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Artificial neural networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Systems of simple computing elements: neurons

I Each neuron accepts inputs from others, produces
activation

I Neurons connected via weights that modulate
activation

I Can be viewed as:
I Pattern-learning (inductive) systems
I Statistical programs
I Dimension/feature-changing systems
I Search programs (in weight space)
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What can they do?

AI
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I Image classification and labeling
I Word recognition
I Natural language systems
I Machine translation systems
I General pattern recognition
I Superhuman-level performance on games, other RL

tasks
I Pattern generators (images, music, . . . )
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Inspiration: Natural pattern recognition

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Pattern recognition in natural world:
I Chemoreceptors
I Immune system
I Biological neural networks

I Animal/human vision system
I Auditory system
I Neocortex
I Etc.
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Neural systems
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I Most flexible pattern recognizers:
I Biological computing elements: Neurons
I Neurons are excitatory cells
I Connections determine how activation spreads
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Problem: Complexity
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I Neurons are very complex
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I Neurons are very complex

I Synapses: change potential across cell membrane
I Neuron effectively sums excitations, inhibitions
I At some point: potential at threshold and neuron fires

I Excitatory pulse down axon, release neurotransmitter at
synapses

I Lots more to it than this!



Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

I Synapses: change potential across cell membrane
I Neuron effectively sums excitations, inhibitions
I At some point: potential at threshold and neuron fires

I Excitatory pulse down axon, release neurotransmitter at
synapses

I Lots more to it than this!



Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

I Synapses: change potential across cell membrane
I Neuron effectively sums excitations, inhibitions
I At some point: potential at threshold and neuron fires

I Excitatory pulse down axon, release neurotransmitter at
synapses

I Lots more to it than this!



Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Connectsome is incredibly complex



Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Connectsome is incredibly complex

Andreashorn [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)



Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptrons



Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptrons



Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron
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I McCulloch & Pitts
I Very simple model of a neuron
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I McCulloch & Pitts
I Very simple model of a neuron

x1x1

x2x2

x3x3

outout

w1w1

w2w2

w3w3

Notes on: Neural Networks and Deep Learning

(nielsen15; Michael Nielsen)

1/2/2017

1 Source:

Nielsen, Michael A., Neural Networks and Deep Learning, Determination Press, 2015.

2 Chapter 1

2.1 Perceptrons (McCulloch & Pitts)

• Binary inputs, weights, binary output

• Threshold function: output =

�
��

��

0 if
X

j

wjxj  threshold

1 otherwise
• Usually shift the threshold to other side of equation ) bias; i.e., bias = � threshold

– bias represents how easy it is to get neuron to fire: larger bias ) easier to fire

output =

�
��

��

0 if
X

j

wjxj + b  0

1 otherwise
• Change of form to get rid of summation – use dot product, treat the weights and inputs as

vectors:

output =

�
0 if wj · xj + b  0

1 otherwise
• Talks about using perceptron to weight evidence represented by the inputs
• A perceptron can implement any basic logical function (AND, OR, NOT, NAND)

– E.g., NAND: suppose there are two inputs, each with a weight of -2, and b = 3
– 00: (-2)(0) + (-2)(0) + 3 = 3 ) 1
– 01, 10: (-2)(1) + (-2)(1) + 3 = 1 ) 1
– 11: (-2)(1) + (-2)(1) + 3 = -4 ) 0

• ) networks of perceptrons can compute any logical function
• This includes the infamous XOR – but we’re using a network of perceptrons, not just one

1
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1/2/2017

1 Source:

Nielsen, Michael A., Neural Networks and Deep Learning, Determination Press, 2015.

2 Chapter 1

2.1 Perceptrons (McCulloch & Pitts)

• Binary inputs, weights, binary output

• Threshold function: output =

�
��

��

0 if
X

j

wjxj  threshold

1 otherwise
• Usually shift the threshold to other side of equation ) bias; i.e., bias = � threshold

– bias represents how easy it is to get neuron to fire: larger bias ) easier to fire

output =

�
��

��

0 if
X

j

wjxj + b  0

1 otherwise
• Change of form to get rid of summation – use dot product, treat the weights and inputs as

vectors:

output =

�
0 if wj · xj + b  0

1 otherwise
• Talks about using perceptron to weight evidence represented by the inputs
• A perceptron can implement any basic logical function (AND, OR, NOT, NAND)

– E.g., NAND: suppose there are two inputs, each with a weight of -2, and b = 3
– 00: (-2)(0) + (-2)(0) + 3 = 3 ) 1
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1

1

0

1

-1

2

2

t = 1 1
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I Very simple model of a neuron
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Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I McCulloch & Pitts
I Very simple model of a neuron
I Usually change threshold to bias (= �threshold)

Notes on: Neural Networks and Deep Learning

(nielsen15; Michael Nielsen)

1/2/2017

1 Source:

Nielsen, Michael A., Neural Networks and Deep Learning, Determination Press, 2015.

2 Chapter 1

2.1 Perceptrons (McCulloch & Pitts)

• Binary inputs, weights, binary output

• Threshold function: output =
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– bias represents how easy it is to get neuron to fire: larger bias ) easier to fire

output =

�
��

��

0 if
X

j

wjxj + b  0

1 otherwise
• Change of form to get rid of summation – use dot product, treat the weights and inputs as

vectors:

output =

�
0 if wj · xj + b  0

1 otherwise
• Talks about using perceptron to weight evidence represented by the inputs
• A perceptron can implement any basic logical function (AND, OR, NOT, NAND)

– E.g., NAND: suppose there are two inputs, each with a weight of -2, and b = 3
– 00: (-2)(0) + (-2)(0) + 3 = 3 ) 1
– 01, 10: (-2)(1) + (-2)(1) + 3 = 1 ) 1
– 11: (-2)(1) + (-2)(1) + 3 = -4 ) 0

• ) networks of perceptrons can compute any logical function
• This includes the infamous XOR – but we’re using a network of perceptrons, not just one

1

1

0

1

-1

2

2

b = -1 1



Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?
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I “Weigh evidence” ) decision

I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class )

output = 0
I Test on Monday, not confident, doing well ) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2 ) output = 1
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I Rosenblatt’s perceptron algorithm

I Use training examples

I Modify weights such that output error is minimized
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I Let:
I yk = desired output for example k

I ak = actual output for example k

I Error on example k = yk � ak

I Define an error function Ek for example k

E =
X

k

Ek =
1
2

X

k

(yk � ak )
2

I Why?
I Squaring make error always positive (parabola)
I The 1/2 “makes the math easier” (as we’ll see)
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I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights
I Use gradient descent instead
I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate
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I Suppose there are 2 weights, x and y

I Now “slope” is really the gradient r at (x , y)

r(wi) =
@Ek

@wi

and wi,t+1 = wi,t � ↵
@Ek

@wi,t

I Gradient descent: hill-climbing in multiple dimensions
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I What is
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?

I We know that the output for k th example ak =
P

i
wixi

I Chain rule:

@Ek
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@ 1
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2

@ak

@(w1x1 + w2x2 + · · · wnxn)
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I Since �wi = ↵
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@wi

, then

wi,t+1 = wi,t � ↵(�(yk � ak )xi) = wi,t + ↵(yk � ak )xi
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I So for each example < (x1, x2, · · · , xn), y >
I Compute output a

I Adjust weights:

wi,t+1 = wi,t + ↵(y � a)xi

for all weights weights wi
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I Algorithm first in IBM 704 in late 50s

I Then:

I Mark I Perceptron Machine (Wikipedia)
I Image recognition: 20×20 photocell array
I Potentiometers: weights
I Pots adjusted by motors from learning
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(defclass perceptron ()
((num-inputs :initarg :num-inputs :initform 3

:accessor num-inputs)
(inputs :initarg :inputs :initform nil :accessor inputs)
(weights :initarg :weights :initform nil

:accessor weights)
(bias :initarg :bias :initform 0 :accessor bias)
(output :initarg :output :initform nil :accessor output)
(target :initarg :target :initform nil :accessor target)
(alpha :initarg :alpha :initform 1.0 :accessor alpha)
)
)

(defmethod initialize-instance :after ((self perceptron)
&rest l)

(declare (ignore l))
(with-slots (num-inputs weights) self
(setq weights

(loop for i from 1 to num-inputs
collect (random 1.0)))))
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(defmethod compute-output ((self perceptron))
(with-slots (output bias inputs weights) self
(setq output (if (> (+ bias

(apply #’+
(mapcar #’* inputs

weights)))
0.0)

1
0))))

(defmethod adjust-weights ((self perceptron))
(with-slots (inputs weights target output alpha) self
(compute-output self)
(let ((delta (loop for weight in weights
for input in inputs

collect (* alpha (- target output)
input))))

(format t
"~s -> ~s (desired = ~s), weights=~s, delta=~s~%"

inputs output target weights delta)
(setq weights (mapcar #’+ weights delta))
(format t " new weights=~s~%" weights))))
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(defmethod train ((self perceptron) examples)
(with-slots (inputs target output weights) self
(loop for count from 1 to (length examples)

for example in examples
do (setf inputs (car example)

target (cadr example))
(compute-output self)
(adjust-weights self)
(compute-output self)
)))
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(defvar *perceptron* nil)

(defun train-for-tt (&key new? examples (bias -6) (inputs 3))
(when new?

(setq *perceptron* (make-instance ’perceptron
:bias bias :num-inputs inputs)))
(train *perceptron* examples)
;; now check it:
(loop for thing in examples

do (setf (inputs *perceptron*) (car thing))
(compute-output *perceptron*)
(format t "~s => ~s~%" (car thing)
(output *perceptron*))))
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(defvar *and-tt* ’(((0 0) 0)
((0 1) 0)
((1 0) 0)
((1 1) 1)))

(defvar *or-tt* ’(((0 0) 0)
((0 1) 1)
((1 0) 1)
((1 1) 1)))

(defvar *xor-tt* ’(((0 0) 0)
((0 1) 1)
((1 0) 1)
((1 1) 0)))
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I Linear classifier:
I Finds line/plane/hyperplane separating class 1 from

class 2
I 2 inputs ) line between sets
I 3 inputs ) plane, etc.

I Sets can be separated by hyperplane )

linearly-separable

I Training set linearly-separable, algorithm converges
I Example: can learn NAND function
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I May not be a unique solution

I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function
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I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function
I Killed perceptron research for a while
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I Single perceptron: very limited

I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I ) ) any binary function, ) Turing-equivalent

I E.g., a half-adder:
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