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From nets to tensors

» Want compact representation of network

» Want representation that can be mapped to parallel
processors

» Insight:

>

>
>
>

Inputs can be considered a vector

Outputs can be considered a vector

Network is completely represented by its weights

A weight is between neuron jin layer / and neuron jin
layer /+1

So all weights between two layers can be
represented as j x j or j x i matrix

» Generalize: Scalars, vectors, matrices, and their
n-dimensional counterparts: tensors

» Can map tensors and tensor operations onto parallel
hardware (e.g., GPGPUs)
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Notation (from Nielsen)

» Assume a multilayer FF network
> wﬁ(: wt from neuron k in layer / — 1 to neuron j in

layer /
neuron k l neuron j
O———=0
layer { — 1 layer [

» Subscript: jk for ease of calculation (later)
> bl: bias of neuron j in layer /
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Notation (from Nielsen)

» Assume a multilayer FF network
> wﬁ(: wt from neuron k in layer / — 1 to neuron j in

layer /
neuron k l neuron j
O———=0
layer { — 1 layer [

» Subscript: jk for ease of calculation (later)
> bl: bias of neuron j in layer /

> aj’-: activation (output) of neuron j in layer /

- I A1
ag=o0 Z wiay ' + bj
K

Copyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part |

Matrix form of NN

Gradient descent
learning in FF NNs

Backpropagation
Deep learning
Building them

Miscellaneous
networks

Summary

Preview

Ariificial

ntelligence



Matrix form of NN Mg Loaing:

Layer 1 Layer 2 Layer 3 Matrix form of NN
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Matrix form of NN

Machine Learning:
Part |

Layer 1 Layer 2

Layer 3 Matrix form of NN

Gradient descent
learning in FF NNs

Backpropagation

Deep learning

(w}hz1 + whas + whas) + b3 (w} oy + whas + wisas)| | b7

- = (w2 2 2 2
7= | (whz1 + whhTe + wiws) + b3 (w3121 + wiomy + w3a3) | +| b3
2 2 2 2

(whz1 + wihz2 + whhws) + 3 (wim1 + whhws + whzs)| | b3

2 2
Wi Wi

_|.2 2

Sl wa wa
Wi Wi

Building them

Miscellaneous
networks

Summary

Preview

RE;
w , 2

3 b

2 )
wi || X2 | +|p2 | = w2x + b?
Wiz | [ X3 b}
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Matrix form of NN

Layer 1

Layer 2

Layer 3

(w21 + whhze + wises) + 0
7= | (whan + wihra + wiyws) + b3

2 2 2 2
(whi o1 + wihws + wizws) + 03

2
Wi

(whiar + wiyws +wiyzs)| | 0f
= (w2 2 2 2 2
(wh 1 + whhwe +whyws) | +| b3 | = | w3,

2 2 2 2
(whiz1 +whze +wizzs)| |03 wh

o(w2x +b?)

2 2
Wi Wi || X1

2 2
Wo Wo | [ X2

Wi Wi | | X3

= wix+b?
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Matrix form

» General equation:
a =o(w'ad="+ b

» o is said to be “vectorized”

» Logit (weighted input) vector Z' is important, too
Z=wa=1+ b

» So d =o(2)
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Learning in feedforward ANN Machine Learing:

Matrix form of NN

» Want to adjust each weight so that NN has less error
» Have to define error

Gradient descent
learning in FF NNs

Backpropagation
» Have to: )
. ) X Deep learning
> Determme how change in a each weight — change Building them
n ?rror . . Miscellaneous
» Adjust the weight so as to minimize error networks
Summary
Preview
Ariificia_l
Copyright © 2019 UMaine School of Computing and Information Science ntelligence



What are we learning? MBI TR

Matrix form of NN

» Network computes function of inputs
» Single output, ninputs w: Ay (X)
» What if m > 1 outputs?
» Single layer net: separate into m nets, train

Gradient descent
learning in FF NNs

Backpropagation

Deep learning

Building them
Separately Miscellaneous
» Multilayer: all outputs depend on hidden layer networks
WelghtS Summary
» = vector function Preview

» Output function hy(x):

Ariificial
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What are we learning?

» Network computes function of inputs
» Single output, ninputs w: hw(X)
» What if m > 1 outputs?

» Single layer net: separate into m nets, train
separately

» Multilayer: all outputs depend on hidden layer
weights

» = vector function

» Output function hy(x):

ho(x) = af=o(wha~" +bh)
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What are we learning?

» Network computes function of inputs
» Single output, ninputs w: hw(X)
» What if m > 1 outputs?

» Single layer net: separate into m nets, train
separately

» Multilayer: all outputs depend on hidden layer
weights

» = vector function

» Output function hy(x):

hy(x) = al=o(wha'"" 1+bL)
= o(wt(o(w' a2 + b~ ") + b
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What are we learning? S

Matrix form of NN

» Network computes function of inputs e deen
» Single output, ninputs w: hy(X) —
. Backpr tion
» What if m > 1 outputs? D:ppl::;?:go
» Single layer net: separate into m nets, train Building them
Separately Miscellaneous
» Multilayer: all outputs depend on hidden layer networks
Welghts Summary
» = vector function Preview
» Output function hy(x):
ho(x) = af=o(wha~" +bh)

Ariificial
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Error function Mg Loaing:

Matrix form of NN

» First, let’s eliminate b = into x :
Gradient descent
» Error of network: learning in FF NNs

» Lety = desired output B
» Error on training example x:

Deep learning

Building them
Buw(X) =y = hu(x) o
> BUt: Summary
" . Previ
» Ew(X): positive/negative e
» We don’t want any particular error element: want
average error
» Want to learn weights, so want a function of weights
icial
A e
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COSt (lOSS) fu nCt|On Machin:alr_telarning;

Matrix form of NN

» Define a cost (loss, objective) function:

1 .
Cx (W) = — ’ ‘ (Ew(X))| ’2 Backpropagation

2 Deep learning

Gradient descent
learning in FF NNs

Building them
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Cost (loss) function

» Define a cost (loss, objective) function:

1

Cx(w) = SlI(Ew(x))I?

1
= Sl hu()|
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COSt (lOSS) fu nCt|On Machin:alr_telarning:

Matrix form of NN

» Define a cost (loss, objective) function:

Gradient descent
learning in FF NNs

1 .
Cx (W) = é H(EW(X))| ’2 Backpropag‘;atlon
Deep learning
1 2 Building them
a é ’ ‘y B hW(X)H Miscellaneous
1 Z L2 networks
= A (ym — am) Summary
2 m Preview

Ariificial
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COSt (lOSS) fu nCt|On Machin:alr_telarning;

Matrix form of NN

» Define a cost (loss, objective) function:

Gradient descent
learning in FF NNs

1 :
Cxw) = SlI(Ew()]?
Deep learning
1 »
- _ _ h X 2 Building them
2 ’ ‘y W( )| ’ Miscellaneous
1 networks
= é Z(ym — ah’)2 Summary
m Preview
» Cx(w): quadratic cost (MSE) function
» Entire cost function: average over all x;:
. | ‘ . A e
opyright © 2019 UMaine School of Computing and Information Science



COSt (lOSS) fu nCt|On Machin:alr_telarning;

Matrix form of NN

» Define a cost (loss, objective) function:
1

Gradient descent
learning in FF NNs

Cx(W) = 5"(Ew(x))| ’2 Backpropag‘;ation
1 Deep learning
— _ 2 Building them
a 2 ’ ‘y hW(X)| ’ Miscellaneous
1 networks
= é Z(ym - a#,)2 Summary
m Preview
» Cx(w): quadratic cost (MSE) function
» Entire cost function: average over all x;:
1
W)= — (W
) = 1,3 Gu(w)
Afeiigence
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Cost (loss) function

» Define a cost (loss, objective) function:

Cx(w)

» Cx(w): quadratic cost (MSE) function
» Entire cost function: average over all x;:

1
JIEw)?

1

SI1Y — ()] 2

1
) Z(Ym - aan)2
m

Cw)= 13 G (w)

» Always positive, — 0 as output — y

Copyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part |

Matrix form of NN

Gradient descent
learning in FF NNs

Backpropagation
Deep learning
Building them

Miscellaneous
networks

Summary

Preview

Ariificial

ntelligence



Minimizing cost function

If we minimize C, minimize ||E||

Using calculus, can find analytical solution
But with n weights, n+ 1-dimensional curve
E.g., two dimension:

vV V. v Y

1 -1 (irom Nielsen, 2015)

» Largest nets: billions of weights
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Review: Gradient descent search

» Gradient descent search instead of analytical

v

v

v

v

Copyright © 2019 UMaine School of Computing and Information Science
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Find local gradients wrt weights
= n partial derivatives of C
Take a small step in direction of decrease in all the

derivatives

Repeat until close enough to minimum
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What iS the |Oca| gradient? Machin:alr_telarning:

. . e . Matrix form of NN
» For simplicity: two variables, v, vo ——
learning in FF NNs
Backpropagation
Deep learning
Building them

Miscellaneous
networks

Summary

Preview
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What is the local gradient?

» For simplicity: two variables, v, vo

» Then:

oC

Avy +

Copyright © 2019 UMaine School of Computing and Information Science

oC

0 Vo

Avo

Machine Learning:
Part |

Matrix form of NN

Gradient descent
learning in FF NNs

Backpropagation
Deep learning
Building them

Miscellaneous
networks

Summary

Preview

Ariificial

ntelligence



What is the local gradient?

» For simplicity: two variables, v, vo
» Then: 5C 50
AC~—A —A
C vy it Vo ve

> Let Av = [AV1 AVQ]
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What is the local gradient?

» For simplicity: two variables, v, vo
» Then: 5C 50
AC~—A A
C vy it Vo ve

v

Let Av = [AV1 AVQ]
Then gradient of C is:

v

Ve [80 80}

vy Ovp
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What is the local gradient?

» For simplicity: two variables, v, vo

» Then: 9 5

v

Let Av = [AV1 AVQ]
Then gradient of C is:

v

Ve [OC 80}

vy Ovp

Thus AC~VC - Av

v
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Updating the variables Mg Loaing:

» Given that: Matrix form of NN

Gradient descent

» AC~VC:Av learning in FF NNs
» We want to minimize AC Backpropagation
» How shall we choose Av? Deep learning
. . Building them
» Want any change in Av to cause AC to be negative Viscollaneons
networks
Summary
Preview

Ariificial
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ChOOS| ng Av Machin:alr_telarning:

Matrix form of NN

AC~VC-Av Gradient descent

learning in FF NNs
Backpropagation

» Suppose we choose Av like this: Recaleag
Building them

AV = —T]VC Miscellaneous

networks

> The Summary

Preview

AC ~ VC-—nVC
—n(VC-VC)
= —nZcici = —nxiC

~ Since ||A|| = /T,

AC ~ —||VC][?
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ChOOS| ng Av Machin:alr_telarning:

Matrix form of NN

AC =~ —77’ ‘V C‘ |2 Gradient descent

learning in FF NNs

Backpropagation

v

With Av = —nVC:
» Cost function always negative
» For ||Av|| < ¢ minimizes VC - Av

Deep learning
Building them

Miscellaneous

. . . networks
» 7 is learning rate (sometimes «)
Summary
» Next value of v: —
Vir1 =V —nVC
» Now generalize v — w (including b)
» Other gradient descent functions have been tried
Ariificia_l
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Choosing learning rate Mching Loarnng:

Matrix form of NN
» How to choose 7?

Gradient descent
learning in FF NNs

Backpropagation
Deep learning
Building them

Miscellaneous
networks

Summary

Preview

n too large n too small

» If too large = may overshoot minimum

» If too small = will take a very long time to find
minimum

Ariificial
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Computing gradient

» Difficult
» Cost function: Must compute all Cy then average

1 Iy -4
C_nZX:CX_nZX: 2

» To find overall gradient VC:

’
VCZ,,ZX:VCX

» With many training examples, costly = slow learning
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StOCh astic g rad i e nt d esce nt Machin:alr_telarning:

Matrix form of NN

» Stochastic gradient descent

» Speeds up learning
» Estimate VC:
» Choose small sample of inputs randomly: a

Gradient descent
learning in FF NNs

Backpropagation

Deep learning

.. Building them
mlnl—batCh . Miscellaneous
» Compute VCy for these to estimate VC networks
» If batch size is large enough, average ~ VC Summary
Preview
» |dea:
» Randomly partition training examples into
mini-batches
» Train with each mini-batch
» Doing this: epoch
» Repeat until error is satisfactory
Ariificia_l
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StOCh astic g rad i e nt desce nt Machin:alr_telarning:

Matrix form of NN

» Stochastic gradient descent

» Speeds up learning
» Estimate VC:
» Choose small sample of inputs randomly: a

Gradient descent
learning in FF NNs

Backpropagation

Deep learning

.. Building them
mlnl—batCh . Miscellaneous
» Compute VCy for these to estimate VC networks
» If batch size is large enough, average ~ VC Summary
Preview
» |dea:
» Randomly partition training examples into
mini-batches
» Train with each mini-batch
» Doing this: epoch
» Repeat until error is satisfactory
» Problem: Don’t know how to calculate V C with
i l
hidden layers! At
Copyright © 2019 UMaine School of Computing and Information Science ntelligance



Gradient descent Mchne Learing

. . . Matrix f f NN
» Computing the gradient VC of the cost function: atiome

Gradient descent
80 8C learning in FF NNs

» Composed of —, — — where w, b are vectors

8w ob Backpropagation
» May be very difficult to compute —
Building them

Miscellaneous
networks

Summary

Preview

Ariificial
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Backpropagation

» Backpropagation algorithm (Rumelhart, Hinton, &
Williams, 1986)

» Rather than trying to adjust all weights at once, do it
by layers
» Compare output layer with target
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Backpropagation

» Backpropagation algorithm (Rumelhart, Hinton, &
Williams, 1986)

» Rather than trying to adjust all weights at once, do it
by layers
» Compare output layer with target

» Compute error, use it to update weights from
previous hidden layer to output layer
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BaCkp ro pag atlon Machin:alr_telarning:

Matrix form of NN

» Backpropagation algorithm (Rumelhart, Hinton, &

Gradient descent

Williams, 1986) learning in FF NNs
» Rather than trying to adjust all weights at once, do it E“kplmpa‘f’a“""
by layers st e
» Compare output layer with target Miscellaneous
» Compute error, use it to update weights from ::::y
previous hidden layer to output layer e
» Now propagate error in expected outputs of hidden
layer backward, etc.
Ajrengence
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BaCkp ro pag atlon Machin:alr_telarning:

Matrix form of NN

» Backpropagation algorithm (Rumelhart, Hinton, &

Gradient descent

Williams, 1986) learning in FF NNs
» Rather than trying to adjust all weights at once, do it sa"kplmpa‘f’a“""
by layers .
» Compare output layer with target Miscellaneous
» Compute error, use it to update weights from ::::y
previous hidden layer to output layer e
» Now propagate error in expected outputs of hidden
layer backward, etc.
» Propagate by dividing responsibility for error at
neuron in / according to contribution from each
neuron in / — 1
Copyright © 2019 UMaine School of Computing and Information Science Ari::gllﬁlge"ce



Error in output layer

» First define vector b, where for element j:

ac .,

of ()

=—0
/ (9ajL

where:
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Error in output layer

» First define vector b, where for element j:

oC
L 1L
= et @)
J
where:
> %: how fast the cost function is changing due to j’s
J
output
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Error in output layer

» First define vector b, where for element j:

oC
L 1L
= et @)
J
where:
> %: how fast the cost function is changing due to j’s
J
output

» o’(-): 1st deriv. of (")
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Error in output layer

» First define vector b, where for element j:

oC
L 1L
= et @)
J
where:
> %: how fast the cost function is changing due to j’s
J
output

» o’(-): 1st deriv. of o (")
> zf: weighted input to j
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Error in output layer

» First define vector b, where for element j:

oC
L 1L
= et @)
J
where:
> %: how fast the cost function is changing due to j’s
J
output

» o’(-): 1st deriv. of o (")
> zf: weighted input to j
> Thus o’(zf) is how fast o is changing at zf
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Error in output layer

» First define vector b, where for element j:

oC
L 1L
= et @)
J
where:
> %: how fast the cost function is changing due to j’s
J
output

» o’(-): 1st deriv. of o (")
> zf: weighted input to j
> Thus o’(zf) is how fast o is changing at zf

» 6L is a measure of error at L
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Error in output layer

» First define vector b, where for element j:

oC
L 1L
= et @)
J
where:
> %: how fast the cost function is changing due to j’s
J
output

» o’(-): 1st deriv. of o (")
> zf: weighted input to j
> Thus o’(zf) is how fast o is changing at zf
» oL is a measure of error at L
> zf already computed, o’(2f) easy to compute
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Error in output layer

» First define vector b, where for element j:

ac .,

L /
= oar” )
J
where:
> %: how fast the cost function is changing due to j’s
J
output

» o’(-): 1st deriv. of o (")
> zf: weighted input to j
> Thus o’(zf) is how fast o is changing at zf
» oL is a measure of error at L
> zf already computed, o’(2f) easy to compute

ac - - 0C _ (ol
> oat for quadratic cost functlon.a—af = (a —¥)
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Error in output layer

» First define vector b, where for element j:

ac .,

L /
= oar” )
J
where:
> %: how fast the cost function is changing due to j’s
J
output

» o’(-): 1st deriv. of o (")

> zf: weighted input to j

> Thus o’(zf) is how fast o is changing at zf
» oL is a measure of error at L
> zf already computed, o’(2f) easy to compute

aC - . OC _ (Al o

> oat for quadratic cost functlon.a—af = (a —¥)
> So for quadratic: Jf = (af — y;)o’(2f)
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Hadamard product

» Need a new operator to simplify expressions
» Define Hadamard productas: s ©t = h s.t.

hj = S/' X l‘/
» l.e., elementwise product —e.g.:
-2 3 —6
20| ® |2| = |40
3 1 3
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Error in output layer

> 5} = %U'(ZIL)
» Can be rewritten as:
st =va.Ccod(Zh

» Or
st=@ -y o)
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Finding previous layer’s error Machine Learning

Matrix form of NN

If we know 81, can we find §'?

v

Gradient descent
learning in FF NNs

» (W) T = transpose of weight matrix into / + 1
Backpropagation
I+1\T 5/+1.
> (W ) 1) . Deep learning
» Moves error backward Building them
» Gives measure of error at layer / Miscellaneous
networks
> Then Summary
I _ J+HANT ol+1 (ol
5 - ((W ) 6 ) ©o (Z ) Preview
» Can now compute the error at any layer
Ariificia_l
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Rate of change for biases, weights

» For any weight in the network:

oc -1 51
owl ~ W0
jk

» For any bias in the network:

oC

—= =t
]
ob;

)

since “activation” for any bias is just 1
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» For each x € mtraining examples:
Gradient descent
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Backpropagation & gradient descent T

.. Matrix form of NN
» For each x € mtraining examples:

Gradient descent

» Feedforward: for each layer /, compute: learning in FF NNs
» 20 —wia®'~! L p Backpropagation
> a® = O'(ZX’I) Deep learning
» Compute the output error: Building them
Miscellaneous
networks
Summary
Preview
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Backpropagation & gradient descent T

.. Matrix form of NN
» For each x € mtraining examples:

Gradient descent

» Feedforward: for each layer /, compute: learning in FF NNs
» 20 —wia®'~! L p Backpropagation
> a® = O'(ZX’I) Deep learning
» Compute the output error: Building them
> oL — VaCy ® UI(ZX’L) Miscellaneous
networks
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Backpropagation & gradient descent T

.. Matrix form of NN
» For each x € mtraining examples:

Gradient descent

» Feedforward: for each layer /, compute: learning in FF NNs
» 28 — wia®/—! + b’ Backpropagation
» a5 = o—(zx’l) Deep learning
» Compute the output error: Building them
> (SX’L =VaCx ® O'I(ZX’L) Miscellaneous
networks
» Backpropagate error for each layer /:
Summary
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Backpropagation & gradient descent T

.. Matrix form of NN
» For each x € mtraining examples:

Gradient descent

» Feedforward: for each layer /, compute: learning in FF NNs
» 28 — wia®/—! + b’ Backpropagation
> a® = O'(ZX’I) Deep learning

» Compute the output error: Building them
> §0L — VaCy ® UI(ZX’L) Miscellaneous

networks

» Backpropagate error for each layer /: .

mmary
> 55— (WY T g6 (2! u
(( ) ) ©a ( ) Preview
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Backpropagation & gradient descent T

.. Matrix form of NN
» For each x € mtraining examples:

Gradient descent

» Feedforward: for each layer /, compute: learning in FF NNs
» 20 —wia®'~! L p Backpropagation
> a® = O'(ZX’I) Deep learning

» Compute the output error: Building them
> oL — VaCy ® UI(ZX’L) Miscellaneous

networks

» Backpropagate error for each layer /:

Summary
X, __ J+1INT sx,1+1 1 (X,
. > o= ((W ) 0 )QU (Z ) Preview
» Gradient descent: For each layer from L — 2:
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Backpropagation & gradient descent T

.. Matrix form of NN
» For each x € mtraining examples:

Gradient descent

» Feedforward: for each layer /, compute: learning in FF NNs
» 20 —wia®'~! L p Backpropagation
> a® = O'(ZX’I) Deep learning

» Compute the output error: Building them
> oL — VaCy ® UI(ZX’L) Miscellaneous

networks

» Backpropagate error for each layer /:

Summary
X, __ J+1INT sx,1+1 1 (X,
. >0 - ((W ) 0 )QU (Z ) Preview
» Gradient descent: For each layer from L — 2:
I _ ! 1 X, (Xl —1\T
» Nextw' =w m25 @'
X
Ariificia_l
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Backpropagation & gradient descent

» For each x € mtraining examples:

» Feedforward: for each layer /, compute:
> zx,I — wlax,l—1 + b/
> ax,l — O’(ZX’I)

» Compute the output error:
> 5X,L — VaCx ® O'I(ZX’L)

» Backpropagate error for each layer /:
> 5)(,/ — ((Wl+1)T6x,l+1) o) O'I(ZXJ)

» Gradient descent: For each layer from L — 2:

wa’:w’fﬁ s%l (@ l-1\T
> Next mz (@'~

X
I_w N x,1
» Nextb' = b m;a
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Backpropagation & gradient descent

» For each x € mtraining examples:

» Feedforward: for each layer /, compute:
> zx,I — wlax,l—1 + b/
> ax,l — O’(ZX’I)

» Compute the output error:
> 5X,L — VaCx ® O'I(ZX’L)

» Backpropagate error for each layer /:
> 5)(,/ — ((Wl+1)T6x,l+1) o) O'I(ZXJ)

» Gradient descent: For each layer from L — 2:

wa’:w’fﬁ s%l (@ l-1\T
> Next mz (@'~

X
I_w N x,1
» Nextb' = b m;a
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Backpropagation & gradient descent T

.. Matrix form of NN
» For each x € mtraining examples:

Gradient descent

» Feedforward: for each layer /, compute: learning in FF NNs
» 20 —wia®'~! L p Backpropagation
> a® = O'(ZX’I) Deep learning

» Compute the output error: Building them
> oL — VaCy ® UI(ZX’L) Miscellaneous

networks

» Backpropagate error for each layer /:

Summary
X, __ J+1INT sx,1+1 1 (X,
. >0 - ((W ) 0 )QU (Z ) Preview
» Gradient descent: For each layer from L — 2:
Il X, (aX,—1\T
» Nextw' =w m;(s @'
I_w N X,/
> Nextb'=b'— ;5
Do for some # of epochs, some # mini-batches each.
Ariificia_l
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Backprop algorithm

function BACK-PROP-LEARNING (ezamples, network) returns a neural network
inputs: ezamples, a set of examples, each with input vector x and output vector y
network, a multilayer network with L layers, weights w; ;, activation function g
local variables: A, a vector of errors, indexed by network node

repeat
for each weight w; ; in network do
w; ; +— a small random number
for each example (x,y) in ezamples do
/ « Propagate the inputs forward to compute the outputs » /
for each node i in the input layer do
a; +— T
for{=2to Ldo
for each node j in layer £ do
inj 3 wij o
a; « g(in;)
/ = Propagate deltas backward from output layer to input layer «/
for each node j in the output layer do
Afj] « g'(inj) % (y; — aj)
foré{=L—-1toldo
for each node i in layer £ do
Ali] « g'(in:) 225 wi; Al]
/ « Update every weight in network using deltas « /
for each weight w; ; in network do
w;j—wi; + a X a; X Afj]
until some stopping criterion is satisfied
cc return network
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Speed of backprop

» What if we had instead done what we did in HC?

» For each timestep, look at small changes in the
weights
» Pick set that decreases error

» Could do this for each weight separately, too

» If we have millions of weights, requires millions of
passes through network

» With backprop: one forward, one backward pass, no
matter how many weights
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Deep learning Mching Loarnng:

Matrix form of NN

» Networks with > 2 hidden layers are deep networks .
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Deep |eal’nlng Machin:alr_telarning:

Matrix form of NN

» Networks with > 2 hidden layers are deep networks
» Backprop will still work for them
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Deep |earning Machin:alr_telarning:
. . Matrix form of NN
» Networks with > 2 hidden layers are deep networks

» Backprop will still work for them
» But:
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Deep |earning Machin:alr_telarning:
. . Matrix form of NN
» Networks with > 2 hidden layers are deep networks

» Backprop will still work for them

» But:

» Tend to lose the error “signal” as propagate back
through network
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Deep learning

» Networks with > 2 hidden layers are deep networks

» Backprop will still work for them
» But:

» Tend to lose the error “signal” as propagate back
through network

» Each neuron in earlier layers have less and less
impact on output error
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Deep learning

» Networks with > 2 hidden layers are deep networks

» Backprop will still work for them
» But:
» Tend to lose the error “signal” as propagate back
through network
» Each neuron in earlier layers have less and less
impact on output error
» Vanishing gradient problem
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Deep learning

v

Networks with > 2 hidden layers are deep networks

Backprop will still work for them
» But:

» Tend to lose the error “signal” as propagate back
through network

» Each neuron in earlier layers have less and less
impact on output error

» Vanishing gradient problem

v

v

= extremely slow learning rate
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Deep |eal’nlng Machin:alr_telarning;

Matrix form of NN

» Networks with > 2 hidden layers are deep networks radi
radllentldescent
» Backprop will still work for them i
Backpropagation
» But:

Deep learning

» Tend to lose the error “signal” as propagate back

Building them
thrOUgh network Miscellaneous
» Each neuron in earlier layers have less and less networks
impact on output error Summary
» Vanishing gradient problem Preview

v

= extremely slow learning rate

v

Can have opposite problem, depending on net:
exploding gradient problem
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Deep |earning Machin:alr_telarning:

. . Matrix form of NN

» Networks with > 2 hidden layers are deep networks
Backprop will still work for them

» But:

» Tend to lose the error “signal” as propagate back
through network

Gradient descent
learning in FF NNs

v

Backpropagation
Deep learning
Building them

Miscellaneous

» Each neuron in earlier layers have less and less networks
impact on output error Summary
» Vanishing gradient problem Preview

v

= extremely slow learning rate

v

Can have opposite problem, depending on net:
exploding gradient problem

Stymied researchers for many years

v
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Deep learning

» So what changed?
» Faster machines
» Other activation functions
» Better versions of backprop-ish algorithms invented
» Other kinds of networks
» Examples of other networks:
» Convolutional neural networks
» LSTM
» Led to tremendous increase in deep learning
research, applications
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Front-end to TensorFlow, Theano, MS learning
systems

Static networks (though some dynamic work coming
along)

Use of GPUs automatically
Choice of back-end

Easy to use — automates a lot, more declarative

Dynamic networks
Easier to play around with, debug

Very “Python-like” — OO, more imperative
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Autoencoders Mching Loarnng:

Matrix form of NN

» Particular kind of neural network for unsupervised .
Gradient descent
learning learning in FF NNs
» Input layer, > 1 hidden layer, output layer sackpropagzion
. . . Deep learning
» Error is computed by comparing output to input Building them
» Goal is to reconstruct the input: i.e., learn the identity ~ Micelancous
function P
Restr!cted Boltzmann
> Why? machines
Summary
Preview
A e
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Autoencoders Mching Loarnng:

Matrix form of NN

» Key is that hidden layer(s) have fewer neurons than Gradiont dessent
input/output learning in FF NNs

Backpropagation

» Network learns a compressed version of input:
dimensionality reduction

Deep learning

Building them
» Hidden layers: features discovered by network during  wiscelianeous
training i
> Useful for: zzi‘r:ﬁ:: Boltzmann
» Learning features of input examples SR
» Denoising input sy
» Information compression
» Information retrieval:
» Train to produce reduced low-dimension binary code
in internal layer(s)
» Use that code as hash key for information
» Can = very efficient retrieval
Ariificia_l
Copyright © 2019 UMaine School of Computing and Information Science ntelligence



Restricted Boltzmann machines

» Boltzmann machines learn probability distributions
over inputs

» Layers of neurons, but undirected links

» Restricted Boltzmann machines [Smolensky, 1986]:

no intra-layer links
» First fast deep-learning algorithms [Hinton —
mid-2000s]:
» Treat first hidden layer as RBM — train it.
» Treat second hidden layer as RBM with inputs from
first hidden layer, train it.
» Etc.
» Fine-tune with backprop/gradient descent
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Neural network training: AT

Matrix form of NN

7 cRenTe P GOM T BCR000K GOVDAMd SUrost
Gradient descent
learning in FF NNs

Backpropagation

Deep learning
Building them

Miscellaneous
networks

Summary
Neural network training:

Preview

“You process a lot of data in a quiet way,
don't you, Larry!”
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Machine Learning:
...and... Part |

Matrix form of NN

Gradient descent
learning in FF NNs

Roy, lecturing on
neural networks

Backpropagation
Deep learning
Building them

Miscellaneous
networks

Summary
Neural network training:

Preview

You'd like to ask Rojif he’s really thought
this through.
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Preview

» Convolutional NNs: when covering image recognition
» LSTM: when looking at NLP
» GANSs: when looking at creativity
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