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Artificial neural networks

v

Systems of simple computing elements: neurons

Each neuron accepts inputs from others, produces
activation
Neurons connected via weights that modulate
activation
Can be viewed as:

» Pattern-learning (inductive) systems

» Statistical programs

» Dimension/feature-changing systems
» Search programs (in weight space)

v

v

v
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What can they do?

v

Image classification and labeling
Word recognition

Natural language systems
Machine translation systems
General pattern recognition

Superhuman-level performance on games, other RL
tasks

Pattern generators (images, music, .. .)

v

v

v

v

v

v
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Inspiration: Natural pattern recognition

» Pattern recognition in natural world:

» Chemoreceptors

» Immune system

» Biological neural networks
Animal/human vision system
> Auditory system

» Neocortex

> Etc.

v
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Neural systems

v

Most flexible pattern recognizers:

Biological computing elements: Neurons
Neurons are excitatory cells

Connections determine how activation spreads

v

v

v
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Problem: Complexity

» Neurons are very complex
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Problem: Complexity

» Neurons are very complex

Axon
\ terminals
— Myelin sheath

: [ —
— N ( }V / o
Input o _ / utput
" / /

A

£ ,
Dendrites / h L( '\/\/ "
Signals  —» y Signals
.
> Axon
— Cell nucleus
(From Sebastian Aaschia, hiip:/sebastanraschia.com/Articles/
2015_singlelayer_neuron: P )
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Problem: Complexity

» Neurons are very complex

Axon
\ terminals
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— Cell nucleus
(From Sebastian Raschka, hitp:/isebastianrascnka.com/Articies/
2015_singlelayer_ )

v

Synapses: change potential across cell membrane

v

Neuron effectively sums excitations, inhibitions

v

At some point: potential at threshold and neuron fires

» Excitatory pulse down axon, release neurotransmitter at
synapses

» [ots more to it than this!
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First simple artificial neuron: Perceptron

» McCulloch & Pitts
» Very simple model of a neuron
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First simple artificial neuron: Perceptron

» McCulloch & Pitts
» Very simple model of a neuron

z1
Wy
wa
¥z out
w3
T3
0 if > wjz; < threshold
output = J
1 otherwise
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First simple artificial neuron: Perceptron

» McCulloch & Pitts
» Very simple model of a neuron

0 if ijm]- < threshold
output = J

1 otherwise
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First simple artificial neuron: Perceptron

» McCulloch & Pitts
» Very simple model of a neuron
» Usually change threshold to bias (= —threshold)
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First simple artificial neuron: Perceptron

» McCulloch & Pitts
» Very simple model of a neuron
» Usually change threshold to bias (= —threshold)

0 if > wja; +b<0
output = J

1 otherwise
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What can they do?

» “Weigh evidence” =- decision
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What can they do?

» “Weigh evidence” =- decision
» E.g.:
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What can they do?

» “Weigh evidence” =- decision
» E.g.:
» output = “study”
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What can they do?

» “Weigh evidence” =- decision
» E.g.:
» output = “study”

» x; = test on Monday, x, = confident of material, x3 =

doing poorly in class

Copyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part |

Introduction

Perceptrons
Perceptrons
Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation
Deep learning

Summary

rtificial
ntelligence

What can they do?

» “Weigh evidence” =- decision
» E.g.:
» output = “study”

» x; = test on Monday, xo = confident of material, x3 =

doing poorly in class
> W :1,W2:-1,W3:2
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What can they do?

» “Weigh evidence” =- decision
» E.g.:
» output = “study”

» x; = test on Monday, xo = confident of material, x3 =

doing poorly in class
W1 :1,W2:-1,W3:2
bias =0

v

v
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What can they do?

» “Weigh evidence” =- decision
» E.g.:
» output = “study”

» x; = test on Monday, x, = confident of material, x3 =

doing poorly in class

> Wy :1,W2:-1,W3:2

» bias=0

» Test on Monday, confident, doing well in class =
output =10

Copyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part |

Introduction

Perceptrons
Perceptrons
Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation
Deep learning

Summary

rtificial
ntelligence




What can they do?

» “Weigh evidence” =- decision
» E.g.:

>

>

output = “study”

x1 = test on Monday, x» = confident of material, x3 =
doing poorly in class

W1 :1,W2:-1,W3:2

>
» bias=0
» Test on Monday, confident, doing well in class =

output =10
Test on Monday, not confident, doing well = output
=1
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What can they do?

» “Weigh evidence” =- decision
» E.g.:

>

>

output = “study”

x1 = test on Monday, x» = confident of material, x3 =
doing poorly in class

W1 :1,W2:-1,W3:2

>
» bias=0
» Test on Monday, confident, doing well in class =

output =10

Test on Monday, not confident, doing well = output
=1

Test on Monday, confident, doing poorly:

1+ (-1)+2=2= output=1
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Learning the weights

» Rosenblatt’s perceptron algorithm
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Learning the weights

» Rosenblatt’s perceptron algorithm

» Use training examples
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Learning the weights

» Rosenblatt’s perceptron algorithm
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Learning the weights

> Let:
» yx = desired output for example k
» ay, = actual output for example k

» Error on example k = yx — ax
» Define an error function Ex for example k
1 2
E=) E= §Z(Yk—ak)
k k
» Why?

» Squaring make error always positive (parabola)
» The 1/2 “makes the math easier” (as we’ll see)
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Learning the weights

» Goal: minimize E by minimizing each Ei
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Learning the weights

» Goal: minimize E by minimizing each Ei
» Ey is a function of the weights
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Learning the weights
» Goal: minimize E by minimizing each Ei

» E, is a function of the weights
» Use gradient descent instead
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Learning the weights

v

v

E, is a function of the weights
Use gradient descent instead
With one weight:

v

v

Ey

Goal: minimize E by minimizing each Ei

out
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Learning the weights

» Goal: minimize E by minimizing each Ei
» E, is a function of the weights

» Use gradient descent instead

» With one weight:

dX,'
tells which direction to move

» Slope at point:

/
Wy =W —a——

1 ! . dX,‘ ) E;
where « is the learning rate

out
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Learning the weights

» Suppose there are 2 weights, x and y
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Learning the weights

» Suppose there are 2 weights, x and y
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Learning the weights

» Suppose there are 2 weights, x and y

» Now “slope” is really the gradient V at (x, y)
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Learning the weights

» Suppose there are 2 weights, x and y

OE, OE,
V(w) = TWI,( and Wj 1 = Wit — O‘avwl,(t

» Gradient descent: hill-climbing in multiple dimensions
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Learning the weights

» What is @?
ow;
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Learning the weights

» What is @?
ow;

» We know that the output for k" example ax = > Wix;
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Learning the weights

» What is @?
ow;
» We know that the output for k" example ax = > Wix;

» Chain rule:

OB, _ 0y a

ow; aiak ow;
05k — ak)? d(wixq + Waxg + - - WnXn)
day ow;
= —(k—ak)x
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Learning the weights

» What is @?
ow;
» We know that the output for k" example ax = > Wix;

» Chain rule:
Oy

OE, D

ow; aiak ow;
05k — ak)? d(wixq + Waxg + - - WnXn)
day ow;
= (W —ak)x

» Since Aw; = a?, then

1

Wittt = Wit — a(—(Vk — ak)Xi) = Wit + oYk — ak)X;
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Learning the weights

» So for each example < (xy, X2, , Xn), ¥ >

» Compute output a
» Adjust weights:

Witp1 = Wit + oy — a)X;

for all weights weights w;
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Implementations

» Algorithm first in IBM 704 in late 50s
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Implementations

» Algorithm first in IBM 704 in late 50s

» Then:
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Implementations

» Algorithm first in IBM 704 in late 50s

» Then:

» Mark | Perceptron Machine (Wikipedia)
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Implementations

» Algorithm first in IBM 704 in late 50s

» Then:

vVYyyvyy
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Mark | Perceptron Machine (Wikipedia)
Image recognition: 20x20 photocell array
Potentiometers: weights

Pots adjusted by motors from learning
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Example

(defclass perceptron
( (num-inputs

(inputs
(weights

(output
(target

(alpha :initarg

)
)

(defmethod initialize-instance

(declare

(with-slots
(setqg weights
(loop for i from 1 to num-inputs

collect (random 1.0)))))

Copyright © 2019 UMaine School of Computing and Information Science

rnum-inputs :initform 3
raccessor num-inputs)

rinitform nil
rinitform nil

raccessor inputs)

raccessor weights)
(bias :initarg :bias raccessor bias)
raccessor output)
raccessor target)

raccessor alpha)

:initform 0O
rinitform nil
:initarg :target :initform nil
:initform 1.0

((self perceptron)

(num—-inputs weights)
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Example

(defmethod compute-output ((self perceptron))
(with-slots (output bias inputs weights) self
(setqg output (if (> (+ bias
(apply #'+
(mapcar #’+ inputs
weights)))

(defmethod adjust-weights ((self perceptron))

(with-slots (inputs weights target output alpha) self

(compute-output self)
(let ((delta (loop for weight in weights
for input in inputs

collect (*x alpha (- target output)

input))))
(format t
"~s -> ~s (desired = ~s), weights=~s, delta=~s~%"

inputs output target weights delta)
(setg weights (mapcar #’+ weights delta))
(format t " new weights=~s~%" weights))))

Copyright © 2019 UMaine School of Computing and Information Science
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Example

(defmethod train ((self perceptron) examples)
(with-slots (inputs target output weights) self
(loop for count from 1 to (length examples)
for example in examples
do (setf inputs (car example)
target (cadr example))
(compute—-output self)
(adjust-weights self)
(compute-output self)
)))
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Example

(defvar xperceptron* nil)

(defun train-for-tt (&key new? examples (bias -6) (inputs 3))

(when new?
(setqg *perceptronx (make-instance ’perceptron
:bias bias :num-inputs inputs)))
(train xperceptron* examples)
;; now check it:
(loop for thing in examples
do (setf (inputs xperceptronx) (car thing))
(compute-output *perceptronx)
(format t "~s => ~s~%" (car thing)
(output =*perceptronx))))
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Example

(defvar xand-tt+ 7 (((0 0) 0)
((0 1) 0)
((1 0) 0)
((1 1) 1)))

(defvar xor-ttx ’ (((0 0) 0)

((0 1) 1)
((1.0) 1)
(1 1) 1))

(defvar *xor-tt* ' (((0 0) 0)

((0 1) 1)
((1 0) 1)
((1 1) 0)))
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What can it do?

» Linear classifier:
» Finds line/plane/hyperplane separating class 1 from
class 2
> 2 inputs = line between sets
» 3 inputs = plane, etc.
» Sets can be separated by hyperplane =
linearly-separable

» Training set linearly-separable, algorithm converges
» Example: can learn NAND function
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What can it do?

» Linear classifier
» Finds line/plane/hyperplane separating class 1 from
class 2
> 2 inputs = line between sets
» 3 inputs = plane, etc.
» Sets can be separated by hyperplane =
linearly-separable

» Training set linearly-separable, algorithm converges
» Example: can learn NAND function

output =1

Ols .
0 1
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Problems

» May not be a unique solution
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Problems

» May not be a unique solution

» Thus may have suboptimal learning
» Support vector machine (SM): “perceptron of optimal
stability”
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Problems

» May not be a unique solution
» Thus may have suboptimal learning
» Support vector machine (SM): “perceptron of optimal
stability”
» Worse problem: can’t learn even simple
non-linearly-separable function
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Problems

» May not be a unigue solution
» Thus may have suboptimal learning
» Support vector machine (SM): “perceptron of optimal
stability”
» Worse problem: can’t learn even simple
non-linearly-separable function
» Minsky & Papert (1960): Perceptrons book
» Perceptron can’t learn XOR function
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Problems

» May not be a unique solution
» Thus may have suboptimal learning
» Support vector machine (SM): “perceptron of optimal
stability”
» Worse problem: can’t learn even simple
non-linearly-separable function
» Minsky & Papert (1960): Perceptrons book
» Perceptron can’t learn XOR function

(| output =1 . output=0
0ls Output=0 e output=1
0 1
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Problems

» May not be a unique solution
» Thus may have suboptimal learning
» Support vector machine (SM): “perceptron of optimal
stability”
» Worse problem: can’t learn even simple
non-linearly-separable function
» Minsky & Papert (1960): Perceptrons book
» Perceptron can’t learn XOR function
» Killed perceptron research for a while
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Extending perceptrons
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» Single perceptron: very limited
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Perceptron networks

» Single perceptron: very limited
» |dea: hook a bunch together in a network
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Perceptron networks

» Single perceptron: very limited
» |dea: hook a bunch together in a network
» What can a perceptron network do?
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Perceptron networks

» Single perceptron: very limited
» |dea: hook a bunch together in a network
» What can a perceptron network do?
» Based on what you know, what do you think?

Copyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part |

Introduction

Perceptrons
Perceptrons
Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation
Deep learning

Summary

rtificial
ntelligence

Perceptron networks

» Single perceptron: very limited
» |dea: hook a bunch together in a network
» What can a perceptron network do?
» Based on what you know, what do you think?
» Hint: perceptron can implement NAND function
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Perceptron networks

» Single perceptron: very limited

» |dea: hook a bunch together in a network

» What can a perceptron network do?
» Based on what you know, what do you think?
» Hint: perceptron can implement NAND function
» NAND forms complete gate/boolean function set
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Perceptron networks

» Single perceptron: very limited

» |dea: hook a bunch together in a network

» What can a perceptron network do?
» Based on what you know, what do you think?
» Hint: perceptron can implement NAND function
» NAND forms complete gate/boolean function set
» .= any binary function, = Turing-equivalent
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Perceptron networks

» Single perceptron: very limited

» |dea: hook a bunch together in a network

» What can a perceptron network do?
» Based on what you know, what do you think?
» Hint: perceptron can implement NAND function
» NAND forms complete gate/boolean function set
» .= any binary function, = Turing-equivalent

» E.g., a half-adder
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v

Single perceptron: very limited
Idea: hook a bunch together in a network
What can a perceptron network do?
» Based on what you know, what do you think?
» Hint: perceptron can implement NAND function
» NAND forms complete gate/boolean function set
» .= any binary function, = Turing-equivalent
E.g., a half-adder:

vy

v
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» So we’re done, right?
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» So we’re done, right?
» Not quite
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Learning
» So we’re done, right?

» Not quite
» Want property: small Aw =- small Aoutput
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Learning

v

So we're done, right?

Not quite

Want property: small Aw = small Aoutput
But perceptrons have step function

v

v

v
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Learning

v

So we're done, right?

Not quite

Want property: small Aw =- small Aoutput
But perceptrons have step function

Small input change can give completely different
output

v

v

v

v
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Learning

v

So we're done, right?

Not quite

Want property: small Aw = small Aoutput
But perceptrons have step function

Small input change can give completely different
output

Step function isn’t differentiable

v

v

v

v

v
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Learning

» So we’re done, right?

» Not quite

» Want property: small Aw =- small Aoutput
» But perceptrons have step function

» Small input change can give completely different
output

» Step function isn’t differentiable
» Can't easily find weights = minimum error
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Nonlinear neurons
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» Instead of step function, use differentiable function
» E.g.: use sigmoid neurons (logistic neurons)
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Nonlinear neurons

» Instead of step function, use differentiable function

» E.g.: use sigmoid neurons (logistic neurons)
1

» Output is sigmoid function o(z) = Trez
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Nonlinear neurons

» Instead of step function, use differentiable function

» E.g.: use sigmoid neurons (logistic neurons)
1

» Output is sigmoid function o(z) = Trez

Sigmoid function

1 T T T T
09 a
0.8 - -
0.7 - a
06 -
05 a
04 -
03 a
02 -

sigma(z)

01 | Mvexp(2)

-4 2 0 2 4
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Nonlinear neurons

» Instead of step function, use differentiable function

» E.g.: use sigmoid neurons (logistic neurons)
1

» Output is sigmoid function o(z) = Trez

Sigmoid function

1 T T T T
09 |- i
08 |- -
07 F i
06 |- -
05 - i
04 -
03 | i
02 | -

sigma(z)

01 | Mvexp(2)

-4 2 0 2 4

» What is z in this case?
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Nonlinear neurons

» Instead of step function, use differentiable function

» E.g.: use sigmoid neurons (logistic neurons)
1

» Output is sigmoid function o(z) = Trez

Sigmoid function

1 T T T T
09 a
0.8 - -
0.7 - a
06 -
05 a
04 -
03 a
02 -

sigma(z)

01 | Mvexp(2)

-4 2 0 2 4

z

» What is z in this case?=- weighted input, bias sum
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Notation changes

» Perceptron output function: only output 1 if

> wixi+b>0
i
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Notation changes

» Perceptron output function: only output 1 if

> wixi+b>0

J

» Let’s represent all the w;, x; as vectors w, x
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Notation changes

» Perceptron output function: only output 1 if

> wixi+b>0
i

» Let’s represent all the w;, x; as vectors w, x
» Now we can use dof product instead of summation
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Notation changes

v

v

v

v

Perceptron output function: only output 1 if

> wixi+b>0

J

Let's represent all the w;, x; as vectors w, X
Now we can use dot product instead of summation:

[wy we

"'Wn]'[X1 Xo

o Xp] = Wi Xy +WoXo+ o+ WnXn

So perceptron outputs 1 whenw -x+ b >0
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Sigmoid neurons

» Sigmoid:

» Whatis z?
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Sigmoid neurons

» Sigmoid:

» Whatis z?

o(2)

1

“irer

Itis the logit: z=w-x+ b
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Sigmoid neurons

» Sigmoid:
1

&)= Ties

» What is z?
It is the logit: z=w-x+ b
» Small change in w or b= small A in zand o(z)
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Sigmoid neurons

v

v

v

v

Sigmoid:

What is z?

o(z)

1

T i1te?

Itis the logit. z=w-x+ b

Small change in w or b = small A in zand o(2)

o(z) is differentiable
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Sigmoid neurons

v

Sigmoid:
1

&)= Ties

What is z?

Itis the logit. z=w-x+ b

Small change inw or b = small A in zand o(2)
o(z) is differentiable

Aoutput approximated by derivative of function at
point:

v

v

v

v
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Sigmoid neurons

v

Sigmoid:
1
C1+e?

o(2)
What is z?
Itis the logit: z=w-x+ b
Small change in w or b = small A in zand ¢(2)
o(z) is differentiable

Aoutput approximated by derivative of function at
point:

v

v

v

v

0 output o0 output
uPquj+ utpu

ow, T

Aoutput ~ %
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Sigmoid neurons

v

Sigmoid: 1
S
» What is z?
It is the logit: z=w-x+ b
» Small change in w or b= small A in zand o(z)
» o(z) is differentiable

» Aoutput approximated by derivative of function at
point:

0 output o0 output
uPquj+ utpu

ow, T

Aoutput ~ % ;

» Now Aoutput is a linear function of changes of
weights & bias
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Incorporating the bias

v

Neuron has inputs x; and weights w;, i =1,2,...n
Sometimes add xg, wy to replace bias:

» Bias = xowp

» Xo =1, wy is learned

v

v

X=1[xox1...xn)", w=[wowy...wy]”

v

n
z = wx; =W-Xis the activation of the neuron
i=0

v

1
y=1f(z)= Trez is the output (“activity”) of neuron
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Training a sigmoid neuron
Same basic idea as in training a perceptron:

Sigmoid function
1 T T T

09 - *
0.8 |- *
0.7 | Actual output for x 4
0.6 |- A a
0.5

04
0.3 - -
0.2 -
01

Target output for x |

sigma(z)

- Want to choose Az to move output toward target

- Determine slope at z

- Move in direction of increasing slope

- Problem: z isn’t a variable: it’s a dot product!

- Vector x is fixed (for an example)

- So we need to change vector w to move z to move
toward target for same x
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Derivatives of logistic neuron

» Derivative of logit z wrt. weights, inputs:
Z=b+ Z Wi X;
i

0z 0z

(97W,- = X, 87)(, = W
» Derivative of logistic equation:
B 1
Y = ez
[ 1 1 1
dz  1+e? 14+ e7
= y(1-y)
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Derivatives of logistic neuron

» Use chain rule to differentiate y wrt w;:
oy 0z dy
ow, ~ ow dz V(1Y)

v

Can get derivative of error wrt w;:
0E oy™ OE
S = 2 g ayn =~ Y=y E =)
n n

where a" means “a from training example n”
First, last term = delta rule
Middle term: slope of logistic equation

v

v
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Other non-linear neurons

» Other non-perceptron neurons possible, often used

» tanh(z), rectifier, softplus, ...

tanh, sigmoid Rectifier, softplus
1 T T T 12 T T

output
o
T

I N N N S T N |

tanh(z)
sigmla(z)

max(0,z;
log(1+exp(z)
1

)
)

5

3
5
[}
o
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Feedforward neural networks
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Feedforward networks

neurons

Copyright © 2019 UMaine School of Computing and Information Science

Multiple layers

> Input layer
» Output layer

» 1 or more hidden layers

Sometimes: multilayer perceptrons (MLP) — though
not perceptrons

In feedforward net: inputs — hidden layers — outputs

Often dense networks (fully-connected between
layers)

Networks of sigmoid (or other non-perceptron)
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FFN

» Could be simple, moderately complex, very complex
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FFN

» Could be simple, moderately complex, very complex

input layer
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FFN

» Could be simple, moderately complex, very complex

input layer
(784 neurons)
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Inputs, outputs

> Inputs?
» “Clamped” to some activation
» Some “natural” representation
» Outputs?

» Classification or encoding?
» E.g., numeral recognition:

» Neuron for each numeral
» Why not binary coding?
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What can FFNs learn?

» Output is composition of multiple “soft” thresholds

hy(x,%) hy(x2)

1
08
0.6
04
02

08
0.6
04
02

(a) (b)

Figure 18.23  (a) The result of combining two opposite-facing soft threshold functions to
produce a ridge. (b) The result of combining two ridges to produce a bump.

» FFN w/ single hidden layer: any continuous function,
any desired precision (w/ enough neurons)

» > 2 layers: discontinuous, too

» How many neurons?

» Exponential in the inputs
» Need O(2"/n) for all Boolean functions of n inputs
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Example: NN simulator
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Matrix form of NN
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Notation (from Nielsen)

» Assume a multilayer FF network

> Wﬁ(Z wt from neuron k in layer / — 1 to neuron j in
layer /

» Subscript: jk for ease of calculation (later)

| 4

bj: bias of neuron j in layer |
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Notation (from Nielsen)

v

v

v

v

v

Assume a multilayer FF network

Wﬁ(Z wt from neuron k in layer / — 1 to neuron j in
layer /

Subscript: jk for ease of calculation (later)
bj: bias of neuron j in layer |
al: activation (output) of neuron j in layer /

I _ | 5l—1 /
g =o |2 wia ' +b
k
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Matrix form of NN

Layer 1 Layer 2 Layer 3
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Matrix form of NN

Layer 1 Layer 2 Layer 3

wis

Wi Wi Wi

— 2 2 2 — 3 3 3
Wi Wi2 Wis
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Matrix form of NN

Layer 1

Layer 2 Layer 3

3
Wis

2 = 2 2 2 3= [ s 3
W Wo Wy Wi w Wy Wi

2 I
2 2 2 2 Wi Wi Wi X1 2
(w21 + whyzs + wises) + b (whay + wios + wizzs)| | b7 b;

72 = 2 2 2 2 = 2 2 2 2 2 2 2 2
“ (w321 + whhe + wisws) + b3 (whioy + whyme +wisws) | +[83 | = | wl, wl wh | [x: | 4]y

2 2 2 2 2 2 2 2 -
(w311 + Wiy + wizws) + b3 (who +whos +whzas)| |63 2wh wil | x 2
Wi Wi Wi 3 b;

= wix+b?
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Matrix form of NN

Layer 1

Layer 2 Layer 3

2 = 2 2 2 3= [ s 3
W Wo Wy Wi w Wy Wi

3
Wis

> 2

2 2 2 2 Wi Wi Wi | [ X1
(w21 +whyzs + wises) + b (W} @1 + whyzs + wizas)| | bF
2= = (w2 2 2 2
2= | (w}z) + whhzs + wizws) + b3 (w3121 + wiyws + wisws) [ +| b3

(w21 + whhza + wises)| | b3

2 2 2, 2
W3 T1 + WihTo + W33x3) + b 2 2 2
(w 3272 333) + b3 Wi w2 wis | | X3

2
b

2 2 2 2
S| wa o wan wo | | X2 +]p)

2
b;

= wix+b?
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Matrix form

v

General equation:

al _ O_(Wlalf1 + b/)

v

o is said to be “vectorized”
Logit (weighted input) vector z' is important, too

v

2 —wlgd—1 4 b

v

So d = o(2))
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Gradient descent learning in FFNs
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What are we learning?

v

Network computes function of inputs
Single output, ninputs w: hy(X)
What if m > 1 outputs?
» Single layer net: separate into m nets, train
separately
» Multilayer: all outputs depend on hidden layer
weights
» = vector function

Output function hy(x):

v

v

v
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What are we learning?

v

Network computes function of inputs
Single output, ninputs w: hy(X)
What if m > 1 outputs?
» Single layer net: separate into m nets, train
separately
» Multilayer: all outputs depend on hidden layer

weights
» = vector function

Output function hy(x):

v

v

v

hw(x) = al=o(wha"" +bh)
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What are we learning?

» Network computes function of inputs
» Single output, ninputs w: hy(X)
» What if m > 1 outputs?
» Single layer net: separate into m nets, train
separately
» Multilayer: all outputs depend on hidden layer

weights
» = vector function

» Output function hy(x):

hw(x) = al=o(wha"" +bh)
= o(wh(o(w' a2+ b))+ bh)
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What are we learning?

» Network computes function of inputs
» Single output, ninputs w: hy(X)
» What if m > 1 outputs?
» Single layer net: separate into m nets, train
separately
» Multilayer: all outputs depend on hidden layer

weights
» = vector function

» Output function hy(x):

hw(x) = al=o(wha"" +bh)
= o(wh(o(w' a2+ b ")+ bh)

= oW o (WX ) ) +bY)
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Error function

» First, let’s eliminate b = into x
» Error of network:

» Let b = desired output
» Error on training example x:

Ew(x) =y — hw(x)

» But:
» Ew(X): positive/negative
» We don’t want any particular error element: want
average error
» Want to learn weights, so want a function of weights
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Cost (loss) function

» Define a cost (loss, objective) function:

Cxw) = SlI(Ewx)
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Cost (loss) function

» Define a cost (loss, objective) function:
1 2
Gw) = SlI(Ew(x))]]

]
= 5y —hw(¥)|*
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Cost (loss) function

» Define a cost (loss, objective) function:

Cx(w) = SIIEw()IP

1
= 5lly- hw(x)|[?
1
Y Z(}/m - aan)z
m
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Cost (loss) function

» Define a cost (loss, objective) function:

Cx(w) = SIIEw()IP

1
= 5y —hw(¥)|*
1
Y Z(}/m — ap,)?
m

» Cx(w): quadratic cost (MSE) function
» Entire cost function: average over all x;:
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Cost (loss) function

» Define a cost (loss, objective) function:

Cuw) = SlI(Ewx)I?
1
= Iy~ hu()?

1
Y Z(}/m — ap)?
m

» Cx(w): quadratic cost (MSE) function
» Entire cost function: average over all x;:

Cw)= 1 3 C(w)
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Cost (loss) function

» Define a cost (loss, objective) function:

Cx(w) = SlIEw()IF
1
= oIy~ ()P

1
Y Z(}/m - ap)?
m

» Cx(w): quadratic cost (MSE) function
» Entire cost function: average over all x;:

Cw)= 13 Cr(w)

» Always positive, — 0 as output — y
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Minimizing cost function

If we minimize C, minimize ||E||

Using calculus, can find analytical solution
But with n weights, n + 1-dimensional curve
E.g., two dimension:

vV v v Y

vy

1 -1 from Nielsen, 2015}

» Largest nets: billions of weights
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Gradient descent search

Gradient descent search instead of analytical
solution

Find local gradients wrt weights
= n partial derivatives of C

Take a small step in direction of decrease in all the
derivatives

Repeat until close enough to minimum

v

v

v

v

v
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What is the local gradient?

» For simplicity: two variables, v, v»
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What is the local gradient?

» For simplicity: two variables, v, v»
» Then:
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What is the local gradient?

» For simplicity: two variables, vq, v»
» Then:
oC oC

AC~—A —A
8V1 i+ 8V2 ve

» Let Av = [Avy Avo]T
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What is the local gradient?

v

For simplicity: two variables, vq, v»
Then:

v

oC 0C

AC~—A —A
8V1 i+ 8V2 ve

Let Av = [Avy Awp]T
Then gradient of C is:

v

v

oC ac]T

VC‘[awavZ
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v

Then:

v

v

v

v

oC

AC~ —A
8V1 Vi +

Let Av = [Avy Awp]T
Then gradient of C is:

ve—|

Thus AC~ VC - Av

What is the local gradient?

For simplicity: two variables, vq, v»

0C

oc oc
ovy 0ve

Copyright © 2019 UMaine School of Computing and Information Science

v

AVQ

’

Machine Learning:
Part |

Introduction
Perceptrons
Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation
Deep learning

Summary

rtificial
ntelligence

Updating the variables

» Must choose Av s.t. AC is negative
» Let Av=-—VC
» For ||Av|| <¢, minimizes VC - Av
» Cost function now:

AC~VC-—VC = —||VO|

» Always negative
n is learning rate (or «; depends on author)
New variable vector v: vi 1 =v; —nVC
Now generalize v — w (including b)

BTW: Other gradient descent functions have been
tried

v

v

v

v
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Choosing learning rate

» How to choose n?

n too large

» If too large = may overshoot minimum

» If too small = will take a very long time to find

minimum
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Computing gradient

Difficult
Cost function: Must compute all C, then average

1 Iy -al?
C_n;CX_n; 2

To find overall gradient VC:

v

v

v

1

v

With many training examples, costly = slow learning
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Stochastic gradient descent

» Speeds up learning
» Estimate VC:
» Choose small sample of inputs randomly: a
mini-batch
» Compute VCy for these to estimate VC
» If batch size is large enough, average ~ VC
» Ildea:
» Randomly partition training examples into
mini-batches
» Train with each mini-batch
» Doing this: epoch

v

Repeat until error is satisfactory
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Stochastic gradient descent

» Speeds up learning
» Estimate VC:
» Choose small sample of inputs randomly: a
mini-batch
» Compute VCy for these to estimate VC
» If batch size is large enough, average ~ VC
» Idea:
» Randomly partition training examples into
mini-batches
» Train with each mini-batch
» Doing this: epoch
» Repeat until error is satisfactory
» Problem: Don’t know how to calculate V C with

hidden layers!
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Backpropagation
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Gradient descent

» Computing the gradient V C of the cost function:

» Composed of @, % —where w, b are vectors

» May be very difficult to compute
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Backpropagation

» Backpropagation algorithm (Rumelhart, Hinton, &
Williams, 1986)

» Rather than trying to adjust all weights at once, do it
by layers
» Compare output layer with target
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Backpropagation

» Backpropagation algorithm (Rumelhart, Hinton, &
Williams, 1986)

» Rather than trying to adjust all weights at once, do it
by layers

» Compare output layer with target

» Compute error, use it to update weights from
previous hidden layer to output layer
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Backpropagation

» Backpropagation algorithm (Rumelhart, Hinton, &
Williams, 1986)

» Rather than trying to adjust all weights at once, do it
by layers

» Compare output layer with target

» Compute error, use it to update weights from
previous hidden layer to output layer

» Now propagate error in expected outputs of hidden
layer backward, etc.
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Backpropagation

» Backpropagation algorithm (Rumelhart, Hinton, &
Williams, 1986)

» Rather than trying to adjust all weights at once, do it
by layers

» Compare output layer with target

» Compute error, use it to update weights from
previous hidden layer to output layer

» Now propagate error in expected outputs of hidden
layer backward, etc.

» Propagate by dividing responsibility for error at
neuron in / according to contribution from each
neuronin /[ — 1
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Error in output layer

» First define vector 6, where for element J:

5L_8C /

L
/—3714‘7(2/)

where:
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Error in output layer

» First define vector b, where for element J:

5L_8C /

L
/—3714‘7(2/)

where:
> %: how fast the cost function is changing due to j’s

output
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Error in output layer

» First define vector b, where for element J:

oC
L __ /(5L
J
where:
> %: how fast the cost function is changing due to j’s
output

» o/(+): 1st deriv. of o(-)
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Error in output layer

» First define vector b, where for element J:

oC
L __ /(5L
J
where:
> %: how fast the cost function is changing due to j’s
output

» o'(+): 1st deriv. of o(-)
> zf: weighted input to
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Error in output layer

» First define vector 6, where for element J:

oC
L __ /(5L
J
where:
> %: how fast the cost function is changing due to j’s
output

» o'(+): 1st deriv. of o(-)
> zf: weighted input to
> Thus o’(zf) is how fast o is changing at zf
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Error in output layer

» First define vector b, where for element J:

oC
L __ /(5L
J
where:
> %: how fast the cost function is changing due to j’s
output

» o'(+): 1st deriv. of o(-)
> zf: weighted input to
> Thus o’(zf) is how fast o is changing at zf

» 5l is a measure of error at L
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Error in output layer

» First define vector b, where for element J:

oC
L __ /(5L
J
where:
> %: how fast the cost function is changing due to j’s
output

» o'(+): 1st deriv. of o(-)
> zf: weighted input to
> Thus o’(zf) is how fast o is changing at zf
» 6L is a measure of error at L
> zf already computed, o’(zf") easy to compute
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Error in output layer

» First define vector b, where for element J:

where:
> 80 : how fast the cost function is changing due to j’s

output
o'(+): 1st deriv. of o(-)
> sz: weighted input to j
> Thus o’(zf) is how fast o is changing at zf
» 6L is a measure of error at L
> z-L already computed, o’(zf) easy to compute

for quadratic cost functlon = (aL i)
/
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Error in output layer

» First define vector 6, where for element J:

oC
jL — /(ZjL)
aa
where:
> 80 : how fast the cost function is changing due to j’s
output

o'(+): 1st deriv. of o(-)
> sz: weighted input to j
> Thus o’(zf) is how fast o is changing at zf
» 6L is a measure of error at L
> z-L already computed, o’(zf) easy to compute

for quadratic cost functlon = (aL i)
/

> So for quadratic: 6 = (af — y;)o’(2f)

Copyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part |

Introduction
Perceptrons
Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation
Deep learning

Summary

rtificial
ntelligence

Hadamard product

» Need a new operator to simplify expressions
» Define Hadamard productas: s ©t=h s.t.

hj = Sj X tj
» l.e., elementwise product — e.g.:
-2 3 —6
20| @ 2| = |40
3 1 3
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Error in output layer

>5L

6aL ( )
» Can be rewritten as:
=V,Cod(2h)

» Or

ot = (al —y) © o'(2)
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Finding previous layer’s error

If we know 6™, can we find §'?

v

v

(w1 T g1
» Moves error backward
» Gives measure of error at layer /

Then

v

v

5/ — ((WI+1)T5I+1) ® O'/(ZI)

Can now compute the error at any layer

v

Copyright © 2019 UMaine School of Computing and Information Science
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Rate of change for biases, weights

» For any weight in the network:

ac

/-1 ¢l
| k ~J
6ij

» For any bias in the network:

oc
ob]

since “activation” for any bias is just 1
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Backpropagation & gradient descent

» For each x € mtraining examples:
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Backpropagation & gradient descent

» For each x € mtraining examples:
» Feedforward: for each layer /, compute:
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Backpropagation & gradient descent

» For each x € mtraining examples:
» Feedforward: for each layer /, compute:
> zx,I — wlax,/—1 + bl
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Backpropagation & gradient descent

» For each x € mtraining examples:
» Feedforward: for each layer /, compute:
> zx,I — w/ax,/71 + bl
> ax,l _ O,(Zxﬁl)
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Backpropagation & gradient descent

» For each x € mtraining examples:
» Feedforward: for each layer /, compute:
> zx,I — w/ax,l—1 + bl
> ax,l —_ O,(Zxﬁl)
» Compute the output error:
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Backpropagation & gradient descent

» For each x € mtraining examples:
» Feedforward: for each layer /, compute:
> zx,I — w/ax,l—1 + bl
> ax,l —_ O,(Zxﬁl)
» Compute the output error:
> 0= V.G oo’ (2°)
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Backpropagation & gradient descent

» For each x € mtraining examples:
» Feedforward: for each layer /, compute:
> zx,I — w/ax,l—1 + bl
> ax,l — O,(Zxﬁl)
» Compute the output error:
> (;X,L _ VaCx ® O”(ZX’L)
» Backpropagate error for each layer /:
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Backpropagation & gradient descent

» For each x € mtraining examples:

» Feedforward: for each layer /, compute:
> zx,I — wlax,l—1 + bl
> ax,l _ O,(Zxﬁl)

» Compute the output error:
> (;X,L _ VaCx ® O”(ZX’L)

» Backpropagate error for each layer /:
> 5X’I — ((W/+1)T6X"/+1) o) U/(ZX’/)
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Backpropagation & gradient descent

» For each x € mtraining examples:

» Feedforward: for each layer /, compute:
> zx,I — wlax,l—1 + bl
> ax,l —_ O,(Zxﬁl)

» Compute the output error:
> (;X,L _ VaCx ® O”(ZX’L)

» Backpropagate error for each layer /:
> 6)(,/ _ ((Wl+1)T5X"/+1) o U/(ZX’/)

» Gradient descent: For each layer from L — 2:
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Backpropagation & gradient descent

» For each x € mtraining examples:
» Feedforward: for each layer /, compute:
> zx,I — wlax,l—1 + bl
> atl — O,(Zx,/)
» Compute the output error:
> L= VL0 00/ (29Y)
» Backpropagate error for each layer /:
> 6)(,/ _ ((Wl+1)T5X"/+1) o U/(Zx,/)
» Gradient descent: For each layer from L — 2:

» Nextw' =w' — n g%l @ -1\T
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Backpropagation & gradient descent

» For each x € mtraining examples:
» Feedforward: for each layer /, compute:
> zx,I — wlax,l—1 + bl
» atl — O,(Zx,/)
» Compute the output error:
> 0L =VLC 00/ (29Y)
» Backpropagate error for each layer /:
> 5)(,/ _ ((Wl+1)T6x,/+1) o U/(Zx,/)
» Gradient descent: For each layer from L — 2:

Nextw' =w' — n sl (@ax!-1T
" 2 @)

X
N I_p "1 55!
» Nextb' = b m;
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Backpropagation & gradient descent

» For each x € mtraining examples:
» Feedforward: for each layer /, compute:
> zx,I — wlax,l—1 + bl
> atl — O,(Zx,/)
» Compute the output error:
> L= VL0 00/ (29Y)
» Backpropagate error for each layer /:
> 5)(,/ _ ((Wl+1)T6x,/+1) o U/(Zx,/)
» Gradient descent: For each layer from L — 2:

Nextw' =w' — n sl (@ax!-1T
" 2 @)

X
N I_p "1 55!
» Nextb' = b m;
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Backpropagation & gradient descent

» For each x € mtraining examples:
» Feedforward: for each layer /, compute:
> zx,I — wlax,l—1 + bl
» atl — O,(Zx,/)
» Compute the output error:
» 5L = VaCr 0 o’ (2°h)
» Backpropagate error for each layer /:
> 5)(,/ _ ((Wl+1)T6x,/+1) o U/(Zx,/)
» Gradient descent: For each layer from L — 2:

Nextw' =w' — n sl (@x!-1T
" 2 @)

X
N I_p " 55!
» Nextb' = b m;

Do for some # of epochs, some # mini-batches each.
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Backprop algorithm

function BACK-PROP-LEARNING (ezamples, network) returns a neural network
inputs: ezamples, a set of examples, each with input vector x and output vector y
network, a multilayer network with L layers, weights w; j, activation function g
local variables: A, a vector of errors, indexed by network node

repeat
for each weight w; ; in network do
w; j +— a small random number
for each example (x,y) in ezamples do
/ « Propagate the inputs forward to compute the outputs x/
for each node ¢ in the input layer do
@ T
for£=2to Ldo
for each node j in layer £ do
inj 32 wij o
a; + g(in;)
/ * Propagate deltas backward from output layer to input layer */
for each node j in the output layer do
Alj] «g'(in;) x (¥; — a5)
for{=L-1toldo
for each node i in layer £ do
Afi] = g'(ini) 32; wi; Alj]
/ « Update every weight in network using deltas x/
for each weight w; ; in network do
wij—wij; + a X e X A[j]
until some stopping criterion is satisfied
cc return network
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Speed of backprop

» What if we had instead done what we did in HC?
» For each timestep, look at small changes in the
weights
» Pick set that decreases error

» Could do this for each weight separately, too

» If we have millions of weights, requires millions of
passes through network

» With backprop: one forward, one backward pass, no
matter how many weights
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» Networks with > 2 hidden layers are deep networks
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Deep learning

» Networks with > 2 hidden layers are deep networks
» Backprop will still work for them
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Deep learning

» Networks with > 2 hidden layers are deep networks
» Backprop will still work for them
» But:
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Deep learning

» Networks with > 2 hidden layers are deep networks
» Backprop will still work for them
» But:

» Tend to lose the error “signal” as propagate back
through network
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Deep learning

» Networks with > 2 hidden layers are deep networks
» Backprop will still work for them
» But:
» Tend to lose the error “signal” as propagate back
through network
» Each neuron in earlier layers have less and less
impact on output error
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Deep learning

» Networks with > 2 hidden layers are deep networks
» Backprop will still work for them
» But:
» Tend to lose the error “signal” as propagate back
through network
» Each neuron in earlier layers have less and less
impact on output error
» Vanishing gradient problem
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Deep learning

v

Networks with > 2 hidden layers are deep networks

Backprop will still work for them

» But:

» Tend to lose the error “signal” as propagate back
through network

» Each neuron in earlier layers have less and less
impact on output error

» Vanishing gradient problem

= extremely slow learning rate

v

v
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Deep learning

v

Networks with > 2 hidden layers are deep networks
Backprop will still work for them
» But:
» Tend to lose the error “signal” as propagate back
through network
» Each neuron in earlier layers have less and less
impact on output error
» Vanishing gradient problem
= extremely slow learning rate
Can have opposite problem, depending on net:
exploding gradient problem

v

v

v
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Deep learning

» Networks with > 2 hidden layers are deep networks
» Backprop will still work for them
» But:
» Tend to lose the error “signal” as propagate back
through network
» Each neuron in earlier layers have less and less
impact on output error
» Vanishing gradient problem
» = extremely slow learning rate
» Can have opposite problem, depending on net:
exploding gradient problem
» Stymied researchers for many years — until
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Deep learning

» Networks with > 2 hidden layers are deep networks
» Backprop will still work for them
» But:
» Tend to lose the error “signal” as propagate back
through network
» Each neuron in earlier layers have less and less
impact on output error
» Vanishing gradient problem
» = extremely slow learning rate
» Can have opposite problem, depending on net:
exploding gradient problem
» Stymied researchers for many years — until
» Faster machines
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Deep learning

» Networks with > 2 hidden layers are deep networks
Backprop will still work for them
» But:
» Tend to lose the error “signal” as propagate back
through network
» Each neuron in earlier layers have less and less
impact on output error
» Vanishing gradient problem
= extremely slow learning rate
Can have opposite problem, depending on net:
exploding gradient problem
Stymied researchers for many years — until
» Faster machines
» Better versions of backprop-ish algorithms invented

v

v

v

v
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Deep learning

» Networks with > 2 hidden layers are deep networks
» Backprop will still work for them
» But:
» Tend to lose the error “signal” as propagate back
through network
» Each neuron in earlier layers have less and less
impact on output error
» Vanishing gradient problem
» = extremely slow learning rate
» Can have opposite problem, depending on net:
exploding gradient problem
» Stymied researchers for many years — until
» Faster machines
» Better versions of backprop-ish algorithms invented
» = tremendous increase in deep learning research,
applications
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Deep learning

» Networks with > 2 hidden layers are deep networks
» Backprop will still work for them
» But:
» Tend to lose the error “signal” as propagate back
through network
» Each neuron in earlier layers have less and less
impact on output error
» Vanishing gradient problem
» = extremely slow learning rate
» Can have opposite problem, depending on net:
exploding gradient problem
» Stymied researchers for many years — until
» Faster machines
» Better versions of backprop-ish algorithms invented
» = tremendous increase in deep learning research,
applications
» We’'ll come back to this later in course
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Neural network training:
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“You process a lot of data in a quiet way,
don'’t you, Larry!”
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Roy, lecturing on
neural networks

You'd like to ask Rop#if he's really thought
this through.

Machine Learning:
Part |

Introduction
Perceptrons
Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation
Deep learning

Summary

Neural network training:
...and...

What can they do?
How do they work?
Autoencoders

Restricted Boltzmann
machines

Feed-forward NN
Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.




What can they do?

Machine Learning:

Part |

Introduction
Perceptrons
Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation
Deep learning

Summary

Neural network training:
...and...

What can they do?
How do they work?
Autoencoders

Restricted Boltzmann
machines

Feed-forward NN
Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

What can they do?
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How do they work?
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Autoencoders
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Autoencoders
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Feed-forward NN
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Deep learning nets
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Building them: Keras, TensorFlow,
PyTorch, etc.
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