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Artificial neural networks

>
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Systems of simple computing elements: neurons
Each neuron accepts inputs from others, produces

activation

Neurons connected via weights that modulate

activation

Can be viewed as:

Pattern-learning (inductive) systems
Statistical programs
Dimension/feature-changing systems
Search programs (in weight space)
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What can they do?

» Image classification and labeling
» Word recognition

» Natural language systems

» Machine translation systems

» General pattern recognition

» Superhuman-level performance on games, other RL
tasks

» Pattern generators (images, music, ...)
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Inspiration: Natural pattern recognition Machine Learning:

Introduction

» Pattern recognition in natural world: it are ANNG?
» Chemoreceptors Perceptrons
» Immune SYStem Nonlinear neurons
» Biological neural networks Feedforward

' iSi | network
» Animal/human vision system neural networks

» Auditory system

» Neocortex Gradient descent
learning in FFNs
» Etc.

Matrix form of NN

Backpropagation
Deep learning

Summary
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Neural systems

>

>

Most flexible pattern recognizers:

Biological computing elements: Neurons
Neurons are excitatory cells

Connections determine how activation spreads
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Problem: Complexity

» Neurons are very complex Introduction
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Problem: Complexity Machife e

» Neurons are very complex Introduction
| Whatae ANNS?

Perceptrons

Axon
\ terminals

Myelin sheath /\ Nonlinear neurons

Feedforward
—— neural networks

Input Output Matrix form of NN

Dendrites

Signals Gradient descent
learning in FFNs

Signals —»

|
|

Backpropagation

—_— Cell nucleus Deep learning

(From Sebastian Haschka, hitp:/sebastianraschka.com/Articles/
2015_singlelayer_neurons.htmi#antificial-neurons-and-the-mcculioch-pitts-model.) S umma ry

riificial
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Problem: Complexity

>

>

>

>

>

>

Neurons are very complex

Axon
terminals
Myelin sheath
—
/
—
- e Output
i Dendrites / " '
Signals | -
—
Axon
i Cell nucleus &K~

(From Sebastian Haschka, hitp:/sebastianraschka.com/Articles/
2015_singlelayer_neurons.htmi#anificial-neurons-and-the-mecullcch-pitts-model.)

Synapses: change potential across cell membrane
Neuron effectively sums excitations, inhibitions
At some point: potential at threshold and neuron fires

Excitatory pulse down axon, release neurotransmitter at
synapses

L ots more to it than this!
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At some point: potential at threshold and neuron fires
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At some point: potential at threshold and neuron fires
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synapses
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Problem: Complexity

Introduction

» Connectsome is incredibly complex Wit are ANNG?
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Problem: Complexity

» Connectsome is incredibly complex
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First simple artificial neuron: Perceptron Machine Learning:

Introduction

» McCulloch & Pitts S
» Very simple model of a neuron Perceptrons

Extending perceptrons
Nonlinear neurons
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First simple artificial neuron: Perceptron

» McCulloch & Pitts
» Very simple model of a neuron

I
w1
w
2 = > out
w3
I3
-
0 if ijxj < threshold
output = « J
\1 otherwise
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First simple artificial neuron: Perceptron

» McCulloch & Pitts
» Very simple model

of a neuron

output = <

7

0 if ijxj < threshold
J

Copyright © 2019 UMaine School of Computing and

\ 1 otherwise
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First simple artificial neuron: Perceptron Machine Learning:

Introduction

» McCulloch & Pitts

Perceptrons
» Very simple model of a neuron i sope——
» Usually change threshold to bias (= —threshold) Nonlinear neurons

Feedforward
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First simple artificial neuron: Perceptron

» McCulloch & Pitts
» Very simple model of a neuron
» Usually change threshold to bias (= —threshold)

(0 if Y wjz;+b<0
j

output = <

1 otherwise
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What can they do?

» “Weigh evidence” = decision
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What can they do?

» “Weigh evidence” = decision
» E.g.:
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What can they do?

» “Weigh evidence” = decision

» E.g.:

» output = “study”

Copyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part |

Introduction

Perceptrons
Perceptrons
Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation
Deep learning

Summary

rtificial
ntelligence



What can they do?

» “Weigh evidence” = decision

» E.g.:

» output = “study”
» x1 = test on Monday, x> = confident of material, x3 =
doing poorly in class
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What can they do?

» “Weigh evidence” = decision

» E.g.:

» output = “study”

» x1 = test on Monday, x> = confident of material, x3 =
doing poorly in class

> Wi :1,W2:-1,W3:2

Copyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part |

Introduction

Perceptrons
Perceptrons
Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation
Deep learning

Summary

rtificial
ntelligence



What can they do?

» “Weigh evidence” = decision
» E.g.:

» output = “study”

» x1 = test on Monday, x> = confident of material, x3 =
doing poorly in class
W1 :1, W2:-1,W3:2

» bias =0
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What can they do?

» “Weigh evidence” = decision
» E.g.:

» output = “study”
» x1 = test on Monday, x> = confident of material, x3 =
doing poorly in class

> Wi :1,W2:-1,W3:2

» bias =0

» Test on Monday, confident, doing well in class =
output =0
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What can they do?

» “Weigh evidence” = decision
» E.g.:

» output = “study”
» x1 = test on Monday, x> = confident of material, x3 =
doing poorly in class

> Wi :1,W2:-1,W3:2

» bias =0

» Test on Monday, confident, doing well in class =
output =0

» Test on Monday, not confident, doing well = output
= 1
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What can they do?

» “Weigh evidence” = decision

» E.g.:

>

>

output = “study”

x1 = test on Monday, x> = confident of material, x3 =
doing poorly in class

W1 :1, W2:-1,W3:2

>
» bias=0

» Test on Monday, confident, doing well in class =

Copyright © 2019 UMaine School of Computing and Information Science

output =0

Test on Monday, not confident, doing well = output

= 1

Test on Monday, confident, doing poorly:
1+(-1)+2=2= output =1
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Leal’nlng the Welg htS Machin:alr_telarning:
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» Rosenblatt’s perceptron algorithm
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» Use training examples etonting erceptons
» Modify weights such that output error is minimized Nonlinear neurons
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Learning the weights

» Rosenblatt’s perceptron algorithm
» Use fraining examples

» Modify weights such that output error is minimized
A Xo
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Learning the weights

» Rosenblatt’s perceptron algorithm
» Use fraining examples

» Modify weights such that output error is minimized
A Xo
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Learning the weights

» Let:

» yx = desired output for example k
» a, = actual output for example k

» Error on example k = yx — ax
» Define an error function E, for example k

E=Y Ee= 5 > (k- &)
K K

» Why?
» Squaring make error always positive (parabola)
» The 1/2 “makes the math easier” (as we'll see)

Copyright © 2019 UMaine School of Computing and Information Science
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Introduction

» Goal: minimize E by minimizing each Ex

Perceptrons
» Ej Is a function of the weights e
» Use gradient descent instead Nonlinear neurons
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» Goal: minimize E by minimizing each Ex
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» E, is a function of the weights S—
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Leal’nlng the Welg htS MachinPeaIr_telawning:

Introduction

» Goal: minimize E by minimizing each Ex

Perceptrons
» E, is a function of the weights onsing merceptons
» Use gradient descent instead BIlSEr BELes
. . Feedf d
» With one weight: A T
. dEk - w1 < > > out  Matrix form of NN
> Slope at pOInt: d A Gradient descent
] ] _Xi learning in FFNs
tells which direction to move ET—
dE D i
/ eep learning
I . Es Summary
where « Is the learning rate
riificia_l
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Learning the weights

» Suppose there are 2 weights, x and y

» Now “slope” is really the gradient V at (x, y)

OE OE
V(iw;) = d w; = W;; —
( /) an i, t+1 it Oé(?Wi,t

aW,'

» Gradient descent: hill-climbing in multiple dimensions
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Learning the weights

OE .

@W,’ -

» We know that the output for k" example ax = >, w;x;
» Chain rule:

OEy OE, Oa

» What is

oW, oay Ow;
_ 3%(}’ — ak)? O(W1Xy + WoXo + -+ - WpXp)
0ay ow;
= —(Vk — ak)Xi
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Learning the weights

OE .

@W,’ -

» We know that the output for k" example ax = >, w;x;
» Chain rule:

8Ek 8Ek 0ay

» What is

oW, oay ow;
B 3%(}% — ak)? O(W1Xy + WoXo + -+ - WpXp)
0ay ow;
= —(Vk — ak)X
» Since Aw; = aa—Ek, then
8W,‘

Witi1 = Wit — a(—(Yk — ak)Xi) = Wit + oYk — ak)Xi
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Learning the weights

» So for each example < (xq, X2, -+, Xp),y >

» Compute output a
» Adjust weights:

Wit1 = Wit + oy — a)X

for all weights weights w;

Copyright © 2019 UMaine School of Computing and Information Science
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Implementations MaChinF()aaIr_teIarning:

Introduction

» Algorithm first in IBM 704 in late 50s eeetons
» Then: Porcaptrons

Extending perceptrons

Nonlinear neurons

i Feedforward
; : neural networks
‘ : ¥ Matrix form of NN
: i Gradient descent
1 ¢ learning in FFNs
| : B Backpropagation
| 2 " Deep learning
ﬁ ‘ Summary
b '
» Mark | Perceptron Machine (Wikipedia)
riificial
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Implementations

» Algorithm first in IBM 704 in late 50s
» Then:

|
i
i
J
1H |
b
I
l:f
f
| 1
1 1
|
‘
!
k
{

L

Mark | Perceptron Machine (Wikipedia)
Image recognition: 20x20 photocell array
Potentiometers: weights

Pots adjusted by motors from learning

vV v.v v
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Example

(defclass perceptron ()
((num—inputs :initarg :num-inputs
:accessor num—inputs)

cinitform 3

:accessor inputs)

:accessor bias)

:accessor output)
:accessor target)

(inputs :initarg :inputs :initform nil

(weights :initarg :weights :initform nil
:accessor weights)

(bias :initarg :bias :initform O

(output :initarg :output :initform nil

(target :initarg :target :initform nil

(alpha :initarg :alpha :initform 1.0

)
)

(defmethod initialize—-instance :after (
(declare (ignore 1))
(with-slots (num—inputs weights)
(setg weilghts
(loop for 1 from 1 to num—inputs
collect (random 1.0)))))

self

Copyright © 2019 UMaine School of Computing and Information Science

:accessor alpha)

(self perceptron)
&rest 1)
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Example

(defmethod compute—-output ((self perceptron))
(with—-slots (output bias inputs weights) self
(setg output (1f (> (+ bias
(apply #'+
(mapcar #’* inputs
weights)))

(defmethod adjust-weights ((self perceptron))
(with—-slots (inputs weilghts target output alpha) self
(compute—output self)
(let ((delta (loop for weight in weights
for input 1in 1inputs

collect (x alpha (- target output)
input))))
(format t
"~s -=> ~s (desired = ~s), weights=~s, delta=~s~%"

inputs output target weights delta)
(setg weights (mapcar #’+ weights delta))
(format t " new welights=~s~%" weights))))

Copyright © 2019 UMaine School of Computing and Information Science
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Example

(defmethod train ((self perceptron) examples)
(with—-slots (inputs target output weights) self
(Loop for count from 1 to (length examples)
for example in examples
do (setf inputs (car example)
target (cadr example))
(compute—output self)
(adjust-weights self)
(compute—output self)

)))

Copyright © 2019 UMaine School of Computing and Information Science
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Example

(defvar xperceptron* nil)

(defun train—-for-tt (bias —-06)
(when new?
(setg xperceptron* (make—-instance
:bias bias :num—-inputs inputs)))
(train xperceptronx examples)
;; now check it:
(loop for thing in examples
do (setf (inputs xperceptronx)
(compute—output *perceptronx)
(format t "~s => (car thing)

(output =*perceptronx))))

(&key new? examples

"perceptron

(car thing))

NSN%"
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Example

(defvar xand-ttx 7 (((0 0) 0)
((0 1) 0)
((1 0) 0)
((1 1) 1)))

(defvar xor—-ttx " (((0 0) 0)
((0 1) 1)
((1 0) 1)
((1 1) 1)))

(defvar *xor—-tt* 7 (((0 0) 0)
((0 1) 1)
((1 0) 1)
((L 1) 0)))
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What can it do?

» Linear classifier:

» Finds line/plane/hyperplane separating class 1 from
class 2

» 2 inputs = line between sets
» 3 inputs = plane, etc.

» Sets can be separated by hyperplane =
linearly-separable

» Training set linearly-separable, algorithm converges
» Example: can learn NAND function
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What can it do?

» Linear classifier:

» Finds line/plane/hyperplane separating class 1 from
class 2

» 2 inputs = line between sets
» 3 inputs = plane, etc.

» Sets can be separated by hyperplane =
linearly-separable

» Training set linearly-separable, algorithm converges
» Example: can learn NAND function

output =0
output =1

0ls .
0 1
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Problems

» May not be a unigque solution

» Thus may have suboptimal learning
» Support vector machine (SM): “perceptron of optimal
stability”
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Problems

» May not be a unigque solution

» Thus may have suboptimal learning
» Support vector machine (SM): “perceptron of optimal
stability”

» Worse problem: can’t learn even simple
non-linearly-separable function
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Problems

» May not be a unigque solution

» Thus may have suboptimal learning
» Support vector machine (SM): “perceptron of optimal
stability”

» Worse problem: can’t learn even simple
non-linearly-separable function

» Minsky & Papert (1960): Perceptrons book
» Perceptron can’t learn XOR function
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Problems

» May not be a unigque solution
» Thus may have suboptimal learning
» Support vector machine (SM): “perceptron of optimal
stability”
» Worse problem: can’t learn even simple
non-linearly-separable function

» Minsky & Papert (1960): Perceptrons book
» Perceptron can’t learn XOR function

(e output = 1 . output =0
0le Output=0 e Output=1
0 1
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Problems

» May not be a unigque solution
» Thus may have suboptimal learning
» Support vector machine (SM): “perceptron of optimal
stability”
» Worse problem: can’t learn even simple
non-linearly-separable function

» Minsky & Papert (1960): Perceptrons book
» Perceptron can’t learn XOR function
» Killed perceptron research for a while
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Extending perceptrons

Machine Learning:
Part |

Introduction

Perceptrons
Perceptrons
Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation
Deep learning

Summary



Perceptron networks i

» Single perceptron: very limited Introduction
Perceptrons

Perceptrons
Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation
Deep learning

Summary

rtificial
ntelligence

Copyright © 2019 UMaine School of Computing and Information Science



Perceptron networks i

» Single perceptron: very limited Introduction
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» Single perceptron: very limited Introduction
» |dea: hook a bunch together in a network Feroeptions
» What can a perceptron network do?
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Perceptron networks i

» Single perceptron: very limited Introduction

» Idea: hook a bunch together in a network e

» What can a perceptron network do?
» Based on what you know, what do you think? Nonlinear neurons
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