
Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Machine Learning: Part I

UMaine COS 470/570 – Introduction to AI

Spring 2019

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Introduction

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What are ANNs?

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Artificial neural networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Systems of simple computing elements: neurons

I Each neuron accepts inputs from others, produces
activation

I Neurons connected via weights that modulate
activation

I Can be viewed as:
I Pattern-learning (inductive) systems
I Statistical programs
I Dimension/feature-changing systems
I Search programs (in weight space)

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Image classification and labeling
I Word recognition
I Natural language systems
I Machine translation systems
I General pattern recognition
I Superhuman-level performance on games, other RL

tasks
I Pattern generators (images, music, . . .)

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Inspiration: Natural pattern recognition

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Pattern recognition in natural world:
I Chemoreceptors
I Immune system
I Biological neural networks

I Animal/human vision system
I Auditory system
I Neocortex
I Etc.

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Neural systems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Most flexible pattern recognizers:
I Biological computing elements: Neurons
I Neurons are excitatory cells
I Connections determine how activation spreads

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

I Synapses: change potential across cell membrane
I Neuron effectively sums excitations, inhibitions
I At some point: potential at threshold and neuron fires

I Excitatory pulse down axon, release neurotransmitter at
synapses

I Lots more to it than this!

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

I Synapses: change potential across cell membrane
I Neuron effectively sums excitations, inhibitions
I At some point: potential at threshold and neuron fires

I Excitatory pulse down axon, release neurotransmitter at
synapses

I Lots more to it than this!

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neurons are very complex

I Synapses: change potential across cell membrane
I Neuron effectively sums excitations, inhibitions
I At some point: potential at threshold and neuron fires

I Excitatory pulse down axon, release neurotransmitter at
synapses

I Lots more to it than this!

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Connectsome is incredibly complex

Machine Learning:
Part I

Introduction
What are ANNs?

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problem: Complexity

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Connectsome is incredibly complex

Andreashorn [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptrons

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptrons

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I McCulloch & Pitts
I Very simple model of a neuron

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I McCulloch & Pitts
I Very simple model of a neuron

x1x1

x2x2

x3x3

outout

w1w1

w2w2

w3w3

Notes on: Neural Networks and Deep Learning

(nielsen15; Michael Nielsen)

1/2/2017

1 Source:

Nielsen, Michael A., Neural Networks and Deep Learning, Determination Press, 2015.

2 Chapter 1

2.1 Perceptrons (McCulloch & Pitts)

• Binary inputs, weights, binary output

• Threshold function: output =

�
��

��

0 if
X

j

wjxj threshold

1 otherwise
• Usually shift the threshold to other side of equation) bias; i.e., bias = � threshold

– bias represents how easy it is to get neuron to fire: larger bias) easier to fire

output =

�
��

��

0 if
X

j

wjxj + b 0

1 otherwise
• Change of form to get rid of summation – use dot product, treat the weights and inputs as

vectors:

output =

�
0 if wj · xj + b 0

1 otherwise
• Talks about using perceptron to weight evidence represented by the inputs
• A perceptron can implement any basic logical function (AND, OR, NOT, NAND)

– E.g., NAND: suppose there are two inputs, each with a weight of -2, and b = 3
– 00: (-2)(0) + (-2)(0) + 3 = 3) 1
– 01, 10: (-2)(1) + (-2)(1) + 3 = 1) 1
– 11: (-2)(1) + (-2)(1) + 3 = -4) 0

•) networks of perceptrons can compute any logical function
• This includes the infamous XOR – but we’re using a network of perceptrons, not just one

1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I McCulloch & Pitts
I Very simple model of a neuron

Notes on: Neural Networks and Deep Learning

(nielsen15; Michael Nielsen)

1/2/2017

1 Source:

Nielsen, Michael A., Neural Networks and Deep Learning, Determination Press, 2015.

2 Chapter 1

2.1 Perceptrons (McCulloch & Pitts)

• Binary inputs, weights, binary output

• Threshold function: output =

�
��

��

0 if
X

j

wjxj threshold

1 otherwise
• Usually shift the threshold to other side of equation) bias; i.e., bias = � threshold

– bias represents how easy it is to get neuron to fire: larger bias) easier to fire

output =

�
��

��

0 if
X

j

wjxj + b 0

1 otherwise
• Change of form to get rid of summation – use dot product, treat the weights and inputs as

vectors:

output =

�
0 if wj · xj + b 0

1 otherwise
• Talks about using perceptron to weight evidence represented by the inputs
• A perceptron can implement any basic logical function (AND, OR, NOT, NAND)

– E.g., NAND: suppose there are two inputs, each with a weight of -2, and b = 3
– 00: (-2)(0) + (-2)(0) + 3 = 3) 1
– 01, 10: (-2)(1) + (-2)(1) + 3 = 1) 1
– 11: (-2)(1) + (-2)(1) + 3 = -4) 0

•) networks of perceptrons can compute any logical function
• This includes the infamous XOR – but we’re using a network of perceptrons, not just one

1

1

0

1

-1

2

2

t = 1 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I McCulloch & Pitts
I Very simple model of a neuron
I Usually change threshold to bias (= �threshold)

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

First simple artificial neuron: Perceptron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I McCulloch & Pitts
I Very simple model of a neuron
I Usually change threshold to bias (= �threshold)

Notes on: Neural Networks and Deep Learning

(nielsen15; Michael Nielsen)

1/2/2017

1 Source:

Nielsen, Michael A., Neural Networks and Deep Learning, Determination Press, 2015.

2 Chapter 1

2.1 Perceptrons (McCulloch & Pitts)

• Binary inputs, weights, binary output

• Threshold function: output =

�
��

��

0 if
X

j

wjxj threshold

1 otherwise
• Usually shift the threshold to other side of equation) bias; i.e., bias = � threshold

– bias represents how easy it is to get neuron to fire: larger bias) easier to fire

output =

�
��

��

0 if
X

j

wjxj + b 0

1 otherwise
• Change of form to get rid of summation – use dot product, treat the weights and inputs as

vectors:

output =

�
0 if wj · xj + b 0

1 otherwise
• Talks about using perceptron to weight evidence represented by the inputs
• A perceptron can implement any basic logical function (AND, OR, NOT, NAND)

– E.g., NAND: suppose there are two inputs, each with a weight of -2, and b = 3
– 00: (-2)(0) + (-2)(0) + 3 = 3) 1
– 01, 10: (-2)(1) + (-2)(1) + 3 = 1) 1
– 11: (-2)(1) + (-2)(1) + 3 = -4) 0

•) networks of perceptrons can compute any logical function
• This includes the infamous XOR – but we’re using a network of perceptrons, not just one

1

1

0

1

-1

2

2

b = -1 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision

I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”

I x1 = test on Monday, x2 = confident of material, x3 =
doing poorly in class

I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class

I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2

I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0

I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0

I Test on Monday, not confident, doing well) output
= 1

I Test on Monday, confident, doing poorly:
1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1

I Test on Monday, confident, doing poorly:
1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I “Weigh evidence”) decision
I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class)

output = 0
I Test on Monday, not confident, doing well) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2) output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm

I Use training examples

I Modify weights such that output error is minimized

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm
I Use training examples

I Modify weights such that output error is minimized

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm
I Use training examples

I Modify weights such that output error is minimized

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm
I Use training examples

I Modify weights such that output error is minimized

...
.

.
.. ..

.
.
.
.

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm
I Use training examples

I Modify weights such that output error is minimized

.. .
.

.
.. ..

.
.
.
.

.

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Rosenblatt’s perceptron algorithm
I Use training examples

I Modify weights such that output error is minimized

.. .
.

.
.. ..

.
.
.
.

.

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Let:
I yk = desired output for example k

I ak = actual output for example k

I Error on example k = yk � ak

I Define an error function Ek for example k

E =
X

k

Ek =
1
2

X

k

(yk � ak)
2

I Why?
I Squaring make error always positive (parabola)
I The 1/2 “makes the math easier” (as we’ll see)

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights
I Use gradient descent instead
I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights

I Use gradient descent instead
I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights
I Use gradient descent instead

I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights
I Use gradient descent instead
I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights
I Use gradient descent instead
I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Suppose there are 2 weights, x and y

I Now “slope” is really the gradient r at (x , y)

r(wi) =
@Ek

@wi

and wi,t+1 = wi,t � ↵
@Ek

@wi,t

I Gradient descent: hill-climbing in multiple dimensions

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Suppose there are 2 weights, x and y

I Now “slope” is really the gradient r at (x , y)

r(wi) =
@Ek

@wi

and wi,t+1 = wi,t � ↵
@Ek

@wi,t

I Gradient descent: hill-climbing in multiple dimensions

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Suppose there are 2 weights, x and y

I Now “slope” is really the gradient r at (x , y)

r(wi) =
@Ek

@wi

and wi,t+1 = wi,t � ↵
@Ek

@wi,t

I Gradient descent: hill-climbing in multiple dimensions

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Suppose there are 2 weights, x and y

I Now “slope” is really the gradient r at (x , y)

r(wi) =
@Ek

@wi

and wi,t+1 = wi,t � ↵
@Ek

@wi,t

I Gradient descent: hill-climbing in multiple dimensions

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I What is
@Ek

@wi

?

I We know that the output for k th example ak =
P

i
wixi

I Chain rule:

@Ek

@wi

=
@Ek

@ak

@ak

@wi

=
@ 1

2(yk � ak)
2

@ak

@(w1x1 + w2x2 + · · · wnxn)

@wi

= �(yk � ak)xi

I Since �wi = ↵
@Ek

@wi

, then

wi,t+1 = wi,t � ↵(�(yk � ak)xi) = wi,t + ↵(yk � ak)xi

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I What is
@Ek

@wi

?

I We know that the output for k th example ak =
P

i
wixi

I Chain rule:

@Ek

@wi

=
@Ek

@ak

@ak

@wi

=
@ 1

2(yk � ak)
2

@ak

@(w1x1 + w2x2 + · · · wnxn)

@wi

= �(yk � ak)xi

I Since �wi = ↵
@Ek

@wi

, then

wi,t+1 = wi,t � ↵(�(yk � ak)xi) = wi,t + ↵(yk � ak)xi

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I What is
@Ek

@wi

?

I We know that the output for k th example ak =
P

i
wixi

I Chain rule:

@Ek

@wi

=
@Ek

@ak

@ak

@wi

=
@ 1

2(yk � ak)
2

@ak

@(w1x1 + w2x2 + · · · wnxn)

@wi

= �(yk � ak)xi

I Since �wi = ↵
@Ek

@wi

, then

wi,t+1 = wi,t � ↵(�(yk � ak)xi) = wi,t + ↵(yk � ak)xi

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I What is
@Ek

@wi

?

I We know that the output for k th example ak =
P

i
wixi

I Chain rule:

@Ek

@wi

=
@Ek

@ak

@ak

@wi

=
@ 1

2(yk � ak)
2

@ak

@(w1x1 + w2x2 + · · · wnxn)

@wi

= �(yk � ak)xi

I Since �wi = ↵
@Ek

@wi

, then

wi,t+1 = wi,t � ↵(�(yk � ak)xi) = wi,t + ↵(yk � ak)xi

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning the weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I So for each example < (x1, x2, · · · , xn), y >
I Compute output a

I Adjust weights:

wi,t+1 = wi,t + ↵(y � a)xi

for all weights weights wi

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Implementations

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Algorithm first in IBM 704 in late 50s

I Then:

I Mark I Perceptron Machine (Wikipedia)
I Image recognition: 20×20 photocell array
I Potentiometers: weights
I Pots adjusted by motors from learning

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Implementations

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Algorithm first in IBM 704 in late 50s
I Then:

I Mark I Perceptron Machine (Wikipedia)
I Image recognition: 20×20 photocell array
I Potentiometers: weights
I Pots adjusted by motors from learning

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Implementations

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Algorithm first in IBM 704 in late 50s
I Then:

I Mark I Perceptron Machine (Wikipedia)

I Image recognition: 20×20 photocell array
I Potentiometers: weights
I Pots adjusted by motors from learning

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Implementations

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Algorithm first in IBM 704 in late 50s
I Then:

I Mark I Perceptron Machine (Wikipedia)
I Image recognition: 20×20 photocell array
I Potentiometers: weights
I Pots adjusted by motors from learning

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Example

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

(defclass perceptron ()
((num-inputs :initarg :num-inputs :initform 3

:accessor num-inputs)
(inputs :initarg :inputs :initform nil :accessor inputs)
(weights :initarg :weights :initform nil

:accessor weights)
(bias :initarg :bias :initform 0 :accessor bias)
(output :initarg :output :initform nil :accessor output)
(target :initarg :target :initform nil :accessor target)
(alpha :initarg :alpha :initform 1.0 :accessor alpha)
)
)

(defmethod initialize-instance :after ((self perceptron)
&rest l)

(declare (ignore l))
(with-slots (num-inputs weights) self
(setq weights

(loop for i from 1 to num-inputs
collect (random 1.0)))))

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Example

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

(defmethod compute-output ((self perceptron))
(with-slots (output bias inputs weights) self
(setq output (if (> (+ bias

(apply #’+
(mapcar #’* inputs

weights)))
0.0)

1
0))))

(defmethod adjust-weights ((self perceptron))
(with-slots (inputs weights target output alpha) self
(compute-output self)
(let ((delta (loop for weight in weights
for input in inputs

collect (* alpha (- target output)
input))))

(format t
"~s -> ~s (desired = ~s), weights=~s, delta=~s~%"

inputs output target weights delta)
(setq weights (mapcar #’+ weights delta))
(format t " new weights=~s~%" weights))))

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Example

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

(defmethod train ((self perceptron) examples)
(with-slots (inputs target output weights) self
(loop for count from 1 to (length examples)

for example in examples
do (setf inputs (car example)

target (cadr example))
(compute-output self)
(adjust-weights self)
(compute-output self)
)))

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Example

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

(defvar *perceptron* nil)

(defun train-for-tt (&key new? examples (bias -6) (inputs 3))
(when new?

(setq *perceptron* (make-instance ’perceptron
:bias bias :num-inputs inputs)))
(train *perceptron* examples)
;; now check it:
(loop for thing in examples

do (setf (inputs *perceptron*) (car thing))
(compute-output *perceptron*)
(format t "~s => ~s~%" (car thing)
(output *perceptron*))))

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Example

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

(defvar *and-tt* ’(((0 0) 0)
((0 1) 0)
((1 0) 0)
((1 1) 1)))

(defvar *or-tt* ’(((0 0) 0)
((0 1) 1)
((1 0) 1)
((1 1) 1)))

(defvar *xor-tt* ’(((0 0) 0)
((0 1) 1)
((1 0) 1)
((1 1) 0)))

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can it do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Linear classifier:
I Finds line/plane/hyperplane separating class 1 from

class 2
I 2 inputs) line between sets
I 3 inputs) plane, etc.

I Sets can be separated by hyperplane)

linearly-separable

I Training set linearly-separable, algorithm converges
I Example: can learn NAND function

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can it do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Linear classifier:
I Finds line/plane/hyperplane separating class 1 from

class 2
I 2 inputs) line between sets
I 3 inputs) plane, etc.

I Sets can be separated by hyperplane)

linearly-separable

I Training set linearly-separable, algorithm converges
I Example: can learn NAND function

0
0

1

1
.

.

.

.

output = 0
output = 1

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution

I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”

I Worse problem: can’t learn even simple
non-linearly-separable function

I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function

I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function

0
0

1

1
.

.

.

. output = 0

output = 1

output = 1

output = 0

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Problems

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function
I Killed perceptron research for a while

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Extending perceptrons

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited

I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder:

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited
I Idea: hook a bunch together in a network

I What can a perceptron network do?
I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder:

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited
I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder:

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited
I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?

I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder:

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited
I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function

I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder:

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited
I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set

I)) any binary function,) Turing-equivalent
I E.g., a half-adder:

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited
I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder:

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited
I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder

:

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Perceptron networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Single perceptron: very limited
I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I)) any binary function,) Turing-equivalent

I E.g., a half-adder: 1/2/17, 7'05 PMNeural networks and deep learning

Page 9 of 60file:///Users/rmt/Classes/COS470/2017-Spring/Readings/DeepLearningBook/neuralnetworksanddeeplearning.com/chap1.html

One notable aspect of this network of perceptrons is that the output
from the leftmost perceptron is used twice as input to the
bottommost perceptron. When I defined the perceptron model I
didn't say whether this kind of double-output-to-the-same-place
was allowed. Actually, it doesn't much matter. If we don't want to
allow this kind of thing, then it's possible to simply merge the two
lines, into a single connection with a weight of -4 instead of two
connections with -2 weights. (If you don't find this obvious, you
should stop and prove to yourself that this is equivalent.) With that
change, the network looks as follows, with all unmarked weights
equal to -2, all biases equal to 3, and a single weight of -4, as
marked:

Up to now I've been drawing inputs like and as variables
floating to the left of the network of perceptrons. In fact, it's
conventional to draw an extra layer of perceptrons - the input layer
- to encode the inputs:

x1 x2

-2
3

-2

-2

-2 -2

-2-2
-2-2

-2

33

3

3

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I So we’re done, right?

I Not quite
I Want property: small �w) small �output
I But perceptrons have step function

I Small input change can give completely different
output

I Step function isn’t differentiable

I Can’t easily find weights) minimum error

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I So we’re done, right?
I Not quite

I Want property: small �w) small �output
I But perceptrons have step function

I Small input change can give completely different
output

I Step function isn’t differentiable

I Can’t easily find weights) minimum error

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I So we’re done, right?
I Not quite
I Want property: small �w) small �output

I But perceptrons have step function

I Small input change can give completely different
output

I Step function isn’t differentiable

I Can’t easily find weights) minimum error

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I So we’re done, right?
I Not quite
I Want property: small �w) small �output
I But perceptrons have step function

I Small input change can give completely different
output

I Step function isn’t differentiable

I Can’t easily find weights) minimum error

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I So we’re done, right?
I Not quite
I Want property: small �w) small �output
I But perceptrons have step function

I Small input change can give completely different
output

I Step function isn’t differentiable

I Can’t easily find weights) minimum error

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I So we’re done, right?
I Not quite
I Want property: small �w) small �output
I But perceptrons have step function

I Small input change can give completely different
output

I Step function isn’t differentiable

I Can’t easily find weights) minimum error

Machine Learning:
Part I

Introduction

Perceptrons
Perceptrons

Extending perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I So we’re done, right?
I Not quite
I Want property: small �w) small �output
I But perceptrons have step function

I Small input change can give completely different
output

I Step function isn’t differentiable

I Can’t easily find weights) minimum error

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Nonlinear neurons

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Nonlinear neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Instead of step function, use differentiable function
I E.g.: use sigmoid neurons (logistic neurons)

I Output is sigmoid function �(z) =
1

1 + e�z

I What is z in this case?) weighted input, bias sum

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Nonlinear neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Instead of step function, use differentiable function
I E.g.: use sigmoid neurons (logistic neurons)

I Output is sigmoid function �(z) =
1

1 + e�z

I What is z in this case?) weighted input, bias sum

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Nonlinear neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Instead of step function, use differentiable function
I E.g.: use sigmoid neurons (logistic neurons)

I Output is sigmoid function �(z) =
1

1 + e�z

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

-4 -2 0 2 4

si
gm
a(
z)

z

Sigmoid function

1/(1+exp(-z))

I What is z in this case?) weighted input, bias sum

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Nonlinear neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Instead of step function, use differentiable function
I E.g.: use sigmoid neurons (logistic neurons)

I Output is sigmoid function �(z) =
1

1 + e�z

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

-4 -2 0 2 4

si
gm
a(
z)

z

Sigmoid function

1/(1+exp(-z))

I What is z in this case?

) weighted input, bias sum

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Nonlinear neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Instead of step function, use differentiable function
I E.g.: use sigmoid neurons (logistic neurons)

I Output is sigmoid function �(z) =
1

1 + e�z

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

-4 -2 0 2 4

si
gm
a(
z)

z

Sigmoid function

1/(1+exp(-z))

I What is z in this case?) weighted input, bias sum

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Notation changes

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Perceptron output function: only output 1 if
X

j

wjxj + b > 0

I Let’s represent all the wj , xj as vectors w, x
I Now we can use dot product instead of summation:

[w1 w2 · · · wn]·[x1 x2 · · · xn] = w1x1+w2x2+· · ·+wnxn

I So perceptron outputs 1 when w · x + b > 0

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Notation changes

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Perceptron output function: only output 1 if
X

j

wjxj + b > 0

I Let’s represent all the wj , xj as vectors w, x

I Now we can use dot product instead of summation:

[w1 w2 · · · wn]·[x1 x2 · · · xn] = w1x1+w2x2+· · ·+wnxn

I So perceptron outputs 1 when w · x + b > 0

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Notation changes

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Perceptron output function: only output 1 if
X

j

wjxj + b > 0

I Let’s represent all the wj , xj as vectors w, x
I Now we can use dot product instead of summation

:

[w1 w2 · · · wn]·[x1 x2 · · · xn] = w1x1+w2x2+· · ·+wnxn

I So perceptron outputs 1 when w · x + b > 0

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Notation changes

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Perceptron output function: only output 1 if
X

j

wjxj + b > 0

I Let’s represent all the wj , xj as vectors w, x
I Now we can use dot product instead of summation:

[w1 w2 · · · wn]·[x1 x2 · · · xn] = w1x1+w2x2+· · ·+wnxn

I So perceptron outputs 1 when w · x + b > 0

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?

It is the logit: z = w · x + b

I Small change in w or b) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b) small � in z and �(z)

I �(z) is differentiable

I �output approximated by derivative of function at
point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Incorporating the bias

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neuron has inputs xi and weights wi , i = 1, 2, . . . n

I Sometimes add x0, w0 to replace bias:
I Bias = x0w0
I x0 = 1, w0 is learned

I x = [x0 x1 . . . xn]T , w = [w0 w1 . . . wn]T

I z =
nX

i=0

wixi = w · x is the activation of the neuron

I y = f (z) =
1

1 + e�z
is the output (“activity”) of neuron

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Training a sigmoid neuron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Same basic idea as in training a perceptron:

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

-4 -2 0 2 4
si
gm
a(
z)

z

Sigmoid function

1/(1+exp(-z))

Target output for x

Actual output for x

- Want to choose Δz to move output toward target
- Determine slope at z
- Move in direction of increasing slope
- Problem: z isn’t a variable: it’s a dot product!
- Vector x is fixed (for an example)
- So we need to change vector w to move z to move
 toward target for same x

.

.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Derivatives of logistic neuron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Derivative of logit z wrt. weights, inputs:

z = b +
X

i

wixi

@z

@wi

= xi ,
@z

@xi

= wi

I Derivative of logistic equation:

y =
1

1 + e�z

dy

dz
=

1
1 + e�z

✓
1 �

1
1 + e�z

◆

= y(1 � y)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Derivatives of logistic neuron

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Use chain rule to differentiate y wrt wi :

@y

@wi

=
@z

@wi

dy

dz
= xiy(1 � y)

I Can get derivative of error wrt wi :

@E

@wi

=
X

n

@yn

@wi

@E

@yn
= �

X

n

x
n

i
y

n(1 � y
n)(an

� y
n)

where an means “a from training example n”
I First, last term) delta rule
I Middle term: slope of logistic equation

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Other non-linear neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Other non-perceptron neurons possible, often used
I tanh(z), rectifier, softplus, . . .

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Feedforward neural networks

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Feedforward networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks of sigmoid (or other non-perceptron)
neurons

I Multiple layers

I Input layer
I Output layer
I 1 or more hidden layers

I Sometimes: multilayer perceptrons (MLP) – though
not perceptrons

I In feedforward net: inputs ! hidden layers ! outputs
I Often dense networks (fully-connected between

layers)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

FFN

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Could be simple, moderately complex, very complex

1/2/17, 7'05 PMNeural networks and deep learning

Page 17 of 60file:///Users/rmt/Classes/COS470/2017-Spring/Readings/DeepLearningBook/neuralnetworksanddeeplearning.com/chap1.html

 for one of the perceptrons?

The architecture of neural networks
In the next section I'll introduce a neural network that can do a
pretty good job classifying handwritten digits. In preparation for
that, it helps to explain some terminology that lets us name
different parts of a network. Suppose we have the network:

As mentioned earlier, the leftmost layer in this network is called the
input layer, and the neurons within the layer are called input
neurons. The rightmost or output layer contains the output
neurons, or, as in this case, a single output neuron. The middle
layer is called a hidden layer, since the neurons in this layer are
neither inputs nor outputs. The term "hidden" perhaps sounds a
little mysterious - the first time I heard the term I thought it must
have some deep philosophical or mathematical significance - but it
really means nothing more than "not an input or an output". The
network above has just a single hidden layer, but some networks
have multiple hidden layers. For example, the following four-layer
network has two hidden layers:

w � x + b = 0

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

FFN

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Could be simple, moderately complex, very complex
1/2/17, 7'05 PMNeural networks and deep learning

Page 18 of 60file:///Users/rmt/Classes/COS470/2017-Spring/Readings/DeepLearningBook/neuralnetworksanddeeplearning.com/chap1.html

Somewhat confusingly, and for historical reasons, such multiple
layer networks are sometimes called multilayer perceptrons or
MLPs, despite being made up of sigmoid neurons, not perceptrons.
I'm not going to use the MLP terminology in this book, since I think
it's confusing, but wanted to warn you of its existence.

The design of the input and output layers in a network is often
straightforward. For example, suppose we're trying to determine
whether a handwritten image depicts a "9" or not. A natural way to
design the network is to encode the intensities of the image pixels
into the input neurons. If the image is a by greyscale image,
then we'd have input neurons, with the intensities
scaled appropriately between and . The output layer will contain
just a single neuron, with output values of less than indicating
"input image is not a 9", and values greater than indicating
"input image is a 9 ".

While the design of the input and output layers of a neural network
is often straightforward, there can be quite an art to the design of
the hidden layers. In particular, it's not possible to sum up the
design process for the hidden layers with a few simple rules of
thumb. Instead, neural networks researchers have developed many
design heuristics for the hidden layers, which help people get the

64 64
4, 096 = 64 � 64

0 1
0.5

0.5

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

FFN

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Could be simple, moderately complex, very complex

1/2/17, 7'05 PMNeural networks and deep learning

Page 21 of 60file:///Users/rmt/Classes/COS470/2017-Spring/Readings/DeepLearningBook/neuralnetworksanddeeplearning.com/chap1.html

individual digit classifier to score each trial segmentation. A trial
segmentation gets a high score if the individual digit classifier is
confident of its classification in all segments, and a low score if the
classifier is having a lot of trouble in one or more segments. The
idea is that if the classifier is having trouble somewhere, then it's
probably having trouble because the segmentation has been chosen
incorrectly. This idea and other variations can be used to solve the
segmentation problem quite well. So instead of worrying about
segmentation we'll concentrate on developing a neural network
which can solve the more interesting and difficult problem, namely,
recognizing individual handwritten digits.

To recognize individual digits we will use a three-layer neural
network:

The input layer of the network contains neurons encoding the
values of the input pixels. As discussed in the next section, our
training data for the network will consist of many by pixel
images of scanned handwritten digits, and so the input layer

28 28

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Inputs, outputs

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Inputs?
I “Clamped” to some activation
I Some “natural” representation

I Outputs?
I Classification or encoding?
I E.g., numeral recognition:

I Neuron for each numeral
I Why not binary coding?

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What can FFNs learn?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Output is composition of multiple “soft” thresholds

I FFN w/ single hidden layer: any continuous function,
any desired precision (w/ enough neurons)

I � 2 layers: discontinuous, too
I How many neurons?

I Exponential in the inputs
I Need O(2n/n) for all Boolean functions of n inputs

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Example: NN simulator

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Matrix form of NN

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Notation (from Nielsen)

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Assume a multilayer FF network
I wl

jk
: wt from neuron k in layer l � 1 to neuron j in

layer l

I Subscript: jk for ease of calculation (later)
I bl

j
: bias of neuron j in layer l

I al

j
: activation (output) of neuron j in layer l

a
l

j
= �

X

k

w
l

jk
a

l�1
k

+ b
l

j

!

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Notation (from Nielsen)

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Assume a multilayer FF network
I wl

jk
: wt from neuron k in layer l � 1 to neuron j in

layer l

I Subscript: jk for ease of calculation (later)
I bl

j
: bias of neuron j in layer l

I al

j
: activation (output) of neuron j in layer l

a
l

j
= �

X

k

w
l

jk
a

l�1
k

+ b
l

j

!

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Matrix form of NN

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Layer 1 Layer 3Layer 2

w 2
21

w 2
11

w 2
31

w 3
11

w 3
12

w 3
13

w 2
22

w 2
12

w 2
32

w 2
23

w 2
13

w 2
33

b21

b22

b23

x 2

x 3

x 1

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Matrix form of NN

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Layer 1 Layer 3Layer 2

w 2
21

w 2
11

w 2
31

w 3
11

w 3
12

w 3
13

w 2
22

w 2
12

w 2
32

w 2
23

w 2
13

w 2
33

b21

b22

b23

w 2
21

w 2
11

w 2
31

w 3
11 w 3

12 w 3
13w2 = w 2

22

w 2
12

w 2
32

w 2
23

w 2
13

w 2
33

w3 =

x2

x3

x 1

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Matrix form of NN

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Layer 1 Layer 3Layer 2

z2 =
(w2

11x1 + w2
12x2 + w2

13x3) + b2
1(w2

11x1 + w2
12x2 + w2

13x3) + b2
1

(w2
21x1 + w2

22x2 + w2
23x3) + b2

2(w2
21x1 + w2

22x2 + w2
23x3) + b2

2

(w2
31x1 + w2

32x2 + w2
33x3) + b2

2(w2
31x1 + w2

32x2 + w2
33x3) + b2

2

(w2
11x1 + w2

12x2 + w2
13x3) b2

1(w2
11x1 + w2

12x2 + w2
13x3) b2

1

(w2
21x1 + w2

22x2 + w2
23x3) b2

2(w2
21x1 + w2

22x2 + w2
23x3) b2

2

(w2
31x1 + w2

32x2 + w2
33x3) b2

2(w2
31x1 + w2

32x2 + w2
33x3) b2

2

+ w 2
21

w 2
11

w 2
31

w 2
22

w 2
12

w 2
32

w 2
23

w 2
13

w 2
33

x 2

x 3

x 1 b21

b22

b23

+ w2 x + b2

w 2
21

w 2
11

w 2
31

w 3
11

w 3
12

w 3
13

w 2
22

w 2
12

w 2
32

w 2
23

w 2
13

w 2
33

b21

b22

b23

w 2
21

w 2
11

w 2
31

w 3
11 w 3

12 w 3
13w2 = w 2

22

w 2
12

w 2
32

w 2
23

w 2
13

w 2
33

w3 =

x2

x3

x 1

= = =

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Matrix form of NN

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Layer 1 Layer 3Layer 2

z2 =
(w2

11x1 + w2
12x2 + w2

13x3) + b2
1(w2

11x1 + w2
12x2 + w2

13x3) + b2
1

(w2
21x1 + w2

22x2 + w2
23x3) + b2

2(w2
21x1 + w2

22x2 + w2
23x3) + b2

2

(w2
31x1 + w2

32x2 + w2
33x3) + b2

2(w2
31x1 + w2

32x2 + w2
33x3) + b2

2

(w2
11x1 + w2

12x2 + w2
13x3) b2

1(w2
11x1 + w2

12x2 + w2
13x3) b2

1

(w2
21x1 + w2

22x2 + w2
23x3) b2

2(w2
21x1 + w2

22x2 + w2
23x3) b2

2

(w2
31x1 + w2

32x2 + w2
33x3) b2

2(w2
31x1 + w2

32x2 + w2
33x3) b2

2

+ w 2
21

w 2
11

w 2
31

w 2
22

w 2
12

w 2
32

w 2
23

w 2
13

w 2
33

x 2

x 3

x 1 b21

b22

b23

+ w2 x + b2

w 2
21

w 2
11

w 2
31

w 3
11

w 3
12

w 3
13

w 2
22

w 2
12

w 2
32

w 2
23

w 2
13

w 2
33

b21

b22

b23

w 2
21

w 2
11

w 2
31

w 3
11 w 3

12 w 3
13w2 = w 2

22

w 2
12

w 2
32

w 2
23

w 2
13

w 2
33

w3 =

x2

x3

x 1

= = =

a2 = !()w2 x + b2

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Matrix form

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I General equation:

a
l = �(wl

a
l�1 + b

l)

I � is said to be “vectorized”
I Logit (weighted input) vector zl is important, too

z
l = w

l
a

l�1 + b
l

I So al = �(zl)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Gradient descent learning in FFNs

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What are we learning?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Network computes function of inputs
I Single output, n inputs w: hw(X)
I What if m > 1 outputs?

I Single layer net: separate into m nets, train
separately

I Multilayer: all outputs depend on hidden layer
weights

I) vector function
I Output function hw(x):

hw(x) = aL = �(wLal�1 + bL)

= �(wL(�(wl�1al�2 + bl�1) + bL)

. . .

= �(wL(�(· · · �(w2x + b
2) · · ·)) + bL)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What are we learning?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Network computes function of inputs
I Single output, n inputs w: hw(X)
I What if m > 1 outputs?

I Single layer net: separate into m nets, train
separately

I Multilayer: all outputs depend on hidden layer
weights

I) vector function
I Output function hw(x):

hw(x) = aL = �(wLal�1 + bL)

= �(wL(�(wl�1al�2 + bl�1) + bL)

. . .

= �(wL(�(· · · �(w2x + b
2) · · ·)) + bL)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What are we learning?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Network computes function of inputs
I Single output, n inputs w: hw(X)
I What if m > 1 outputs?

I Single layer net: separate into m nets, train
separately

I Multilayer: all outputs depend on hidden layer
weights

I) vector function
I Output function hw(x):

hw(x) = aL = �(wLal�1 + bL)

= �(wL(�(wl�1al�2 + bl�1) + bL)

. . .

= �(wL(�(· · · �(w2x + b
2) · · ·)) + bL)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What are we learning?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Network computes function of inputs
I Single output, n inputs w: hw(X)
I What if m > 1 outputs?

I Single layer net: separate into m nets, train
separately

I Multilayer: all outputs depend on hidden layer
weights

I) vector function
I Output function hw(x):

hw(x) = aL = �(wLal�1 + bL)

= �(wL(�(wl�1al�2 + bl�1) + bL)

. . .

= �(wL(�(· · · �(w2x + b
2) · · ·)) + bL)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Error function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I First, let’s eliminate b) into x
I Error of network:

I Let b = desired output
I Error on training example x:

Ew(x) = y � hw(x)

I But:
I Ew(x): positive/negative
I We don’t want any particular error element: want

average error
I Want to learn weights, so want a function of weights

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Minimizing cost function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I If we minimize C, minimize ||E||

I Using calculus, can find analytical solution
I But with n weights, n + 1-dimensional curve
I E.g., two dimension:

I Largest nets: billions of weights

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Gradient descent search

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Gradient descent search instead of analytical
solution

I Find local gradients wrt weights
I) n partial derivatives of C

I Take a small step in direction of decrease in all the
derivatives

I Repeat until close enough to minimum

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What is the local gradient?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For simplicity: two variables, v1, v2

I Then:
�C ⇡

@C

@v1
�v1 +

@C

@v2
�v2

I Let �v = [�v1 �v2]
T

I Then gradient of C is:

rC =

@C

@v1

@C

@v2

�T

I Thus �C ⇡ rC · �v

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What is the local gradient?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For simplicity: two variables, v1, v2

I Then:
�C ⇡

@C

@v1
�v1 +

@C

@v2
�v2

I Let �v = [�v1 �v2]
T

I Then gradient of C is:

rC =

@C

@v1

@C

@v2

�T

I Thus �C ⇡ rC · �v

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What is the local gradient?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For simplicity: two variables, v1, v2

I Then:
�C ⇡

@C

@v1
�v1 +

@C

@v2
�v2

I Let �v = [�v1 �v2]
T

I Then gradient of C is:

rC =

@C

@v1

@C

@v2

�T

I Thus �C ⇡ rC · �v

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What is the local gradient?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For simplicity: two variables, v1, v2

I Then:
�C ⇡

@C

@v1
�v1 +

@C

@v2
�v2

I Let �v = [�v1 �v2]
T

I Then gradient of C is:

rC =

@C

@v1

@C

@v2

�T

I Thus �C ⇡ rC · �v

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

What is the local gradient?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For simplicity: two variables, v1, v2

I Then:
�C ⇡

@C

@v1
�v1 +

@C

@v2
�v2

I Let �v = [�v1 �v2]
T

I Then gradient of C is:

rC =

@C

@v1

@C

@v2

�T

I Thus �C ⇡ rC · �v

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Updating the variables

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Must choose �v s.t. �C is negative
I Let �v = �⌘rC

I For ||�v || ✏, minimizes rC · �v

I Cost function now:

�C ⇡ rC · �⌘rC = �⌘||rC||
2

I Always negative
I ⌘ is learning rate (or ↵; depends on author)
I New variable vector v: vt+1 = vt � ⌘rC

I Now generalize v ! w (including b)
I BTW: Other gradient descent functions have been

tried

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Choosing learning rate

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I How to choose ⌘?

η too large η too small

I If too large) may overshoot minimum
I If too small) will take a very long time to find

minimum

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Computing gradient

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Difficult
I Cost function: Must compute all Cx then average

C =
1
n

X

x

Cx =
1
n

X

x

||y(x) � a||
2

2

I To find overall gradient rC:

rC =
1
n

X

x

rCx

I With many training examples, costly) slow learning

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Stochastic gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Speeds up learning
I Estimate rC:

I Choose small sample of inputs randomly: a
mini-batch

I Compute rCx for these to estimate rC

I If batch size is large enough, average ⇡ rC

I Idea:
I Randomly partition training examples into

mini-batches
I Train with each mini-batch

I Doing this: epoch

I Repeat until error is satisfactory

I Problem: Don’t know how to calculate rC with
hidden layers!

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Stochastic gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Speeds up learning
I Estimate rC:

I Choose small sample of inputs randomly: a
mini-batch

I Compute rCx for these to estimate rC

I If batch size is large enough, average ⇡ rC

I Idea:
I Randomly partition training examples into

mini-batches
I Train with each mini-batch

I Doing this: epoch

I Repeat until error is satisfactory
I Problem: Don’t know how to calculate rC with

hidden layers!

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Computing the gradient rC of the cost function:

I Composed of
@C

@w
,

@C

@b
– where w , b are vectors

I May be very difficult to compute

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Backpropagation algorithm (Rumelhart, Hinton, &
Williams, 1986)

I Rather than trying to adjust all weights at once, do it
by layers

I Compare output layer with target

I Compute error, use it to update weights from
previous hidden layer to output layer

I Now propagate error in expected outputs of hidden
layer backward, etc.

I Propagate by dividing responsibility for error at
neuron in l according to contribution from each
neuron in l � 1

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Backpropagation algorithm (Rumelhart, Hinton, &
Williams, 1986)

I Rather than trying to adjust all weights at once, do it
by layers

I Compare output layer with target
I Compute error, use it to update weights from

previous hidden layer to output layer

I Now propagate error in expected outputs of hidden
layer backward, etc.

I Propagate by dividing responsibility for error at
neuron in l according to contribution from each
neuron in l � 1

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Backpropagation algorithm (Rumelhart, Hinton, &
Williams, 1986)

I Rather than trying to adjust all weights at once, do it
by layers

I Compare output layer with target
I Compute error, use it to update weights from

previous hidden layer to output layer
I Now propagate error in expected outputs of hidden

layer backward, etc.

I Propagate by dividing responsibility for error at
neuron in l according to contribution from each
neuron in l � 1

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Backpropagation algorithm (Rumelhart, Hinton, &
Williams, 1986)

I Rather than trying to adjust all weights at once, do it
by layers

I Compare output layer with target
I Compute error, use it to update weights from

previous hidden layer to output layer
I Now propagate error in expected outputs of hidden

layer backward, etc.
I Propagate by dividing responsibility for error at

neuron in l according to contribution from each
neuron in l � 1

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Error in output layer

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I First define vector �L, where for element j :

�L

j
=

@C

@aL

j

�0(zL

j
)

where:

I @C

@aL

j

: how fast the cost function is changing due to j ’s
output

I �0(·): 1st deriv. of �(·)
I zL

j
: weighted input to j

I Thus �0(zL

j
) is how fast � is changing at zL

j

I �L is a measure of error at L

I zL

j
already computed, �0(zL

j
) easy to compute

I @C

@aL

j

for quadratic cost function: @C

@aL

j

= (aL

j
� yj)

I So for quadratic: �L

j
= (aL

j
� yj)�

0(zL

j
)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Error in output layer

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I First define vector �L, where for element j :

�L

j
=

@C

@aL

j

�0(zL

j
)

where:
I @C

@aL

j

: how fast the cost function is changing due to j ’s
output

I �0(·): 1st deriv. of �(·)
I zL

j
: weighted input to j

I Thus �0(zL

j
) is how fast � is changing at zL

j

I �L is a measure of error at L

I zL

j
already computed, �0(zL

j
) easy to compute

I @C

@aL

j

for quadratic cost function: @C

@aL

j

= (aL

j
� yj)

I So for quadratic: �L

j
= (aL

j
� yj)�

0(zL

j
)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Error in output layer

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I First define vector �L, where for element j :

�L

j
=

@C

@aL

j

�0(zL

j
)

where:
I @C

@aL

j

: how fast the cost function is changing due to j ’s
output

I �0(·): 1st deriv. of �(·)

I zL

j
: weighted input to j

I Thus �0(zL

j
) is how fast � is changing at zL

j

I �L is a measure of error at L

I zL

j
already computed, �0(zL

j
) easy to compute

I @C

@aL

j

for quadratic cost function: @C

@aL

j

= (aL

j
� yj)

I So for quadratic: �L

j
= (aL

j
� yj)�

0(zL

j
)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Error in output layer

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I First define vector �L, where for element j :

�L

j
=

@C

@aL

j

�0(zL

j
)

where:
I @C

@aL

j

: how fast the cost function is changing due to j ’s
output

I �0(·): 1st deriv. of �(·)
I zL

j
: weighted input to j

I Thus �0(zL

j
) is how fast � is changing at zL

j

I �L is a measure of error at L

I zL

j
already computed, �0(zL

j
) easy to compute

I @C

@aL

j

for quadratic cost function: @C

@aL

j

= (aL

j
� yj)

I So for quadratic: �L

j
= (aL

j
� yj)�

0(zL

j
)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Error in output layer

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I First define vector �L, where for element j :

�L

j
=

@C

@aL

j

�0(zL

j
)

where:
I @C

@aL

j

: how fast the cost function is changing due to j ’s
output

I �0(·): 1st deriv. of �(·)
I zL

j
: weighted input to j

I Thus �0(zL

j
) is how fast � is changing at zL

j

I �L is a measure of error at L

I zL

j
already computed, �0(zL

j
) easy to compute

I @C

@aL

j

for quadratic cost function: @C

@aL

j

= (aL

j
� yj)

I So for quadratic: �L

j
= (aL

j
� yj)�

0(zL

j
)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Error in output layer

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I First define vector �L, where for element j :

�L

j
=

@C

@aL

j

�0(zL

j
)

where:
I @C

@aL

j

: how fast the cost function is changing due to j ’s
output

I �0(·): 1st deriv. of �(·)
I zL

j
: weighted input to j

I Thus �0(zL

j
) is how fast � is changing at zL

j

I �L is a measure of error at L

I zL

j
already computed, �0(zL

j
) easy to compute

I @C

@aL

j

for quadratic cost function: @C

@aL

j

= (aL

j
� yj)

I So for quadratic: �L

j
= (aL

j
� yj)�

0(zL

j
)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Error in output layer

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I First define vector �L, where for element j :

�L

j
=

@C

@aL

j

�0(zL

j
)

where:
I @C

@aL

j

: how fast the cost function is changing due to j ’s
output

I �0(·): 1st deriv. of �(·)
I zL

j
: weighted input to j

I Thus �0(zL

j
) is how fast � is changing at zL

j

I �L is a measure of error at L

I zL

j
already computed, �0(zL

j
) easy to compute

I @C

@aL

j

for quadratic cost function: @C

@aL

j

= (aL

j
� yj)

I So for quadratic: �L

j
= (aL

j
� yj)�

0(zL

j
)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Error in output layer

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I First define vector �L, where for element j :

�L

j
=

@C

@aL

j

�0(zL

j
)

where:
I @C

@aL

j

: how fast the cost function is changing due to j ’s
output

I �0(·): 1st deriv. of �(·)
I zL

j
: weighted input to j

I Thus �0(zL

j
) is how fast � is changing at zL

j

I �L is a measure of error at L

I zL

j
already computed, �0(zL

j
) easy to compute

I @C

@aL

j

for quadratic cost function: @C

@aL

j

= (aL

j
� yj)

I So for quadratic: �L

j
= (aL

j
� yj)�

0(zL

j
)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Error in output layer

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I First define vector �L, where for element j :

�L

j
=

@C

@aL

j

�0(zL

j
)

where:
I @C

@aL

j

: how fast the cost function is changing due to j ’s
output

I �0(·): 1st deriv. of �(·)
I zL

j
: weighted input to j

I Thus �0(zL

j
) is how fast � is changing at zL

j

I �L is a measure of error at L

I zL

j
already computed, �0(zL

j
) easy to compute

I @C

@aL

j

for quadratic cost function: @C

@aL

j

= (aL

j
� yj)

I So for quadratic: �L

j
= (aL

j
� yj)�

0(zL

j
)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Hadamard product

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Need a new operator to simplify expressions
I Define Hadamard product as: s � t = h s.t.

hj = sj ⇥ tj

I I.e., elementwise product – e.g.:2

4
�2
20
3

3

5 �

2

4
3
2
1

3

5 =

2

4
�6
40
3

3

5

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Error in output layer

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I �L

j
= @C

@aL

j

�0(zL

j
)

I Can be rewritten as:

�L = raC � �0(zL)

I Or
�L = (aL

� y) � �0(zL)

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Finding previous layer’s error

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I If we know �l+1, can we find �l?
I (wl+1)T = transpose of weight matrix into l + 1
I (wl+1)T �l+1:

I Moves error backward
I Gives measure of error at layer l

I Then
�l = ((wl+1)T �l+1) � �0(zl)

I Can now compute the error at any layer

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Rate of change for biases, weights

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For any weight in the network:

@C

@wl

jk

= a
l�1
k

�l

j

I For any bias in the network:

@C

@bl

j

= �L

j

since “activation” for any bias is just 1

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:

I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)

I Compute the output error:

I �x,L = raCx � �0(zx,L)

I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:

I Next wl = wl
�

⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)
I Compute the output error:

I �x,L = raCx � �0(zx,L)

I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:

I Next wl = wl
�

⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)
I Compute the output error:

I �x,L = raCx � �0(zx,L)

I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:

I Next wl = wl
�

⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)

I Compute the output error:

I �x,L = raCx � �0(zx,L)

I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:

I Next wl = wl
�

⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)
I Compute the output error:

I �x,L = raCx � �0(zx,L)
I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:

I Next wl = wl
�

⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)
I Compute the output error:

I �x,L = raCx � �0(zx,L)

I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:

I Next wl = wl
�

⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)
I Compute the output error:

I �x,L = raCx � �0(zx,L)
I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:

I Next wl = wl
�

⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)
I Compute the output error:

I �x,L = raCx � �0(zx,L)
I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:

I Next wl = wl
�

⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)
I Compute the output error:

I �x,L = raCx � �0(zx,L)
I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:

I Next wl = wl
�

⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)
I Compute the output error:

I �x,L = raCx � �0(zx,L)
I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:
I Next wl = wl

�
⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)
I Compute the output error:

I �x,L = raCx � �0(zx,L)
I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:
I Next wl = wl

�
⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)
I Compute the output error:

I �x,L = raCx � �0(zx,L)
I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:
I Next wl = wl

�
⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backpropagation & gradient descent

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I For each x 2 m training examples:
I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)
I Compute the output error:

I �x,L = raCx � �0(zx,L)
I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:
I Next wl = wl

�
⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Backprop algorithm

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

2/27/17, 8(44 PMArtificial Intelligence: A Modern Approach, 3/e

Page 1 of 2https://jigsaw.vitalsource.com/api/v0/books/9780133001983/print?from=734&to=734

PRINTED BY: rmt@umcs.maine.edu. Printing is for personal, private use only. No part of this book may be reproduced or transmitted without publisher's
prior permission. Violators will be prosecuted.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Speed of backprop

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I What if we had instead done what we did in HC?
I For each timestep, look at small changes in the

weights
I Pick set that decreases error

I Could do this for each weight separately, too
I If we have millions of weights, requires millions of

passes through network
I With backprop: one forward, one backward pass, no

matter how many weights

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until

I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them

I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until

I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until

I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until

I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until

I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until

I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate

I Can have opposite problem, depending on net:
exploding gradient problem

I Stymied researchers for many years – until

I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until

I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until

I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until
I Faster machines

I Better versions of backprop-ish algorithms invented
I) tremendous increase in deep learning research,

applications
I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until
I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until
I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Deep learning

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until
I Faster machines
I Better versions of backprop-ish algorithms invented

I) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Summary

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Neural network training:

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

. . . and. . .

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

What can they do?

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

What can they do?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

How do they work?

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

How do they work?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Autoencoders

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Autoencoders

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Restricted Boltzmann machines

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Restricted Boltzmann machines

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Feed-forward NN

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Feed-forward NN

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Deep learning nets

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Deep learning nets

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Building them: Keras, TensorFlow,
PyTorch, etc.

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary
Neural network training:

. . . and. . .

What can they do?

How do they work?

Autoencoders

Restricted Boltzmann
machines

Feed-forward NN

Deep learning nets

Building them: Keras,
TensorFlow, PyTorch, etc.

Building them: Keras, TensorFlow, PyTorch,
etc.

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

