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Artificial neural networks

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Systems of simple computing elements: neurons

I Each neuron accepts inputs from others, produces
activation

I Neurons connected via weights that modulate
activation

I Can be viewed as:
I Pattern-learning (inductive) systems
I Statistical programs
I Dimension/feature-changing systems
I Search programs (in weight space)
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What can they do?
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I Image classification and labeling
I Word recognition
I Natural language systems
I Machine translation systems
I General pattern recognition
I Superhuman-level performance on games, other RL

tasks
I Pattern generators (images, music, . . . )
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Inspiration: Natural pattern recognition
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I Pattern recognition in natural world:
I Chemoreceptors
I Immune system
I Biological neural networks

I Animal/human vision system
I Auditory system
I Neocortex
I Etc.
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Neural systems
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I Most flexible pattern recognizers:
I Biological computing elements: Neurons
I Neurons are excitatory cells
I Connections determine how activation spreads
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Problem: Complexity
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I Neurons are very complex
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I Neurons are very complex

I Synapses: change potential across cell membrane
I Neuron effectively sums excitations, inhibitions
I At some point: potential at threshold and neuron fires

I Excitatory pulse down axon, release neurotransmitter at
synapses

I Lots more to it than this!
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I Connectsome is incredibly complex
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First simple artificial neuron: Perceptron
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I McCulloch & Pitts
I Very simple model of a neuron
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First simple artificial neuron: Perceptron
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I McCulloch & Pitts
I Very simple model of a neuron
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Notes on: Neural Networks and Deep Learning

(nielsen15; Michael Nielsen)

1/2/2017

1 Source:

Nielsen, Michael A., Neural Networks and Deep Learning, Determination Press, 2015.

2 Chapter 1

2.1 Perceptrons (McCulloch & Pitts)

• Binary inputs, weights, binary output

• Threshold function: output =

�
��

��

0 if
X

j

wjxj  threshold

1 otherwise
• Usually shift the threshold to other side of equation ) bias; i.e., bias = � threshold

– bias represents how easy it is to get neuron to fire: larger bias ) easier to fire

output =

�
��

��

0 if
X

j

wjxj + b  0

1 otherwise
• Change of form to get rid of summation – use dot product, treat the weights and inputs as

vectors:

output =

�
0 if wj · xj + b  0

1 otherwise
• Talks about using perceptron to weight evidence represented by the inputs
• A perceptron can implement any basic logical function (AND, OR, NOT, NAND)

– E.g., NAND: suppose there are two inputs, each with a weight of -2, and b = 3
– 00: (-2)(0) + (-2)(0) + 3 = 3 ) 1
– 01, 10: (-2)(1) + (-2)(1) + 3 = 1 ) 1
– 11: (-2)(1) + (-2)(1) + 3 = -4 ) 0

• ) networks of perceptrons can compute any logical function
• This includes the infamous XOR – but we’re using a network of perceptrons, not just one

1
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I Very simple model of a neuron
I Usually change threshold to bias (= �threshold)
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What can they do?
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I “Weigh evidence” ) decision

I E.g.:

I output = “study”
I x1 = test on Monday, x2 = confident of material, x3 =

doing poorly in class
I w1 = 1, w2 = -1, w3 = 2
I bias = 0
I Test on Monday, confident, doing well in class )

output = 0
I Test on Monday, not confident, doing well ) output

= 1
I Test on Monday, confident, doing poorly:

1 + (�1) + 2 = 2 ) output = 1
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I Rosenblatt’s perceptron algorithm

I Use training examples

I Modify weights such that output error is minimized
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I Let:
I yk = desired output for example k

I ak = actual output for example k

I Error on example k = yk � ak

I Define an error function Ek for example k

E =
X

k

Ek =
1
2

X

k

(yk � ak )
2

I Why?
I Squaring make error always positive (parabola)
I The 1/2 “makes the math easier” (as we’ll see)
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I Goal: minimize E by minimizing each Ek

I Ek is a function of the weights
I Use gradient descent instead
I With one weight:

I Slope at point:
dEk

dxi

tells which direction to move

w
0
1 = w1 � ↵

dEk

dxi

where ↵ is the learning rate
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I Suppose there are 2 weights, x and y

I Now “slope” is really the gradient r at (x , y)

r(wi) =
@Ek

@wi

and wi,t+1 = wi,t � ↵
@Ek

@wi,t

I Gradient descent: hill-climbing in multiple dimensions
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I So for each example < (x1, x2, · · · , xn), y >
I Compute output a

I Adjust weights:

wi,t+1 = wi,t + ↵(y � a)xi

for all weights weights wi
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I Algorithm first in IBM 704 in late 50s

I Then:

I Mark I Perceptron Machine (Wikipedia)
I Image recognition: 20×20 photocell array
I Potentiometers: weights
I Pots adjusted by motors from learning
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(defclass perceptron ()
((num-inputs :initarg :num-inputs :initform 3

:accessor num-inputs)
(inputs :initarg :inputs :initform nil :accessor inputs)
(weights :initarg :weights :initform nil

:accessor weights)
(bias :initarg :bias :initform 0 :accessor bias)
(output :initarg :output :initform nil :accessor output)
(target :initarg :target :initform nil :accessor target)
(alpha :initarg :alpha :initform 1.0 :accessor alpha)
)
)

(defmethod initialize-instance :after ((self perceptron)
&rest l)

(declare (ignore l))
(with-slots (num-inputs weights) self
(setq weights

(loop for i from 1 to num-inputs
collect (random 1.0)))))
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(defmethod compute-output ((self perceptron))
(with-slots (output bias inputs weights) self
(setq output (if (> (+ bias

(apply #’+
(mapcar #’* inputs

weights)))
0.0)

1
0))))

(defmethod adjust-weights ((self perceptron))
(with-slots (inputs weights target output alpha) self
(compute-output self)
(let ((delta (loop for weight in weights
for input in inputs

collect (* alpha (- target output)
input))))

(format t
"~s -> ~s (desired = ~s), weights=~s, delta=~s~%"

inputs output target weights delta)
(setq weights (mapcar #’+ weights delta))
(format t " new weights=~s~%" weights))))
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(defmethod train ((self perceptron) examples)
(with-slots (inputs target output weights) self
(loop for count from 1 to (length examples)

for example in examples
do (setf inputs (car example)

target (cadr example))
(compute-output self)
(adjust-weights self)
(compute-output self)
)))
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(defvar *perceptron* nil)

(defun train-for-tt (&key new? examples (bias -6) (inputs 3))
(when new?

(setq *perceptron* (make-instance ’perceptron
:bias bias :num-inputs inputs)))
(train *perceptron* examples)
;; now check it:
(loop for thing in examples

do (setf (inputs *perceptron*) (car thing))
(compute-output *perceptron*)
(format t "~s => ~s~%" (car thing)
(output *perceptron*))))
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(defvar *and-tt* ’(((0 0) 0)
((0 1) 0)
((1 0) 0)
((1 1) 1)))

(defvar *or-tt* ’(((0 0) 0)
((0 1) 1)
((1 0) 1)
((1 1) 1)))

(defvar *xor-tt* ’(((0 0) 0)
((0 1) 1)
((1 0) 1)
((1 1) 0)))
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I Linear classifier:
I Finds line/plane/hyperplane separating class 1 from

class 2
I 2 inputs ) line between sets
I 3 inputs ) plane, etc.

I Sets can be separated by hyperplane )

linearly-separable

I Training set linearly-separable, algorithm converges
I Example: can learn NAND function
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I May not be a unique solution

I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function
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I May not be a unique solution
I Thus may have suboptimal learning
I Support vector machine (SM): “perceptron of optimal

stability”
I Worse problem: can’t learn even simple

non-linearly-separable function
I Minsky & Papert (1960): Perceptrons book
I Perceptron can’t learn XOR function
I Killed perceptron research for a while
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I Single perceptron: very limited

I Idea: hook a bunch together in a network
I What can a perceptron network do?

I Based on what you know, what do you think?
I Hint: perceptron can implement NAND function
I NAND forms complete gate/boolean function set
I ) ) any binary function, ) Turing-equivalent

I E.g., a half-adder:
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One notable aspect of this network of perceptrons is that the output
from the leftmost perceptron is used twice as input to the
bottommost perceptron. When I defined the perceptron model I
didn't say whether this kind of double-output-to-the-same-place
was allowed. Actually, it doesn't much matter. If we don't want to
allow this kind of thing, then it's possible to simply merge the two
lines, into a single connection with a weight of -4 instead of two
connections with -2 weights. (If you don't find this obvious, you
should stop and prove to yourself that this is equivalent.) With that
change, the network looks as follows, with all unmarked weights
equal to -2, all biases equal to 3, and a single weight of -4, as
marked:

Up to now I've been drawing inputs like  and  as variables
floating to the left of the network of perceptrons. In fact, it's
conventional to draw an extra layer of perceptrons - the input layer
- to encode the inputs:

x1 x2

-2
3

-2

-2

-2 -2

-2-2
-2-2

-2

33

3

3
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I So we’re done, right?

I Not quite
I Want property: small �w ) small �output
I But perceptrons have step function

I Small input change can give completely different
output

I Step function isn’t differentiable

I Can’t easily find weights ) minimum error
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I Instead of step function, use differentiable function
I E.g.: use sigmoid neurons (logistic neurons)

I Output is sigmoid function �(z) =
1

1 + e�z

I What is z in this case?) weighted input, bias sum
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I Perceptron output function: only output 1 if
X

j

wjxj + b > 0

I Let’s represent all the wj , xj as vectors w, x
I Now we can use dot product instead of summation:

[w1 w2 · · · wn]·[x1 x2 · · · xn] = w1x1+w2x2+· · ·+wnxn

I So perceptron outputs 1 when w · x + b > 0
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I Sigmoid:

�(z) =
1

1 + e�z

I What is z?

It is the logit: z = w · x + b

I Small change in w or b ) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias



Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b ) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b ) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b ) small � in z and �(z)

I �(z) is differentiable

I �output approximated by derivative of function at
point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b ) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias



Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b ) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Sigmoid neurons

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Sigmoid:

�(z) =
1

1 + e�z

I What is z?
It is the logit: z = w · x + b

I Small change in w or b ) small � in z and �(z)

I �(z) is differentiable
I �output approximated by derivative of function at

point:

�output ⇡ ⌃j

@ output
@wj

�wj +
@ output

@b
�b

I Now �output is a linear function of changes of
weights & bias

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Incorporating the bias

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Neuron has inputs xi and weights wi , i = 1, 2, . . . n

I Sometimes add x0, w0 to replace bias:
I Bias = x0w0
I x0 = 1, w0 is learned

I x = [x0 x1 . . . xn]T , w = [w0 w1 . . . wn]T

I z =
nX

i=0

wixi = w · x is the activation of the neuron

I y = f (z) =
1

1 + e�z
is the output (“activity”) of neuron
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Same basic idea as in training a perceptron:
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Target output for x

Actual output for x

- Want to choose Δz to move output toward target
- Determine slope at z
- Move in direction of increasing slope
- Problem: z isn’t a variable: it’s a dot product!
- Vector x is fixed (for an example)
- So we need to change vector w to move z to move
  toward target for same x

.

.
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I Derivative of logit z wrt. weights, inputs:

z = b +
X

i

wixi

@z

@wi

= xi ,
@z

@xi

= wi

I Derivative of logistic equation:

y =
1

1 + e�z

dy

dz
=

1
1 + e�z

✓
1 �

1
1 + e�z

◆

= y(1 � y)
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I Use chain rule to differentiate y wrt wi :

@y

@wi

=
@z

@wi

dy

dz
= xiy(1 � y)

I Can get derivative of error wrt wi :

@E

@wi

=
X

n

@yn

@wi

@E

@yn
= �

X

n

x
n

i
y

n(1 � y
n)(an

� y
n)

where an means “a from training example n”
I First, last term ) delta rule
I Middle term: slope of logistic equation
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I Other non-perceptron neurons possible, often used
I tanh(z), rectifier, softplus, . . .
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I Networks of sigmoid (or other non-perceptron)
neurons

I Multiple layers

I Input layer
I Output layer
I 1 or more hidden layers

I Sometimes: multilayer perceptrons (MLP) – though
not perceptrons

I In feedforward net: inputs ! hidden layers ! outputs
I Often dense networks (fully-connected between

layers)
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I Could be simple, moderately complex, very complex
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 for one of the perceptrons?

The architecture of neural networks
In the next section I'll introduce a neural network that can do a
pretty good job classifying handwritten digits. In preparation for
that, it helps to explain some terminology that lets us name
different parts of a network. Suppose we have the network:

As mentioned earlier, the leftmost layer in this network is called the
input layer, and the neurons within the layer are called input
neurons. The rightmost or output layer contains the output
neurons, or, as in this case, a single output neuron. The middle
layer is called a hidden layer, since the neurons in this layer are
neither inputs nor outputs. The term "hidden" perhaps sounds a
little mysterious - the first time I heard the term I thought it must
have some deep philosophical or mathematical significance - but it
really means nothing more than "not an input or an output". The
network above has just a single hidden layer, but some networks
have multiple hidden layers. For example, the following four-layer
network has two hidden layers:

w � x + b = 0
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I Could be simple, moderately complex, very complex
1/2/17, 7'05 PMNeural networks and deep learning

Page 18 of 60file:///Users/rmt/Classes/COS470/2017-Spring/Readings/DeepLearningBook/neuralnetworksanddeeplearning.com/chap1.html

Somewhat confusingly, and for historical reasons, such multiple
layer networks are sometimes called multilayer perceptrons or
MLPs, despite being made up of sigmoid neurons, not perceptrons.
I'm not going to use the MLP terminology in this book, since I think
it's confusing, but wanted to warn you of its existence.

The design of the input and output layers in a network is often
straightforward. For example, suppose we're trying to determine
whether a handwritten image depicts a "9" or not. A natural way to
design the network is to encode the intensities of the image pixels
into the input neurons. If the image is a  by  greyscale image,
then we'd have  input neurons, with the intensities
scaled appropriately between  and . The output layer will contain
just a single neuron, with output values of less than  indicating
"input image is not a 9", and values greater than  indicating
"input image is a 9 ".

While the design of the input and output layers of a neural network
is often straightforward, there can be quite an art to the design of
the hidden layers. In particular, it's not possible to sum up the
design process for the hidden layers with a few simple rules of
thumb. Instead, neural networks researchers have developed many
design heuristics for the hidden layers, which help people get the

64 64
4, 096 = 64 � 64
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I Could be simple, moderately complex, very complex
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individual digit classifier to score each trial segmentation. A trial
segmentation gets a high score if the individual digit classifier is
confident of its classification in all segments, and a low score if the
classifier is having a lot of trouble in one or more segments. The
idea is that if the classifier is having trouble somewhere, then it's
probably having trouble because the segmentation has been chosen
incorrectly. This idea and other variations can be used to solve the
segmentation problem quite well. So instead of worrying about
segmentation we'll concentrate on developing a neural network
which can solve the more interesting and difficult problem, namely,
recognizing individual handwritten digits.

To recognize individual digits we will use a three-layer neural
network:

The input layer of the network contains neurons encoding the
values of the input pixels. As discussed in the next section, our
training data for the network will consist of many  by  pixel
images of scanned handwritten digits, and so the input layer

28 28
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I Inputs?
I “Clamped” to some activation
I Some “natural” representation

I Outputs?
I Classification or encoding?
I E.g., numeral recognition:

I Neuron for each numeral
I Why not binary coding?
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What can FFNs learn?
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I Output is composition of multiple “soft” thresholds

I FFN w/ single hidden layer: any continuous function,
any desired precision (w/ enough neurons)

I � 2 layers: discontinuous, too
I How many neurons?

I Exponential in the inputs
I Need O(2n/n) for all Boolean functions of n inputs
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Example: NN simulator
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I Assume a multilayer FF network
I wl

jk
: wt from neuron k in layer l � 1 to neuron j in

layer l

I Subscript: jk for ease of calculation (later)
I bl

j
: bias of neuron j in layer l

I al

j
: activation (output) of neuron j in layer l

a
l

j
= �

 
X

k

w
l

jk
a

l�1
k

+ b
l

j

!
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Layer 1 Layer 3Layer 2

z2 = 
(w2

11x1 + w2
12x2 + w2
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I General equation:

a
l = �(wl

a
l�1 + b

l)

I � is said to be “vectorized”
I Logit (weighted input) vector zl is important, too

z
l = w

l
a

l�1 + b
l

I So al = �(zl)
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What are we learning?

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Network computes function of inputs
I Single output, n inputs w: hw(X)
I What if m > 1 outputs?

I Single layer net: separate into m nets, train
separately

I Multilayer: all outputs depend on hidden layer
weights

I ) vector function
I Output function hw(x):

hw(x) = aL = �(wLal�1 + bL)

= �(wL(�(wl�1al�2 + bl�1) + bL)

. . .

= �(wL(�(· · · �(w2x + b
2) · · · )) + bL)
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I First, let’s eliminate b ) into x
I Error of network:

I Let b = desired output
I Error on training example x:

Ew(x) = y � hw(x)

I But:
I Ew(x): positive/negative
I We don’t want any particular error element: want

average error
I Want to learn weights, so want a function of weights
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Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y



Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Cost (loss) function

AI
rtificial

ntelligenceCopyright © 2019 UMaine School of Computing and Information Science

I Define a cost (loss, objective) function:

Cx(w) =
1
2
||(Ew(x))||2

=
1
2
||y � hw(x)||2

=
1
2

X

m

(ym � a
L
m)

2

I Cx(w): quadratic cost (MSE) function

I Entire cost function: average over all xi :

C(w) =
1
n

X

i

Cxi
(w)

I Always positive, ! 0 as output ! y

Machine Learning:
Part I

Introduction

Perceptrons

Nonlinear neurons

Feedforward
neural networks

Matrix form of NN

Gradient descent
learning in FFNs

Backpropagation

Deep learning

Summary

Minimizing cost function
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I If we minimize C, minimize ||E||

I Using calculus, can find analytical solution
I But with n weights, n + 1-dimensional curve
I E.g., two dimension:

I Largest nets: billions of weights
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Gradient descent search
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I Gradient descent search instead of analytical
solution

I Find local gradients wrt weights
I ) n partial derivatives of C

I Take a small step in direction of decrease in all the
derivatives

I Repeat until close enough to minimum
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What is the local gradient?
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I For simplicity: two variables, v1, v2

I Then:
�C ⇡

@C

@v1
�v1 +

@C

@v2
�v2

I Let �v = [�v1 �v2]
T

I Then gradient of C is:

rC =


@C

@v1

@C

@v2

�T

I Thus �C ⇡ rC · �v
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Updating the variables
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I Must choose �v s.t. �C is negative
I Let �v = �⌘rC

I For ||�v ||  ✏, minimizes rC · �v

I Cost function now:

�C ⇡ rC · �⌘rC = �⌘||rC||
2

I Always negative
I ⌘ is learning rate (or ↵; depends on author)
I New variable vector v: vt+1 = vt � ⌘rC

I Now generalize v ! w (including b)
I BTW: Other gradient descent functions have been

tried
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Choosing learning rate
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I How to choose ⌘?

η too large η too small

I If too large ) may overshoot minimum
I If too small ) will take a very long time to find

minimum
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Computing gradient
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I Difficult
I Cost function: Must compute all Cx then average

C =
1
n

X

x

Cx =
1
n

X

x

||y(x) � a||
2

2

I To find overall gradient rC:

rC =
1
n

X

x

rCx

I With many training examples, costly ) slow learning
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Stochastic gradient descent
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I Speeds up learning
I Estimate rC:

I Choose small sample of inputs randomly: a
mini-batch

I Compute rCx for these to estimate rC

I If batch size is large enough, average ⇡ rC

I Idea:
I Randomly partition training examples into

mini-batches
I Train with each mini-batch

I Doing this: epoch

I Repeat until error is satisfactory

I Problem: Don’t know how to calculate rC with
hidden layers!
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Backpropagation
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I Computing the gradient rC of the cost function:

I Composed of
@C

@w
,

@C

@b
– where w , b are vectors

I May be very difficult to compute
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Backpropagation
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I Backpropagation algorithm (Rumelhart, Hinton, &
Williams, 1986)

I Rather than trying to adjust all weights at once, do it
by layers

I Compare output layer with target

I Compute error, use it to update weights from
previous hidden layer to output layer

I Now propagate error in expected outputs of hidden
layer backward, etc.

I Propagate by dividing responsibility for error at
neuron in l according to contribution from each
neuron in l � 1
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Backpropagation
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Error in output layer
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I First define vector �L, where for element j :

�L

j
=

@C

@aL

j

�0(zL

j
)

where:

I @C

@aL

j

: how fast the cost function is changing due to j ’s
output

I �0(·): 1st deriv. of �(·)
I zL

j
: weighted input to j

I Thus �0(zL

j
) is how fast � is changing at zL

j

I �L is a measure of error at L

I zL

j
already computed, �0(zL

j
) easy to compute

I @C

@aL

j

for quadratic cost function: @C

@aL

j

= (aL

j
� yj)

I So for quadratic: �L

j
= (aL

j
� yj)�

0(zL

j
)
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I Need a new operator to simplify expressions
I Define Hadamard product as: s � t = h s.t.

hj = sj ⇥ tj

I I.e., elementwise product – e.g.:2

4
�2
20
3

3

5 �
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I �L

j
= @C

@aL

j

�0(zL

j
)

I Can be rewritten as:

�L = raC � �0(zL)

I Or
�L = (aL

� y) � �0(zL)
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I If we know �l+1, can we find �l?
I (wl+1)T = transpose of weight matrix into l + 1
I (wl+1)T �l+1:

I Moves error backward
I Gives measure of error at layer l

I Then
�l = ((wl+1)T �l+1) � �0(zl)

I Can now compute the error at any layer
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I For any weight in the network:

@C

@wl

jk

= a
l�1
k

�l

j

I For any bias in the network:

@C

@bl

j

= �L

j

since “activation” for any bias is just 1
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I For each x 2 m training examples:

I Feedforward: for each layer l , compute:

I zx,l = wlax,l�1 + bl

I ax,l = �(zx,l)

I Compute the output error:

I �x,L = raCx � �0(zx,L)

I Backpropagate error for each layer l :

I �x,l = ((wl+1)T �x,l+1)� �0(zx,l)

I Gradient descent: For each layer from L ! 2:

I Next wl = wl
�

⌘

m

X

x

�x,l(ax,l�1)T

I Next bl = bl
�

⌘

m

X

x

�x,l

Do for some # of epochs, some # mini-batches each.
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I What if we had instead done what we did in HC?
I For each timestep, look at small changes in the

weights
I Pick set that decreases error

I Could do this for each weight separately, too
I If we have millions of weights, requires millions of

passes through network
I With backprop: one forward, one backward pass, no

matter how many weights
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I Networks with � 2 hidden layers are deep networks

I Backprop will still work for them
I But:

I Tend to lose the error “signal” as propagate back
through network

I Each neuron in earlier layers have less and less
impact on output error

I Vanishing gradient problem

I ) extremely slow learning rate
I Can have opposite problem, depending on net:

exploding gradient problem

I Stymied researchers for many years – until

I Faster machines
I Better versions of backprop-ish algorithms invented

I ) tremendous increase in deep learning research,
applications

I We’ll come back to this later in course
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