
Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Machine Learning: Part I

UMaine COS 470/570 – Introduction to AI

Spring 2019

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Introduction

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What are ANNs?

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Artificial neural networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Systems of simple computing elements: neurons

I Each neuron accepts inputs from others, produces
activation

I Neurons connected via weights that modulate
activation

I Can be viewed as:
I Pattern-learning (inductive) systems
I Statistical programs
I Dimension/feature-changing systems
I Search programs (in weight space)

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Image classification and labeling
I Word recognition
I Natural language systems
I Machine translation systems
I General pattern recognition
I Superhuman-level performance on games, other RL

tasks
I Pattern generators (images, music, . . .)

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Inspiration: Natural pattern recognition

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Pattern recognition in natural world:
I Chemoreceptors
I Immune system
I Biological neural networks

I Animal/human vision system
I Auditory system
I Neocortex
I Etc.

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Neural systems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Most flexible pattern recognizers:
I Biological computing elements: Neurons
I Neurons are excitatory cells
I Connections determine how activation spreads

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

I Synapses: change potential across cell membrane
I Neuron effectively sums excitations, inhibitions
I At some point: potential at threshold and neuron fires

I Excitatory pulse down axon, release neurotransmitter at
synapses

I Lots more to it than this!

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

I Synapses: change potential across cell membrane
I Neuron effectively sums excitations, inhibitions
I At some point: potential at threshold and neuron fires

I Excitatory pulse down axon, release neurotransmitter at
synapses

I Lots more to it than this!

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

I Synapses: change potential across cell membrane
I Neuron effectively sums excitations, inhibitions
I At some point: potential at threshold and neuron fires

I Excitatory pulse down axon, release neurotransmitter at
synapses

I Lots more to it than this!

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Connectsome is incredibly complex

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Connectsome is incredibly complex

Andreashorn [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptrons

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptrons

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I McCulloch & Pitts
I Very simple model of a neuron

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I McCulloch & Pitts
I Very simple model of a neuron

x1x1

x2x2

x3x3

outout

w1w1

w2w2

w3w3

Notes on: Neural Networks and Deep Learning

(nielsen15; Michael Nielsen)

1/2/2017

1 Source:

Nielsen, Michael A., Neural Networks and Deep Learning, Determination Press, 2015.

2 Chapter 1

2.1 Perceptrons (McCulloch & Pitts)

• Binary inputs, weights, binary output

• Threshold function: output =

�
��

��

0 if
X

j

wjxj  threshold

1 otherwise
• Usually shift the threshold to other side of equation) bias; i.e., bias = � threshold

– bias represents how easy it is to get neuron to fire: larger bias) easier to fire

output =

�
��

��

0 if
X

j

wjxj + b  0

1 otherwise
• Change of form to get rid of summation – use dot product, treat the weights and inputs as

vectors:

output =

�
0 if wj · xj + b  0

1 otherwise
• Talks about using perceptron to weight evidence represented by the inputs
• A perceptron can implement any basic logical function (AND, OR, NOT, NAND)

– E.g., NAND: suppose there are two inputs, each with a weight of -2, and b = 3
– 00: (-2)(0) + (-2)(0) + 3 = 3) 1
– 01, 10: (-2)(1) + (-2)(1) + 3 = 1) 1
– 11: (-2)(1) + (-2)(1) + 3 = -4) 0

•) networks of perceptrons can compute any logical function
• This includes the infamous XOR – but we’re using a network of perceptrons, not just one

1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I McCulloch & Pitts
I Very simple model of a neuron

Notes on: Neural Networks and Deep Learning

(nielsen15; Michael Nielsen)

1/2/2017

1 Source:

Nielsen, Michael A., Neural Networks and Deep Learning, Determination Press, 2015.

2 Chapter 1

2.1 Perceptrons (McCulloch & Pitts)

• Binary inputs, weights, binary output

• Threshold function: output =

�
��

��

0 if
X

j

wjxj  threshold

1 otherwise
• Usually shift the threshold to other side of equation) bias; i.e., bias = � threshold

– bias represents how easy it is to get neuron to fire: larger bias) easier to fire

output =

�
��

��

0 if
X

j

wjxj + b  0

1 otherwise
• Change of form to get rid of summation – use dot product, treat the weights and inputs as

vectors:

output =

�
0 if wj · xj + b  0

1 otherwise
• Talks about using perceptron to weight evidence represented by the inputs
• A perceptron can implement any basic logical function (AND, OR, NOT, NAND)

– E.g., NAND: suppose there are two inputs, each with a weight of -2, and b = 3
– 00: (-2)(0) + (-2)(0) + 3 = 3) 1
– 01, 10: (-2)(1) + (-2)(1) + 3 = 1) 1
– 11: (-2)(1) + (-2)(1) + 3 = -4) 0

•) networks of perceptrons can compute any logical function
• This includes the infamous XOR – but we’re using a network of perceptrons, not just one

1

1

0

1

-1

2

2

t = 1 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I McCulloch & Pitts
I Very simple model of a neuron
I Usually change threshold to bias (= �threshold)

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I McCulloch & Pitts
I Very simple model of a neuron
I Usually change threshold to bias (= �threshold)

Notes on: Neural Networks and Deep Learning

(nielsen15; Michael Nielsen)

1/2/2017

1 Source:

Nielsen, Michael A., Neural Networks and Deep Learning, Determination Press, 2015.

2 Chapter 1

2.1 Perceptrons (McCulloch & Pitts)

• Binary inputs, weights, binary output

• Threshold function: output =

�
��

��

0 if
X

j

wjxj  threshold

1 otherwise
• Usually shift the threshold to other side of equation) bias; i.e., bias = � threshold

– bias represents how easy it is to get neuron to fire: larger bias) easier to fire

output =

�
��

��

0 if
X

j

wjxj + b  0

1 otherwise
• Change of form to get rid of summation – use dot product, treat the weights and inputs as

vectors:

output =

�
0 if wj · xj + b  0

1 otherwise
• Talks about using perceptron to weight evidence represented by the inputs
• A perceptron can implement any basic logical function (AND, OR, NOT, NAND)

– E.g., NAND: suppose there are two inputs, each with a weight of -2, and b = 3
– 00: (-2)(0) + (-2)(0) + 3 = 3) 1
– 01, 10: (-2)(1) + (-2)(1) + 3 = 1) 1
– 11: (-2)(1) + (-2)(1) + 3 = -4) 0

•) networks of perceptrons can compute any logical function
• This includes the infamous XOR – but we’re using a network of perceptrons, not just one

1

1

0

1

-1

2

2

b = -1 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision

I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”

I x1 = test on Monday, x2 = confident of material, x3 =
doing poorly in class

I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class

I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2

I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0

I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0

I Test on Monday, not confident, doing well) output
= 1

I Test on Monday, confident, doing poorly:
1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1

I Test on Monday, confident, doing poorly:
1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm

I Use training examples

I Modify weights such that output error is minimized

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm
I Use training examples

I Modify weights such that output error is minimized

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm
I Use training examples

I Modify weights such that output error is minimized

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm
I Use training examples

I Modify weights such that output error is minimized

...
.

.
.. ..

.
.
.
.

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm
I Use training examples

I Modify weights such that output error is minimized

.. .
.

.
.. ..

.
.
.
.

.

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm
I Use training examples

I Modify weights such that output error is minimized

.. .
.

.
.. ..

.
.
.
.

.

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Let:
I yk = desired output for example k

I ak = actual output for example k

I Error on example k = yk � ak

I Define an error function Ek for example k

E =
X

k

Ek =
1
2

X

k

(yk � ak)
2

I Why?
I Squaring make error always positive (parabola)
I The 1/2 “makes the math easier” (as we’ll see)

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights
I Use gradient descent instead
I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights

I Use gradient descent instead
I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights
I Use gradient descent instead

I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights
I Use gradient descent instead
I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights
I Use gradient descent instead
I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Suppose there are 2 weights, x and y

I Now “slope” is really the gradient r at (x , y)

r(wi) =
@Ek

@wi

and wi,t+1 = wi,t � ↵
@Ek

@wi,t

I Gradient descent: hill-climbing in multiple dimensions

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Suppose there are 2 weights, x and y

I Now “slope” is really the gradient r at (x , y)

r(wi) =
@Ek

@wi

and wi,t+1 = wi,t � ↵
@Ek

@wi,t

I Gradient descent: hill-climbing in multiple dimensions

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Suppose there are 2 weights, x and y

I Now “slope” is really the gradient r at (x , y)

r(wi) =
@Ek

@wi

and wi,t+1 = wi,t � ↵
@Ek

@wi,t

I Gradient descent: hill-climbing in multiple dimensions

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Suppose there are 2 weights, x and y

I Now “slope” is really the gradient r at (x , y)

r(wi) =
@Ek

@wi

and wi,t+1 = wi,t � ↵
@Ek

@wi,t

I Gradient descent: hill-climbing in multiple dimensions

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I What is
@Ek

@wi

?

I We know that the output for k th example ak =
P

i
wixi

I Chain rule:

@Ek

@wi

=
@Ek

@ak

@ak

@wi

=
@ 1

2(yk � ak)
2

@ak

@(w1x1 + w2x2 + · · · wnxn)

@wi

= �(yk � ak)xi

I Since �wi = ↵
@Ek

@wi

, then

wi,t+1 = wi,t � ↵(�(yk � ak)xi) = wi,t + ↵(yk � ak)xi

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I What is
@Ek

@wi

?

I We know that the output for k th example ak =
P

i
wixi

I Chain rule:

@Ek

@wi

=
@Ek

@ak

@ak

@wi

=
@ 1

2(yk � ak)
2

@ak

@(w1x1 + w2x2 + · · · wnxn)

@wi

= �(yk � ak)xi

I Since �wi = ↵
@Ek

@wi

, then

wi,t+1 = wi,t � ↵(�(yk � ak)xi) = wi,t + ↵(yk � ak)xi

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I What is
@Ek

@wi

?

I We know that the output for k th example ak =
P

i
wixi

I Chain rule:

@Ek

@wi

=
@Ek

@ak

@ak

@wi

=
@ 1

2(yk � ak)
2

@ak

@(w1x1 + w2x2 + · · · wnxn)

@wi

= �(yk � ak)xi

I Since �wi = ↵
@Ek

@wi

, then

wi,t+1 = wi,t � ↵(�(yk � ak)xi) = wi,t + ↵(yk � ak)xi

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I What is
@Ek

@wi

?

I We know that the output for k th example ak =
P

i
wixi

I Chain rule:

@Ek

@wi

=
@Ek

@ak

@ak

@wi

=
@ 1

2(yk � ak)
2

@ak

@(w1x1 + w2x2 + · · · wnxn)

@wi

= �(yk � ak)xi

I Since �wi = ↵
@Ek

@wi

, then

wi,t+1 = wi,t � ↵(�(yk � ak)xi) = wi,t + ↵(yk � ak)xi

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I So for each example < (x1, x2, · · · , xn), y >
I Compute output a

I Adjust weights:

wi,t+1 = wi,t + ↵(y � a)xi

for all weights weights wi

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Implementations

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Algorithm first in IBM 704 in late 50s

I Then:

I Mark I Perceptron Machine (Wikipedia)
I Image recognition: 20×20 photocell array
I Potentiometers: weights
I Pots adjusted by motors from learning

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Implementations

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Algorithm first in IBM 704 in late 50s
I Then:

I Mark I Perceptron Machine (Wikipedia)
I Image recognition: 20×20 photocell array
I Potentiometers: weights
I Pots adjusted by motors from learning

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Implementations

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Algorithm first in IBM 704 in late 50s
I Then:

I Mark I Perceptron Machine (Wikipedia)

I Image recognition: 20×20 photocell array
I Potentiometers: weights
I Pots adjusted by motors from learning

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Implementations

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Algorithm first in IBM 704 in late 50s
I Then:

I Mark I Perceptron Machine (Wikipedia)
I Image recognition: 20×20 photocell array
I Potentiometers: weights
I Pots adjusted by motors from learning

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Example

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

(defclass perceptron ()
((num-inputs :initarg :num-inputs :initform 3

:accessor num-inputs)
(inputs :initarg :inputs :initform nil :accessor inputs)
(weights :initarg :weights :initform nil

:accessor weights)
(bias :initarg :bias :initform 0 :accessor bias)
(output :initarg :output :initform nil :accessor output)
(target :initarg :target :initform nil :accessor target)
(alpha :initarg :alpha :initform 1.0 :accessor alpha)
)
)

(defmethod initialize-instance :after ((self perceptron)
&rest l)

(declare (ignore l))
(with-slots (num-inputs weights) self
(setq weights

(loop for i from 1 to num-inputs
collect (random 1.0)))))

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Example

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

(defmethod compute-output ((self perceptron))
(with-slots (output bias inputs weights) self
(setq output (if (> (+ bias

(apply #’+
(mapcar #’* inputs

weights)))
0.0)

1
0))))

(defmethod adjust-weights ((self perceptron))
(with-slots (inputs weights target output alpha) self
(compute-output self)
(let ((delta (loop for weight in weights
for input in inputs

collect (* alpha (- target output)
input))))

(format t
"~s -> ~s (desired = ~s), weights=~s, delta=~s~%"

inputs output target weights delta)
(setq weights (mapcar #’+ weights delta))
(format t " new weights=~s~%" weights))))

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Example

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

(defmethod train ((self perceptron) examples)
(with-slots (inputs target output weights) self
(loop for count from 1 to (length examples)

for example in examples
do (setf inputs (car example)

target (cadr example))
(compute-output self)
(adjust-weights self)
(compute-output self)
)))

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Example

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

(defvar *perceptron* nil)

(defun train-for-tt (&key new? examples (bias -6) (inputs 3))
(when new?

(setq *perceptron* (make-instance ’perceptron
:bias bias :num-inputs inputs)))
(train *perceptron* examples)
;; now check it:
(loop for thing in examples

do (setf (inputs *perceptron*) (car thing))
(compute-output *perceptron*)
(format t "~s => ~s~%" (car thing)
(output *perceptron*))))

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Example

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

(defvar *and-tt* ’(((0 0) 0)
((0 1) 0)
((1 0) 0)
((1 1) 1)))

(defvar *or-tt* ’(((0 0) 0)
((0 1) 1)
((1 0) 1)
((1 1) 1)))

(defvar *xor-tt* ’(((0 0) 0)
((0 1) 1)
((1 0) 1)
((1 1) 0)))

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can it do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Linear classifier:
I Finds line/plane/hyperplane separating class 1 from

class 2
I 2 inputs) line between sets
I 3 inputs) plane, etc.

I Sets can be separated by hyperplane)

linearly-separable

I Training set linearly-separable, algorithm converges
I Example: can learn NAND function

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can it do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Linear classifier:
I Finds line/plane/hyperplane separating class 1 from

class 2
I 2 inputs) line between sets
I 3 inputs) plane, etc.

I Sets can be separated by hyperplane)

linearly-separable

I Training set linearly-separable, algorithm converges
I Example: can learn NAND function

0
0

1

1
.

.

.

.

output = 0
output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution

I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”

I Worse problem: can’t learn even simple
non-linearly-separable function

I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function

I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function

0
0

1

1
.

.

.

. output = 0

output = 1

output = 1

output = 0

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function
I Killed perceptron research for a while

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Extending perceptrons

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited

I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder:

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited
I Idea: hook a bunch together in a network

I What can a perceptron network do?
I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder:

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited
I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder:

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited
I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?

I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder:

