Suppose we conclude both ¬Cloudy & Cloudy
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• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining ) Cloudy 2. Rainbow ) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

� Suppose we conclude both ¬Cloudy & Cloudy

¬Cloudy
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• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining ) Cloudy 2. Rainbow ) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

� Suppose we conclude both ¬Cloudy & Cloudy

¬Cloudy
¬Cloudy _ exist(Leprechauns) since 1 _ A = A
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• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining ) Cloudy 2. Rainbow ) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

� Suppose we conclude both ¬Cloudy & Cloudy

¬Cloudy
¬Cloudy _ exist(Leprechauns) since 1 _ A = A
Cloudy ) exist(Leprechauns) definition of )
exist(Leprechauns) Modus ponens with Cloudy
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• What happens if your KB is inconsistent?
• Suppose your knowledge base is:

1. Raining ) Cloudy 2. Rainbow ) ¬Cloudy
3. Rainbow 4. Raining

• Is this inconsistent?
• If so, is this a problem?

� Suppose we conclude both ¬Cloudy & Cloudy

¬Cloudy
¬Cloudy _ exist(Leprechauns) since 1 _ A = A
Cloudy ) exist(Leprechauns) definition of )
exist(Leprechauns) Modus ponens with Cloudy

If your axiom set is inconsistent, can prove anything!
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• A proof by refutation: Try to prove A by proving ¬A is false
• Prove false by showing a contradiction
• Uses only one inference rule
• Repeatedly apply resolution:

(A _ B) ^ (¬B _ C) ⌘ A _ C

� Need standardized knowledge base: conjunctive normal form
or implicative normal form

� Finding nil means contradiction (A ^ ¬A resolves to nil)

• Cannot use on an inconsistent knowledge base because can
prove anything
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• Need to make the all clauses in the same form so easy to apply
• Clauses contain only OR’s as operators
• Clauses are interpreted as ANDed together
• Use sound rules of inference, so consistency of the knowledge

base remains the same
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1. Eliminate implications (!)
2. Reduce scope of ¬
3. Standardize (separate) variable names
4. Move quantifiers to the left
5. Skolemize existential quantifiers
6. Drop universal quantifiers
7. Change KB to conjunction of disjunctions
8. Standardize (separate) variable names (again)
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• John likes carrots.

Like(John, Carrots)

• Mary likes carrots.

Like(Mary, Carrots)

• John grows the vegetables he likes.

8 x Like(John, x) ^ Vegetable(x) ! Grow(John, x)

• Carrots are vegetables.

Vegetable(Carrots)

• When you like a vegetable and you own it, you eat it.

8 x 8 y Like(x, y) ^ Vegetable(y) ^ Own(x, y) ! Eat(x, y)

• To eat something, you have to own it.

8 x 8 y Eat(x,y) ! Own(x, y)

• When you grow something, you own it.

8 x 8 y Grow(x,y) ! Own(x ,y)

• In order to grow something, you must own a garden.

8 x 8 y 9 g Grow(x, y) ! Own(x, g) ^ Garden(g)
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8x8yEat(x, y) ! Own(x, y) 8x8y¬Eat(x, y) _ Own(x, y)

8x8yGrow(x, y) ! Own(x, y) 8x8y¬Grow(x, y) _ Own(x, y)

8x8y9gGrow(x, y) !
Own(x, g) ^ Garden(g)

8x8y9g¬Grow(x, y) _ [Own(x,
Garden(g)]

8x[Like(John, x)^
Vegetable(x)] ! Grow(John, x)

8x¬[Like(John, x) ^ Vegetable(x)]

_Grow(John, x)

8x8y[Like(x, y) ^ Vegetable(y)^
Own(x, y)] ! Eat(x, y)

8x8y¬[Like(x, y) ^ Vegetable(y)

Own(x, y)] _ Eat(x, y)
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• Use DeMorgan’s laws, ¬(¬p) = p
• For quantifiers:

� ¬8xP (x) = 9x¬P (x)

� ¬9xP (x) = 8x¬P (x)

• 8x¬[Like(John, x) ^ Vegetable(x)] _ Grow(John, x) ⌘

8x¬Like(John, x) _ ¬Vegetable(x) _ Grow(John, x)

• 8x8y¬[Like(x, y) ^ Vegetable(y) ^ Own(x, y)] _ Eat(x, y) ⌘

8x8y¬Like(x, y) _ ¬Vegetable(y) _ ¬Own(x, y) _ Eat(x, y)
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• Give each variable in scope of quantifier a different name
• 8x8y¬Eat(x, y) _ Own(x, y)

• 8x18y1¬Grow(x1, y1) _ Own(x1, y1)

• 8x28y29g¬Grow(x2, y2) _ [Own(x2, g) ^ Garden(g)]

• 8x3¬Like(John, x3) _ ¬Vegetable(x3) _ Grow(John, x3)

• 8x48y4¬Like(x4, y4) _ Vegetable(y4) _ ¬Own(x4, y4) _
Eat(x4, y4)
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• Names are different, so scoping is no problem
• This does not require any changes to our example knowledge

base
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• Since 9 x means “there exists some x”, just invent a constant for
it – a Skolem constant

• Generally use sk1..skn for Skolem constants
• If inside universal quantifier, use Skolem function: a function of

that variable: e.g., sk1(x)
• 8x28y29g¬Grow(x2, y2) _ [Own(x2, g) ^ Garden(g)]

⌘

8x28y2¬Grow(x2, y2) _ [Own(x2, sk(x2, y2)) ^
Garden(sk(x2, y2))]
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• Can do this, since all variables are now universally quantified
• Like(John, Carrots)
• Like(Mary, Carrots)
• Vegetable(Carrots)
• ¬Eat(x, y) _ Own(x, y)

• ¬Grow(x1, y1) _ Own(x1, y1)

• ¬Grow(x2, y2) _ [Own(x2, sk(x2, y2)) ^ Garden(sk(x2, y2))]

• ¬Like(John, x3) _ ¬Vegetable(x3) _ Grow(John, x3)

• ¬Like(x4, y4) _ Vegetable(y4) _ ¬Own(x4, y4) _ Eat(x4, y4)
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• Change the whole set of statements to a conjunction of
disjunction by applying distributive property and dropping ANDs
between disjunctive clauses

� (a ^ b) _ c = (a _ c) ^ (b _ c)

• ¬Grow(x2, y2)_[Own(x2, sk(x2, y2))^Garden(sk(x2, y2))] ⌘
¬Grow(x2, y2) _ Own(x2, sk(x2, y2))

and
¬Grow(x2, y2) _ Garden(sk(x2, y2))
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• ¬Grow(x2, y2) _ Own(x2, sk(x2, y2))

• ¬Grow(x5, y5) _ Garden(sk(x5, y5))
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1. Convert statements to conjunctive normal form
2. Pick two clauses and “resolve” them

• need to worry about matching variables
• don’t need to undo steps – steps are ignorable since only

making sound inferences

3. If resolvent is not nil, add resolvent to KB and go to 2.
Otherwise, have proved original statement by contradiction of
negation of that statement
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• Operators:
• Choice points:
• Backtracking:
• Search strategy:
• Heuristics:
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• Suppose we want to resolve W(A,B) and
¬W (A, x) _ S(x) _ R(A, x)

• Can unify W(A,B) and W(A,x) if x = B, so have substitution
instance of B/x

• Using the substitution for the whole clause, we get
¬W (A, B) _ S(B) _ R(A, B)

• When resolve the two clauses, get: S(B) _ R(A, B)
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• Predicates must match (easiest thing to eliminate on)
• Arguments must match:

� if constant, or one in previous substitution, bound to that in
the clause

� if a variable, can try all possibilities

AI
rtificial
ntelligence

Resolution Theorem Proving Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 33 / 41

• Put knowledge base in CNF

� S(A, B)

� S(C, B)

� T (B)

� ¬Q(x, y) _ P (x, y)

� ¬R(x1, y1) _ P (x1, y1)

� ¬R(x2, y2) _ P (x2, sk1(x2, y2))

� ¬R(x3, y3) _ W (sk1(x3, y3))

� ¬S(A, x4) _ ¬T (x4) _ R(A, x4)

� ¬S(x5, y5) _ ¬T (y5) _ ¬P (x5, y5) _ Q(x5, y5)

• Negate the clause that you are trying to prove

� want to prove Q(A, B) – add ¬Q(A, B) to knowledge base
• Resolve clauses until come to nil
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4
– resolvent: ¬S(A,B) _ ¬T (B)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4
– resolvent: ¬S(A,B) _ ¬T (B)

– resolve with: S(A,B)

AI
rtificial
ntelligence

Resolving on the Example

Overview

Unification

Theorem Proving

Resolution Theorem
Proving

Conjunctive Normal
Form

RTP

• Algorithm

• RTP as Search

• Unify in RTP

• Unifying Two Clauses

• Example

• Proof Tree

• Another example

• Control Strategies

• Properties of RTP

• Question Answering

Copyright c� 2017 UMaine School of Computing and Information Science – 34 / 41

S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4
– resolvent: ¬S(A,B) _ ¬T (B)

– resolve with: S(A,B)

– substitution: nil
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4
– resolvent: ¬S(A,B) _ ¬T (B)

– resolve with: S(A,B)

– substitution: nil
– resolvent: ¬T (B)
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S(A,B)
S(C,B)
T (B)
¬Q(x, y) _ P (x, y)
¬R(x1, y1) _ P (x1, y1)
¬R(x2, y2) _ P (x2, sk1(x2, y2))
¬R(x3, y3) _ W (sk1(x3, y3))
¬S(A, x4) _ ¬T (x4) _ R(A, x4)
¬S(x5, y5)_¬T (y5)_¬P (x5, y5)
_Q(x5, y5)

– prove ¬Q(A,B)

– resolve ¬Q(A,B) with ¬S(x5, y5) _ ¬T (y5)_
¬P (x5, y5) _ Q(x5, y5)

– substitutions: A/x5, B/y5 - only looking at the Q’s

and then must apply throughout when resolve
– resolvent: ¬S(A,B) _ ¬T (B) _ ¬P (A,B)

– resolve resolvent with S(A,B)

– substitutions: nil
– ¬T (B) _ ¬P (A,B)

– resolve with: T(B)

– substitutions: nil
– resolvent: ¬P (A,B)

– resolve with: ¬R(x1, y1) _ P (x1, y1)

– substitution: A/x1, B/y5
– resolvent: ¬R(A,B)

– resolve with ¬S(A, x4) _ T (x4) _ R(A, x4)

– substitution: B/x4
– resolvent: ¬S(A,B) _ ¬T (B)

– resolve with: S(A,B)

– substitution: nil
– resolvent: ¬T (B)

– resolve with T(B) ! nil
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~Q(A,B)

~S(x5,y5) v ~T(y5) v ~P(x5,y5) v Q(x5,y5)

~S(A,B) v ~T(B) v ~P(A,B) 

{x5/A,y5/B}

S(A,B)

 ~T(B) v ~P(A,B) 

{}

T(B)

 ~P(A,B) 

{}

~R(x1,y1) v P(x1,y1)
{x1/A,y1/B}

~R(A,B)

~S(A,x4) v  ~T(x4) v R(A,x4)
{x4/B}

~S(A,B) v ~T(B)
S(A,B)

~T(B)

T(B)

nil
{}

{}
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FOL CNF
1 human(Marcus)
2 Pompeian(Marcus)
3 born(Marcus, 40)

4 8x human(x) )
mortal(x)

5 8x Pompeian(x) )
died(x, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150) ) dead(x, t2)

8 now = 2014
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FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus)
3 born(Marcus, 40)

4 8x human(x) )
mortal(x)

5 8x Pompeian(x) )
died(x, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150) ) dead(x, t2)

8 now = 2014
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FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40)

4 8x human(x) )
mortal(x)

5 8x Pompeian(x) )
died(x, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150) ) dead(x, t2)

8 now = 2014
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FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x) )
mortal(x)

5 8x Pompeian(x) )
died(x, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150) ) dead(x, t2)

8 now = 2014
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FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x) )
mortal(x)

¬human(x1) _ mortal(x1)

5 8x Pompeian(x) )
died(x, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150) ) dead(x, t2)

8 now = 2014
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FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x) )
mortal(x)

¬human(x1) _ mortal(x1)

5 8x Pompeian(x) )
died(x, 79)

¬Pompeian(x2) _
died(x2, 79)

6 erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150) ) dead(x, t2)

8 now = 2014
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FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x) )
mortal(x)

¬human(x1) _ mortal(x1)

5 8x Pompeian(x) )
died(x, 79)

¬Pompeian(x2) _
died(x2, 79)

6 erupted(volcano, 79) erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150) ) dead(x, t2)

8 now = 2014
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FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x) )
mortal(x)

¬human(x1) _ mortal(x1)

5 8x Pompeian(x) )
died(x, 79)

¬Pompeian(x2) _
died(x2, 79)

6 erupted(volcano, 79) erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150) ) dead(x, t2)

¬mortal(x3) _
¬born(x3, t1) _ ¬gt(t2 �
t1, 150) _ dead(x3, t2)

8 now = 2014
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FOL CNF
1 human(Marcus) human(Marcus)
2 Pompeian(Marcus) Pompeian(Marcus)
3 born(Marcus, 40) born(Marcus, 40)

4 8x human(x) )
mortal(x)

¬human(x1) _ mortal(x1)

5 8x Pompeian(x) )
died(x, 79)

¬Pompeian(x2) _
died(x2, 79)

6 erupted(volcano, 79) erupted(volcano, 79)

7 8x, t1, t2 mortal(x) ^
born(x, t1) ^ gt(t2 �
t1, 150) ) dead(x, t2)

¬mortal(x3) _
¬born(x3, t1) _ ¬gt(t2 �
t1, 150) _ dead(x3, t2)

8 now = 2014 now = 2014
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9 FOL: 8x, t [alive(x, t) ) ¬dead(x, t)] ^ [¬dead(x, t) )
alive(x, t)]

10 FOL: 8x, t1, t2 died(x, t1) ^ gt(t2, t1) ) dead(x, t2)
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9 FOL: 8x, t [alive(x, t) ) ¬dead(x, t)] ^ [¬dead(x, t) )
alive(x, t)]
CNF:
[¬alive(x4, t3)_¬dead(x4, t3)]^[dead(x4, t3)_alive(x4, t3)]
⌘
(a)¬alive(x4, t3) _ ¬dead(x4, t3)
(b)dead(x5, t4) _ alive(x5, t4)

10 FOL: 8x, t1, t2 died(x, t1) ^ gt(t2, t1) ) dead(x, t2)
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9 FOL: 8x, t [alive(x, t) ) ¬dead(x, t)] ^ [¬dead(x, t) )
alive(x, t)]
CNF:
[¬alive(x4, t3)_¬dead(x4, t3)]^[dead(x4, t3)_alive(x4, t3)]
⌘
(a)¬alive(x4, t3) _ ¬dead(x4, t3)
(b)dead(x5, t4) _ alive(x5, t4)

10 FOL: 8x, t1, t2 died(x, t1) ^ gt(t2, t1) ) dead(x, t2)
CNF: ¬died(x6, t5) _ ¬gt(t6, t5) _ dead(x6, t6)
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1. human(Marcus)
2. Pompeian(Marcus)
3. born(Marcus, 40)

4. ¬human(x1) _ mortal(x1)

5. ¬Pompeian(x2) _ died(x2, 79)

6. erupted(volcano, 79)

7. ¬mortal(x3) _ ¬born(x3, t1) _ ¬gt(t2 � t1, 150) _
dead(x3, t2)

8. now = 2014

9. ¬alive(x4, t3) _ ¬dead(x4, t3)
10. dead(x5, t4) _ alive(x5, t4)
11. ¬died(x6, t5) _ ¬gt(t6, t5) _ dead(x6, t6)

Prove: dead(Marcus)
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• Only try clauses with complementary literals
• Unit preference strategy
• Set-of-support
• Eliminate clauses which cannot change value of knowledge base

� tautologies
� subsumed clauses

• P(x) subsumes P (y) _ Q(z) since if P(x) is true it doesn’t
make any difference if Q(x) is true – assuming P(x) is true
since in the knowledge base

• P(x) subsumes P(A) since variable is more general than
the constant
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• Is it complete?

� Semi-decidable – with appropriate control strategies (e.g.,
set-of-support and unit-preference)

• Time complexity?
• Space complexity?
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• Yes/no questions

� turn question into statement
� if can prove, answer is “yes”
� if can’t prove, try proving negation for “no”

• Fill in the blank questions (wh-questions)

� use an existentially-quantified variable in the question
� negate the question and see what variable is bound to

• Green’s trick:

� do not negate, but mark so can distinguish from other clauses
� when left with only clause, see what variable is bound to

Automated
Reasoning:

Logical
Approaches

Automated
reasoning

Knowledge
representation

First-order logic

Propositional Logic

Predicate Calculus

Theorem proving

Rule-based
reasoning

Description Logic

Local DL example:
Orca

Rule-based reasoning
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• What is an “expert system”?
• Also called knowledge-based systems
• Strong vs weak methods
• Feigenbaum, Shortliffe, Buchanan, J. McDermott, others: create

specialists, not generalists
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• Expert-level performance
• Clean separation of knowledge and program (“inference engine”)
• Highly domain-specific, specialty very narrow
• Often: meta-knowledge
• Often: handles uncertainty
• Highly knowledge-intensive
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• Based on production systems [Post, 1943]
• Rules:

� productions: rewrite rules
� if condition+ then action+
� test/action pairs, antecedent/consequent, LHS/RHS

• Working memory – contains positive literals
• Control system
• Forward chaining of rules
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• Equivalent to Turing machines
• Separates knowledge and program
• Modular
• Standard knowledge representation
• Simpler than full-fledged FOPC; more efficient than theorem

prover
• Physical symbol system



AI
rtificial
ntelligence

Modifications to Production System

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 6 / 32

• Backward- as well as forward-chaining of rules
• Uncertainty management

� Literals: (predicate attribute value CF )
(IDENTITY $ORG1 STREPTOCOCCUS 700)

� Rules: add a certainty associated with rule
If it is cloudy and the barometer is falling
Then there is suggestive evidence (.7) that it will rain

• User interface
• Meta knowledge
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InterfaceUser Inference Engine

Working
Memory

Rule Base

AI
rtificial
ntelligence

Kinds of RBES

Overview

• Expert Systems

• Characteristics

• RBES

• Benefits

• Production Systems

• Kinds of RBES

Forward-Chaining
RBES

Backward-Chaining
RBES

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 8 / 32

• Classified by domain
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• Classified by domain
• ...by type of task:

� synthesis/construction
� analysis/categorization
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• Classified by domain
• ...by type of task:

� synthesis/construction
� analysis/categorization

• ...by reasoning style:

� Forward chaining
� Backward chaining
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• Classified by domain
• ...by type of task:

� synthesis/construction
� analysis/categorization

• ...by reasoning style:

� Forward chaining
� Backward chaining

• ...by exact or probabilistic or fuzzy reasoning
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• Control cycle:

� Find rules whose antecedents are true: triggered rules
� Select one: conflict resolution
� Fire the rule to take some action

• Continue forever or until some goal is achieved
• Used for synthesis, often, or process control
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• Toy forward chainer – domain = bagging groceries
• Steps in this process:

1. Check what customer has and suggest additions
2. Bag large items, putting large bottles in first
3. Bag medium items, putting frozen food in freezer bags
4. Bag small items wherever there is room

• Working memory:

� Needs to have information about:

• items already bagged
• unbagged items
• which step (context) we’re in
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• Representation: could be literals, could have more structure than
that

• Initial state:
Step: check-order

Bagged: nil

Unbagged: bread, Glop brand cheese, granola,

ice cream

• Also need information about the world; this might be in the form
of a table for this problem:

Object Size Container Frozen?
bread M bag nil
Glop S jar nil
granola L box nil
ice cream M box t
Pepsi L bottle nil
potato chips M bag nil
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Conflict resolution strategies – possibilities:

• specificity ordering:
� if two rules conflict and one is more specific than the other,

use it
� Rule 1 is more specific than Rule 2 if Rule 1’s antecedent

literals are a superset of Rule 2’s (assuming conjunction)

• rule ordering – implicit in rule base (unless using a rete net)
• data ordering – look at some data first (rete does this, sort of)
• size of antecedent – prefer rules with larger antecedent, since it’s

likely to be more specific
• recency – least/most recently used (depending on needs of

designer)
• context-limiting
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• Rules in form of IF-THEN pairs
• Examples:

R1: if step = check-order &

exists bag of chips &

not exists soft drink bottle

then add bottle of pepsi to order

R2: if step = check-order

then step = bag-large-items

R3: if step = bag-large-items &

exists large item to be bagged &

exists large bottle to be bagged &

exists bag with < 6 large items

then put bottle in bag
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• Initial state:
Step: check-order

Bagged: nil

Unbagged: bread, Glop brand cheese, granola,

ice cream

• World info:
Object Size Container Frozen?

----------------------------------------

bread M bag nil

Glop S jar nil

granola L box nil

ice cream M box t

Pepsi L bottle nil

potato chips M bag nil
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• Possibly very time-consuming
• Observations:

� Rules often share LHS elements (literals)
� Rules don’t usually change over short term
� When WM changes: usually only a few changes per cycle

• Forgy: build a rete network based on the rules
• Rete records state of WM, rules in network – update on change
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Initial Rete Network

Fire Rule 1

constraint

A B

D

CA=B

E

add EA=D

A(1)
A(2)

B(2)
B(3)

A(2)
B(2)

C(5)

A=B=E

A=B=C add D

delete A

>>Nothing triggered<<

User asserts D(2)

>>Rule 1 triggered

A B

D

CA=B

E

add EA=D

A(1)
A(2)

B(2)
B(3)

A(2)
B(2)

C(5)

A=B=E

A=B=C add D

delete A

D(2) A(2)
D(2)

D(2) A(2)
D(2)

E(2)

>>Rule 3 triggered<<

A B

D

CA=B

E

add EA=D

A(1)
A(2)

B(2)
B(3)

A(2)
B(2)

C(5)

A=B=E

A=B=C add D

delete A

A(2)
B(2)
E(2)

A B

D

CA=B

E

add EA=D

B(2)
B(3)

B(2) C(5)

A=B=E

A=B=C add D

delete A

Fire Rule 3

A(1)

>>Nothing triggered<<

1) A(x) & B(x) & C(x) ==> D(x)
2) A(x) & B(y) & D(x) ==> E(x)
3) A(x) & B(x) & E(x) ==> not A(x)

Rule base: Iniital WM: A(1), A(2), B(2), B(3), C(5)
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• Synthesis: pick a solution
• Analysis: gather evidence, form best hypothesis – e.g., medical

diagnosis
• Work backward from goal: focus question–asking on relevant

facts, tests
• Need uncertainty management
• Follow all (relevant) lines of reasoning: no conflict resolution
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• Sort of like a backward-chaining theorem prover
• Want to conclude something about x:

� Is x in WM? Then conclude something from that.
� Are there rules that conclude something about x? Then for

each rule:

• Try to conclude something about each antecedent
(backchain).

• If that’s possible, fire the rule, giving some evidence for x.

� Combine evidence for and against x.
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• Goal: id(Animal1,?x)
• Initial state 1:

color(Animal1,tawny),

eye-direction(Animal1,forward),

teeth-shape(Animal1,pointed),

eats(Animal1,meat),

hair(Animal1), dark-spots(Animal1)

• Initial state 2:
color(Animal1,tawny),

eye-direction(Animal1,forward),

teeth-shape(Animal1,pointed),

eats(Animal1,meat),

hair(Animal1)
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• Obvious way: probability theory
• Need some way to assess belief, given some evidence
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• Obvious way: probability theory
• Need some way to assess belief, given some evidence
• Bayes’ rule:

P (H | E) =
P (E | H) · P (H)

P (E)

where P (E) = P (E | H) · P (H) + P (E | ¬H) · P (¬H)
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• Obvious way: probability theory
• Need some way to assess belief, given some evidence
• Bayes’ rule:

P (H | E) =
P (E | H) · P (H)

P (E)

where P (E) = P (E | H) · P (H) + P (E | ¬H) · P (¬H)

• Example:

� H: Joey has lung cancer
� E: Joey smokes

P (lung�Ca | smoking) =
P (smoking | lung�Ca) · P (lung�Ca)

P (smoking)
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• General form:

P (Hi | E) =
P (E | Hi) · P (Hi)�
P (E | Hj) · P (Hj)

• And with some prior evidence E and a new observation e:

P (H | e, E) = P (H | e) · P (E | e, H)

P (E | e)

AI
rtificial
ntelligence

Problems with Bayesian approach

Overview

Forward-Chaining
RBES

Backward-Chaining
RBES

• Overview

• How Does It Work?

• Example

• Uncertainty

• Certainty Factors

Examples

Copyright c� 2014 UMaine School of Computing and Information Science – 24 / 32

• There are problems with Bayesian probability for expert systems
(in dispute recently)

• Probabilities may be difficult to obtain

� P(E), P(H), P(E| H) may be hard to get in general – for
example, where E = cough, or H = AIDS

� empirical evidence suggests that people are not very good at
estimating probabilities [Tversky & Kahneman, e.g.]

• Size of set of probabilities needed O(2
n
)

� Even if we could obtain them – requires too much space
� ...and too much time to use, and compute
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• In the general case, we’re interested in

P (H | E1 ^ E2 ^ ... ^ En)

which is completely impractical to get
• Also assumes that P (H1), P (H2), ... are disjoint probability

distributions, that is, that Hi are independent and that they cover
the set of all hypotheses!

• Bayesian nets address many of these problems in a different
formalism
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• Approximation to probability theory
• MYCIN (e.g.): CF [H, E] = MB[H, E] � MD[H, E]

• Since rule only supports/denies one fact: need only one number
to give CF for H given E

• One CF per literal, one per rule
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• Formally, when two rules give evidence about same literal:

MB[H, s1 ^ s2] = 0 if MD = 1,

MB[H, s1] + MB[H, s2] · (1 � MB[H, s1])

• Similarly for MD
• Simple update function!
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• Rule A: If x then s1

Rule B: If y then s2

Rule C: If s1 then H
Rule D: If s2 then H

• suppose MB[H, s1] = 0.3, MD = 0 ) CF = 0.3
• now rule B fires, giving MB[H, s2] as, say, 0.2:

MB[H, s1 ^ s2] = 0.3 + 0.2 · 0.7 = 0.44

MD = 0

CF = 0.44
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• How to compute CF (A ^ B) for rule antecedents?

MB[H1 ^ H2, E] = min(MB[H1, E], MB[H2, E]

and for CF (A _ B):

MB[H1 ^ H2, E] = max(MB[H1, E], MB[H2, E]
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• How to update certainty based on rule firing?

� Two things to consider: MB/MD in antecedents (computed as
above) and the CF of the rule:

MB[H, S] = MB�
[H, S] · max(0, CF [S, E])

where MB�
[H, S] is how much you’d believe S if E were

completely believed (i.e., the rule CF), and CF [S, E] is the
certainty you have in S given all the evidence.

� Essentially: you multiply the CF of the rule times the CF of the
evidence
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• More recently (1986), it’s been found that CFs aren’t in conflict
with basic probability theory

• Why, then, do they work and Bayesian techniques seem not to?
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• More recently (1986), it’s been found that CFs aren’t in conflict
with basic probability theory

• Why, then, do they work and Bayesian techniques seem not to?

� Heuristics
� They assume rule independence – conditional probabilities

are 0
� The knowledge engineer has to ensure this
� Leads to compound antecedents, but...
� ...makes it tractable and modular

• Many recent expert systems are based on Bayesian networks
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• DENDRAL
• R1/XCON [J. McDermott] – DEC
• MYCIN, EMYCIN, ONCOCIN, PUFF, VM, CENTAUR, MDX,

MDX2,...
• Blackboard systems
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• Logic:

� very general, good semantics, but:
� cumbersome
� intractable, not decidable

• Frames and semantic nets (“network representations”):

� specialized reasoning, intuitive, but:
� semantics lacking/inconsistent

• Brachman’s KL-ONE system: attempted to add rigor to network
representations

• Gave rise to what is now called description logics
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• Concerned with concepts and roles
• Concepts correspond to sets of individuals
• Primitive concepts:

� e.g., Car, Human, etc.
� equivalent to: Car(x), etc., in FOL
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• Concerned with concepts and roles
• Concepts correspond to sets of individuals
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• Concerned with concepts and roles
• Concepts correspond to sets of individuals
• Primitive concepts:

� e.g., Car, Human, etc.
� equivalent to: Car(x), etc., in FOL

• Roles:

� Like slots in frames
� E.g., hasChildren

• Complex (compound) concepts:

� Built by composition from other concepts and roles
� Often intersection of concepts (�) as operator
� Different composition operators ) different logics
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� relatively static across problems
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• Knowledge in a DL system divided into two “boxes”
• Tbox (terminological box):

� definitions – the ontology, i.e.
� consists of concepts – e.g., Human
� relatively static across problems

• Abox (assertion box):

� facts about current problem
� instances of concepts – e.g., Human(Roy)
� dynamic across, even within problems
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• Woman:
Woman ⌘ Person � Female
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• Woman:
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• Woman:
Woman ⌘ Person � Female

• Parent:

Parent ⌘ Person � 9hasChild.Person

• Mother:
Mother ⌘ Parent � Woman

• Students who take COS 470:

Student � 9classSchedule.(9contains.COS470)
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• Joe is Harry’s son:
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• Joe is Harry’s son:

hasSon(Harry, Joe)
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• Joe is Harry’s son:
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• Roy is a professor:

Professor(Roy)
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• Joe is Harry’s son:

hasSon(Harry, Joe)

• Roy is a professor:

Professor(Roy)

Person(Roy) � hasRole(Roy,Professor)

(Person � 9hasRole.Professor)(Roy)
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• Some logics can count, too
• E.g.: “A mother with two female and at least one male children”:
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• Some logics can count, too
• E.g.: “A mother with two female and at least one male children”:

Mother� = 2(hasChild.Female)� � 1(hasChild.Male)
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• Reasoning in DL systems occurs in context of Tbox and Abox
• Tbox reasoning: subsumption

� Is concept A � concept B?
� E.g.:

Mother ⌘ Person � Female � 9hasChild.Person
Parent ⌘ Person � 9hasChild.Person
Mother � Parent

� Can be much more complicated and indirect

• Abox reasoning: classification

� Is A an instance of concept B?

• Often other kinds of reasoning, too
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• DL really comprised of a family of logics
• Basic is AL (ascription language)
• Add other operators, get new languages – e.g., ALU would be

AL plus union, etc.
• Simple DLs: decidable, (relatively) efficient inferences
• More expressive DLs: give up efficiency, even decidability
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• The CLASSIC language is an implementation of a DL (AL?)
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• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor
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• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor

Bachelor = And(Unmarried, Adult, Male)
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• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor

Bachelor = And(Unmarried, Adult, Male)
• (From R&N) Men with at least three sons who are all unemployed

and married to doctors, and at most two daughters who are all
professors in physics or math departments:
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• The CLASSIC language is an implementation of a DL (AL?)
• Example: a bachelor

Bachelor = And(Unmarried, Adult, Male)
• (From R&N) Men with at least three sons who are all unemployed

and married to doctors, and at most two daughters who are all
professors in physics or math departments:

And(Man,AtLeast(3,Son),AtMost(2,Daughter),

All(Son,And(Unemployed, Married,

All(Spouse,Doctor))),

All(Daughter,And(Professor,

Fills(Department,Physics,Math))))

AI
rtificial
ntelligence

Uses

Structured KRep

Frames

Semantic Networks

CD

Cyc

Description Logics

• Tbox and Abox

• Examples

• Counting

• Inference in DL

• Different DLs

• CLASSIC

• Uses

Copyright c� 2014 UMaine School of Computing and Information Science – 46 / 46

• General-purpose knowledge representation
• Natural language processing
• Reasoning in intelligent databases: entity-relation models
• Web Ontology Language (OWL):

� Part of semantic Web
� Associate machine-understandable semantics with Web

pages
� One language is OWL-DL
� Complete and decidable
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Local DL example: Orca

Example Orca DL

----------------------------------------
Definition=(SOME expectsPresenceOf Salinity)
Certainty=0.401
----------------------------------------
Definition=(SOME expectsPresenceOf OceanSurface)
Certainty=0.436
----------------------------------------
Definition=(SOME expectsPresenceOf

(AND Thruster (SOME hasAdvisedValue ShoreBased)))
Certainty=0.769
----------------------------------------
Definition=(SOME expectsPresenceOf

(AND Location
(SOME hasNumber

(AND Float
(D-FILLER hasNumericValue

1

(D-LITERAL 19.115639 (D-BASE-TYPE float)))
(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE string)))))

(SOME hasNumber
(AND Integer

(D-FILLER hasNumericValue
(D-LITERAL 31 (D-BASE-TYPE integer)))

(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE string)))))))

Certainty=0.482
----------------------------------------
Definition=(SOME expectsPresenceOf

(AND Survey (SOME hasDegreeExpected Mine)
(SOME definesGoal ActiveMission)))

Certainty=0.125
----------------------------------------
Definition=(SOME expectsPresenceOf

(AND DetectSubmarine
(D-FILLER hasEventDescription

2

(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))

Certainty=0.243
----------------------------------------
Definition=(SOME hasFuzzyFeature

(AND Danger
(SOME hasFuzzyMembershipFunction

(AND TrapezoidalFunction
(SOME hasLocalMaxAt Number)
(SOME hasLocalMaxAt

(AND Float
(D-FILLER hasNumericValue
(D-LITERAL 24.848389
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#float)))

(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))

(SOME hasLocalMinAt Number)

3



(SOME hasLocalMinAt
(AND Integer

(D-FILLER hasNumericValue
(D-LITERAL 5
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#integer)))

(D-FILLER hasUnitOfMeasure
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))))))

Certainty=0.334
----------------------------------------
Definition=(AND (SOME hasActivePeriod EnteringContext)

(SOME hasOperationalSetting
(AND SelfDepth (SOME hasAdvisedValue Medium))))

Certainty=0.943
----------------------------------------
Definition=(AND

(SOME definesGoal
(AND SamplingComplete

(D-FILLER hasEventDescription

4

(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))

(SOME hasCost Medium) (SOME hasDegreeExpected High)
(SOME hasImportance High)
(SOME isAchievedBy (AND Maneuver (SOME hasActor PeerAgent))))

Certainty=0.559
----------------------------------------
Definition=(AND

(SOME respondsWithAction
(AND CommunicateStatus

(SOME hasObject
(AND NavigationComputer

(SOME hasCost
(AND SelfBatteryLevel

(SOME hasStateValue Medium)))))
(SOME hasActor AdversaryAgent)
(SOME isSampleTargetOf PeerAgent)))

(SOME hasImportance Medium)
(SOME handlesEvent

(AND SensorFailure

5

(D-FILLER hasEventDescription
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string))))))

Certainty=0.124
----------------------------------------
Definition=(AND

(SOME handlesEvent
(AND PowerFailure

(SOME hasStateValue
(AND ThrusterFailure

(D-FILLER hasEventDescription
(D-LITERAL somerandomstring
(D-BASE-TYPE
http://www.w3.org/2001/XMLSchema#string)))))))

(SOME hasImportance Low)
(SOME respondsWithAction

(AND MaintainPosition (SOME hasActor Agent))))
Certainty=0.904
----------------------------------------
Definition=(SOME definesAction

6

(AND Thruster
(SOME hasObject

(AND PeerAgent (SOME hasNumber Targeted)))
(SOME hasSpeed AdversaryAgent)))

Certainty=0.655
----------------------------------------
Definition=(SOME definesAction

(AND MaintainPosition
(SOME hasDirection

(AND Number (SOME handlesEvent Submarine)))
(SOME hasSpeed

(AND Float
(SOME hasObject

(AND Navigate
(SOME hasActor AdversaryAgent)))))

(SOME definesGoal Thruster)))
Certainty=0.117
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