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1 Introduction

The file “genetic-algorithm.lisp” contains code for a simple genetic algorithm (GA), written using
CLOS. It was written both to provide a genetic algorithm implementation to experiment with as
well as to give an example of a reasonably complex Lisp program.

The file is written as a literate programming file, with (in this case, LATEX) documentation
interleaved with the code. If you are interested in the program that converts back and forth from
Lisp ↔ LATEX, let me know.

2 Header information

1 (in-package cl-user)

3 Class definitions

The program is structured using three CLOS classes:

• ga: the genetic algorithm object itself;

• population: an object holding the population of individuals; and

• individual: an object representing an individual solution.

3.1 Individual

The individual class holds all the information needed to represent an individual in the population,
that is, a candidate solution to the problem. Each has:

• id: the name of the individual

• size: length of the genome

• kind: the name of the alphabet the genome is drawn from

• fitness: the individual’s current

The size of the genome is set when the GA is set up, as is the kind of genome it is. “Kind”
here refers to the alphabet that the elements of the genome are drawn from; see the description of
the variable *alphabet-map* for the kinds of genomes supported and their names. The fitness is a
number that is returned from the fitness function (see class ga).

The genome of an individual can be considered a string of characters by the user. Internally,
however, the string is converted (via the function condition-string) to a list of symbols internally.
Each symbol corresponds to a letter in the string. For example:

CL-USER> (condition-string "Hi there")
(H |i| | | |t| |h| |e| |r| |e|)

The |’s in the symbol names mean that the symbol has special characters that are not usually part
of symbol names, such as lower-case letters.1 The function genome-as-string converts this list
back to a nice-looking string.

1These aren’t usually found in symbol names if we are using a case-insensitive Lisp, as I usually do.
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2 (defclass individual ()
3 (
4 (id :initform (intern (symbol-name (gensym "INDIV"))) :initarg :id :accessor id)
5 (size :initform 20 :initarg :size :accessor size)
6 (genome :initform nil :initarg :genome :accessor genome)
7 (kind :initform ’bitstring :initarg :kind :accessor kind)
8 (fitness :initform nil :initarg :fitness :accessor fitness)
9 )

10 )

3.2 Population

The population class defines a population of individuals. It has instance variables:

• id: the name of the population

• individuals: a list of all individuals in the population

• size: the size of the population

• individual-size: the size of each individual’s genome (see 3.2)

• individual-kind: the kind of each individual’s genome (see 3.2)

11 (defclass population ()
12 (
13 (id :initform (intern (symbol-name (gensym "POP"))) :initarg :id :accessor id)
14 (individuals :initform nil :initarg :individuals :accessor individuals)
15 (size :initform 50 :initarg :size :accessor size)
16 (individual-size :initform 20 :initarg :individual-size :accessor individual-size)
17 (individual-kind :initform ’bitstring :initarg :individual-kind
18 :accessor individual-kind)
19 )
20 )

3.3 GA (genetic algorithm)

The ga class holds methods and instance variables needed for the operation of the GA. Instance
variables include:

• id: the name of the GA

• population: the population (an instance of population)

• mutation-rate: the rate of mutations; that is, how likely a mutation is during each repro-
duction event

• crossover-rate: the rate of crossovers; that is, how likely a crossover event is during each
reproduction

• fitness-function: a function that is applied to the genome of an individual to determine
that individual’s fitness (a number)
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• individual-size: the size of an individual’s genome

• population-size: the size of the population

• individual-kind: the kind of genome in use (see the individual class)

• breeding-pairs: the number of breeding pairs to select each generation

• silent: if t, then no status information is printed; this can speed up the execution of the GA

The breeding-pairs instance variable is used to determine how many of the fittest individuals
are selected to produce children for the next generation. Currently, the top 2n individuals, where
n = breeding-pairs, are selected and paired off in order. This is a place where other choices
could be tried to see if it makes any difference. The pair then create two children. See the method
reproduce for information about how reproduction actually takes place.

21 (defclass ga ()
22 (
23 (id :initform (intern (symbol-name (gensym "GA"))) :initarg :id :accessor id)
24 (population :initform nil :initarg :population :accessor population)
25 (mutation-rate :initform 0.1 :initarg :mutation-rate :accessor mutation-rate)
26 (crossover-rate :initform 0.1 :initarg :crossover-rate :accessor crossover-rate)
27 (fitness-function :initform #’(lambda (i) (random 1.0))
28 :initarg :fitness-function :accessor fitness-function)
29 (individual-size :initform 20 :initarg :individual-size :accessor individual-size)
30 (population-size :initform 50 :initarg :population-size :accessor population-size)
31 (generation :initform 0 :initarg :generation :accessor generation)
32 (individual-kind :initform ’bitstring :initarg :individual-kind :accessor individual-kind)
33 (breeding-pairs :initform 4 :initarg :breeding-pairs :accessor breeding-pairs)
34 (silent :initform nil :initarg :silent :accessor silent)
35 )
36 )

3.4 Initialization “after” methods

Often in CLOS, it’s useful to perform additional actions after an object is initialized by make-instance.
Instead of calling a user-defined initialization function, it’s cleaner in many cases to write an
:after method for the built-in method initialize-instance, which is called as a result of calling
make-instance. The :after method is called after the built-in method without the user having to
do anything.

We use the :aftermethods here to set up the population and individuals when ga is instantiated.

37 (defmethod initialize-instance :after ((instance ga) &rest args)
38 (declare (ignore args))
39 (with-slots (population individual-size
40 population-size generation individual-kind) instance
41 (setq generation 0)
42 (setq population (make-instance ’population :size population-size
43 :individual-size individual-size
44 :individual-kind individual-kind))
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45 (compute-fitnesses instance)
46 )
47 )
48
49 (defmethod initialize-instance :after ((instance population) &rest args)
50 (declare (ignore args))
51 (with-slots (individuals individual-size size individual-kind) instance
52 (setq individuals (loop for ind from 1 to size
53 collect (make-instance ’individual :size individual-size
54 :kind individual-kind
55 )))))
56
57 (defmethod initialize-instance :after ((instance individual) &rest args)
58 (declare (ignore args))
59 (with-slots (size genome kind) instance
60 (setq genome (or genome (random-genome instance size kind)))))

4 Variables

4.1 Alphabets

We define several alphabets for you to use. You may define others; if you do, however, you will need
to modify the get-alphabet function. Each alphabet is present as a genome-like list and is in a
variable named *alphabet-XXXX*, where XXXX describes the alphabet.

First, we define a function needed to convert strings into genomes.

4.1.1 condition-string

As we described when discussing the individual class, this will take a string and return a properly-
formed genome. A genome is represented as a list of symbols, each of which corresponds to a
character in the string. Two versions of this are provided, one, which just returns its argument, for
when the genome is already a list, and the other that actually converts the string to a genome.

61 (defmethod condition-string ((str list))
62 str)
63 (defmethod condition-string ((str string))
64 (map ’list #’(lambda (a) (intern (string a)))
65 str))

4.1.2 Defined alphabets

Here are the alphabets we have defined:

• Lower case letters:

66 (defvar *alphabet-lower-case*
67 (condition-string "abcdefghijklmnopqrstuvwxyz"))

• Upper case letters:
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68 (defvar *alphabet-upper-case*
69 (condition-string "ABCDEFGHIJKLMNOPQRSTUVWXYZ"))

• Numerals 0–9:

70 (defvar *alphabet-numerals*
71 (condition-string "0123456789"))

• The space character:

72 (defvar *alphabet-space* (condition-string " "))

• Punctuation symbols:

73 (defvar *alphabet-punctuation*
74 (condition-string ":;.?!,-"))

• Special characters:

75 (defvar *alphabet-special*
76 (condition-string "@#$%^&*()_+=|\}]{[’\"/><"))

• Bits (0, 1):

77 (defvar *alphabet-bitstring*
78 (condition-string "01"))

The variable *alphabet-map* contains a mapping from labels to the corresponding alphabets.
The format of each entry in the map is:

(label(s) alphabet(s))

where the first element is a (keyword) label or list of labels and the remainder is a list of names of
alphabet variables or labels. So, for example,

(:uppercase *alphabet-upper-case*)

maps the label :uppercase to the variable containing the uppercase letters, and

(:alphanumeric :alphabet :numerals)

maps the label :alphanumeric to the concatenation of the alphabets named :alphabet and :numerals.
The function get-alphabet uses this map to produce alphabets for (e.g.) reproduction and

instantiation of individuals.
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79 (defvar *alphabet-map*
80 ’(
81 ((:bitstring :bits :binary) *alphabet-bitstring*)
82 (:uppercase *alphabet-upper-case*)
83 (:lowercase *alphabet-lower-case*)
84 (:punctuation *alphabet-punctuation*)
85 (:numerals *alphabet-numerals*)
86 (:special-chars *alphabet-special*)
87 (:alphabet+space :alphabet *alphabet-space*)
88 ((:letters :alphabet) :uppercase :lowercase)
89 (:alphanumeric :alphabet :numerals)
90 (:alphanumeric+space :alphabet+space :numerals)
91 (:all :alphanumeric+space :punctuation :special-chars)
92 )
93 )

4.2 UI variables

The user interface, at the moment consisting of just a few functions (see Section 6), stores the target
string, the GA instance, and some execution statistics in these variables

94 (defvar *target* ’(T h i s space i s space a space t e s t))
95 (defvar *ga* nil)
96 (defvar *stats* nil)

5 Methods/functions

5.1 get-alphabet

This uses the *alphabet-map* variable to find an alphabet based on a label; see that variable’s
description to see the valid alphabets. The label can be a symbol or a keyword. The alphabet is
returned in the form of a genome, and it has been copied so that no modifications will affect the
base alphabets themselves.

97 (defun get-alphabet (label)
98 (unless (keywordp label)
99 (setq label (intern (symbol-name label) ’keyword)))

100 (labels ((compose-alphabets (alphabets)
101 (cond
102 ((null alphabets) nil)
103 ((keywordp (car alphabets))
104 (append (get-alphabet (car alphabets))
105 (compose-alphabets (cdr alphabets))))
106 (t
107 (append (eval (car alphabets))
108 (compose-alphabets (cdr alphabets)))))))
109 (let ((alphabets (cdr (assoc label *alphabet-map*
110 :test #’(lambda (a b)
111 (if (listp b)
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112 (member a b)
113 (eql a b)))))))
114 (when (setq alphabets (compose-alphabets alphabets))
115 (copy-list alphabets)))))

5.2 random-genome

This returns a random genome of size size composed of characters drawn from the alphabet kind,
which defaults bitstring.

116 (defmethod random-genome ((self individual) size &optional (kind ’bitstring))
117 (let ((alphabet (if (consp kind) kind (get-alphabet kind))))
118 (loop with len = (length alphabet)
119 for i from 1 to size
120 collect
121 (nth (random len) alphabet))))

5.3 Fitness computation methods

These compute the fitness of individuals based on a fitness function, contained in the GA instance.

5.3.1 compute-fitnesses

These two methods, one for ga instances and one for population instances, together compute the
fitness of all the individuals in the GA.

122 (defmethod compute-fitnesses ((self ga) &key fcn &allow-other-keys)
123 (with-slots (population fitness-function) self
124 (compute-fitnesses population :fitness-function (or fcn fitness-function))))
125
126
127 (defmethod compute-fitnesses ((self population) &key fitness-function &allow-other-keys)
128 (with-slots (individuals) self
129 (loop for indiv in individuals
130 do (compute-fitness indiv fitness-function))
131 (sort-by-fitness self)))

5.3.2 compute-fitness

This applies a fitness function to the individual’s genome. It updates the individual’s fitness
instance variable. There are two versions, one for an individual instance, and one for a genome;
the former calls the latter.

132 (defmethod compute-fitness ((self individual) fcn)
133 (with-slots (fitness genome) self
134 (setq fitness (compute-fitness genome fcn))))
135
136 (defmethod compute-fitness ((genome list) fcn)
137 (funcall fcn genome))
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5.3.3 sort-by-fitness

This method (of population) sorts all of a population’s individuals by their fitness, with the best
individuals first.

138 (defmethod sort-by-fitness ((self population))
139 (with-slots (individuals) self
140 (setq individuals (sort individuals #’(lambda (a b)
141 (> (fitness a) (fitness b)))))))

5.4 status

This prints the status of ga to the screen.

142 (defmethod status ((self ga))
143 (with-slots (generation silent) self
144 (unless silent
145 (format t
146 "~&Generation ~s: fitness (b/a/w) = ~,2f/~,2f/~,2f, best answer=~s~%"
147 generation (best-fitness self) (average-fitness self)
148 (worst-fitness self)
149 (car (best-answers self 1))))))

5.5 display

The display generic function and its methods (one each for ga, population, and individual)
show the GA and its pieces in a nice form for the user. If :individuals-too? is specified for the
population or GA version, then all the individuals are displayed as well.

150 (defmethod display ((self individual) &key (stream t))
151 (with-slots (id fitness genome) self
152 (format stream "~&~2T~s (fitness=~,2f)~15T~s~%"
153 id fitness (genome-as-string self))))
154
155 (defmethod display ((self population) &key (stream t) (individuals-too? nil))
156 (with-slots (id individuals size individual-size individual-kind) self
157 (format stream "~&~2T~s: ~s individuals with ~s genomes~%"
158 id size individual-kind)
159 (format stream "~5THighest/average/lowest fitness:~,2f/~,2f/~,2f~%"
160 (fitness (car individuals))
161 (average-fitness self)
162 (fitness (car (last individuals))))
163 (when individuals-too?
164 (mapcar #’display individuals))))
165
166 (defmethod display ((self ga) &key (stream t) (individuals-too? nil))
167 (with-slots (population id mutation-rate crossover-rate generation breeding-pairs) self
168 (format stream "~&GA program ~s:~%" id)
169 (format stream "~& Current generation: ~s~%" generation)
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170 (format stream "~& Mutation rate: ~s~%" mutation-rate)
171 (format stream "~& Crossover-rate: ~s~%" crossover-rate)
172 (format stream "~& # breeding pairs: ~s~%" breeding-pairs)
173 (format stream "~& Population:~%")
174 (display population :stream stream :individuals-too? individuals-too?)))

5.6 best-fitness, average-fitness, worst-fitness

These generic functions and their methods (for population, ga, individual) return the best,
average, and worst fitnesses in the population.

175 (defmethod best-fitness ((self ga))
176 (with-slots (population) self
177 (best-fitness population)))
178
179 (defmethod worst-fitness ((self ga))
180 (with-slots (population) self
181 (worst-fitness population)))
182
183 (defmethod best-fitness ((self population))
184 (with-slots (individuals) self
185 (fitness (car individuals))))
186
187 (defmethod worst-fitness ((self population))
188 (with-slots (individuals) self
189 (fitness (car (last individuals)))))
190
191 (defmethod average-fitness ((self ga))
192 (with-slots (population) self
193 (average-fitness population)))
194
195 (defmethod average-fitness ((self population))
196 (with-slots (individuals size) self
197 (float (/ (apply #’+ (mapcar #’fitness individuals)) size))))

5.7 genome-as-string

This takes a genome (a list) and converts the symbols back into characters and concatenates them.
This make is much easier for the user to read.

198 (defmethod genome-as-string ((self individual) &key genome-list)
199 (with-slots (genome) self
200 (apply #’concatenate (cons ’string (mapcar #’symbol-name (or genome-list genome))))))

5.8 reproduce

These methods of the generic function reproduce together take two individuals and return two
children (as two separate values). With probability crossover-rate, the genomes of the parents
will be crossed over at some random point to create the children; with probability mutation-rate,
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one or both of the children will suffer a random mutation. If no mutation or crossover occurs, the
children are copies of the parents.

201 (defmethod reproduce ((p1 individual) (p2 individual) &key mutation-rate
202 crossover-rate alphabet)
203 (multiple-value-bind (ng1 ng2)
204 (reproduce (genome p1) (genome p2) :mutation-rate mutation-rate
205 :crossover-rate crossover-rate
206 :alphabet alphabet)
207 (values (make-instance ’individual :genome ng1
208 :size (size p1) :kind (kind p1))
209 (make-instance ’individual :genome ng2
210 :size (size p1) :kind (kind p1)))))
211
212 (defmethod reproduce ((g1 list) (g2 list) &key mutation-rate crossover-rate alphabet)
213 (when (symbolp alphabet)
214 (setq alphabet (get-alphabet alphabet)))
215 (setq g1 (copy-list g1)
216 g2 (copy-list g2))
217 (when (choose? crossover-rate)
218 (multiple-value-setq (g1 g2) (crossover g1 g2)))
219 (when (choose? mutation-rate)
220 (setq g1 (mutate g1 alphabet)))
221 (when (choose? mutation-rate)
222 (setq g2 (mutate g2 alphabet)))
223 (values g1 g2))

5.9 crossover

The crossover method picks a random spot and crosses over two genomes: i.e., from that point
on, the genomes of the two are switched. The method returns the genomes as two values.

224 (defmethod crossover ((a list) (b list))
225 (let ((position (1+ (random (1- (length a)))))
226 kids)
227 (setq kids
228 (loop for counter from 1 to (length a)
229 for i in a
230 for j in b
231 when (>= counter position)
232 collect (list i j)
233 else
234 collect (list j i)))
235 (values (mapcar #’car kids)
236 (mapcar #’cadr kids))))
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5.10 mutate

This method will mutate a genome by replacing a character at a random position by a random
character from the alphabet the genome is composed of.

237 (defmethod mutate ((genome list) alphabet)
238 (setf (nth (random (length genome)) genome)
239 (nth (random (length alphabet)) alphabet))
240 genome)

5.11 choose?

This function takes a probability and returns t with that probability.

241 (defun choose? (probability)
242 (<= (random 1.0) probability))

5.12 add-individuals

Add the new individuals to the population. This then sorts the list of individuals by decreasing
fitness. (Probably not the most efficient way I could have done this; I’ll maybe change it later to
insert rather than sort.)

243 (defmethod add-individuals ((self population) new)
244 (with-slots (individuals size) self
245 (setq individuals (append new individuals))
246 (sort-by-fitness self)
247 (setq individuals (fittest self size))))

5.13 fittest

This returns the n fittest individuals in the population as a list.

248 (defmethod fittest ((self ga) &optional (n 1))
249 (with-slots (population) self
250 (fittest population n)))
251
252 (defmethod fittest ((self population) &optional (n 1))
253 (with-slots (individuals) self
254 (loop for i from 1 to n
255 for indiv in individuals
256 collect indiv)))

6 User interface

There are several functions the user can use to set up and run a genetic algorithm. One way, of
course, is to create a ga instance using make-instance, then run it using the run method. For
complex problems (e.g., learning a traveling salesperson task, etc.), this is probably the best thing
to do.

However, we provide a simple interface here for learning strings. The learn-string function
creates a ga instance, stores it in the variable *GA*, and runs the GA.
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6.1 Computing fitness

You can define your own fitness functions, of course. Each should take one argument, a genome,
and return a number. Other than that, there are no restrictions on what kinds of functions you can
have.

We have provided one for the learn-string function (below):

6.1.1 string-match-fitness

The string-match-fitness function simply counts the number of correct letters. Probably the
GA’s hill-climbing could be made more efficient by changing this to take into account how close the
letters are to the target’s and using the order of the letters in the alphabet.

257 (defun string-match-fitness (i)
258 (count t (mapcar #’eql i *target*)))

6.2 Running the GA

6.2.1 next-generation

This method does the bulk of the GA’s work. It is called by run repeatedly to evolve the GA.
Each call, next-generation selects the fittest n individuals (as specified by the ga instance’s
breeding-pairs instance variable) and lets pairs of them reproduce. The children are added to
the list of individuals, then the list is sorted and the best are kept (as specified by the population’s
size instance variable).

259 (defmethod next-generation ((self ga))
260 (with-slots (population generation fitness-function breeding-pairs
261 crossover-rate mutation-rate individual-kind) self
262 (let ((pairs (fittest population (* 2 breeding-pairs))))
263 (loop with c1
264 with c2
265 for i from 0 to breeding-pairs by 2
266 do (multiple-value-setq (c1 c2)
267 (reproduce (nth i pairs) (nth (1+ i) pairs)
268 :crossover-rate crossover-rate
269 :mutation-rate mutation-rate
270 :alphabet individual-kind))
271 (compute-fitness c1 fitness-function)
272 (compute-fitness c2 fitness-function)
273 (add-individuals population (list c1 c2))
274 )
275 (incf generation)
276 )))

6.2.2 run

The primary method for running the GA is just called run. It takes one positional argument, the
ga instance, and several keyword arguments:

• :for - if set, run for this many generations, then stop
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• :until-best-fitness - if set, run until the fitness of the best individual is ≥ this

• :until-average-fitness - if set, run until the average fitness of the population is ≥ this

• :until-generation - if set, run until this generation

• :recompute-fitness? - if set, recompute the fitness of all the individuals each generation;
this would be useful, for example, if the situation is changing such that the fitnesses are likely
to change

• :file - a filename to hold the data generated by the run

• :status-every - if set, print the status only one every this many generations

Data is written to the file in the form:

generation# best-fitness average-fitness worst-fitness fittest-genome

Careful, though, since this will overwrite any old file of the same name.

277 (defmethod run ((self ga) &key until-best-fitness until-average-fitness
278 for until-generation recompute-fitness? (file "ga-results.dat")
279 (status-every 50))
280 (with-open-file (out file :direction :output
281 :if-exists :supersede
282 :if-does-not-exist :create)
283 (with-slots (generation silent) self
284 (loop with status-counter = status-every
285 do (next-generation self)
286 (when recompute-fitness?
287 (compute-fitnesses self))
288 (format out "~s ~s ~s ~s ~s~%"
289 generation (best-fitness self)
290 (average-fitness self)
291 (worst-fitness self)
292 (genome-as-string (car (fittest self 1)))
293 )
294 (when (or (null status-counter)
295 (zerop status-counter))
296 (status self)
297 (when status-counter
298 (setq status-counter status-every)))
299 (when for (decf for))
300 (when status-counter (decf status-counter))
301 until (or (and until-best-fitness (>= (best-fitness self) until-best-fitness))
302 (and until-average-fitness (>= (average-fitness self) until-average-fitness))
303 (and until-generation (>= generation until-generation))
304 (and for (zerop for))))
305 (unless silent
306 (format t "Run complete:")
307 (status self))
308 (values (best-answer self) generation))))
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6.3 Sample GA task: Learn a string

The learn-string function is used to create a GA and learn a string. It takes one positional
argument, the string to be learned (as a string, which is converted to genome form), and several
keyword arguments:

• :individual-kind - the kind of individual (genome); defaults to :alphanumeric+space

• :until-best-fitness - if set, the GA will run until the best fitness ≥ this value

• :until-average-fitness - if set, the GA will run until the average fitness ≥ this value

• :for - if set, the GA will run for this many generations

• :until-generation - if set, the GA will run until this generation is reached

• :status-every - this determines how often a status message is printed (default is every 50
generations)

• :breeding-pairs - how many breeding pairs to use (default 4)

• :mutation-rate - the mutation rate (0.1)

• :crossover-rate - the crossover rage (0.1)

• :population-size - the size of the population (50)

• :silent - if set, no there are no status messages (default is nil)

• :file - data is written to this file (default is “learn-string-results.dat”) in the form described
in the discussion of run.

309 (defun learn-string (string &key (individual-kind :alphanumeric+space)
310 until-best-fitness until-average-fitness
311 for until-generation
312 (file "learn-string-results.dat")
313 (status-every 50)
314 (breeding-pairs 4)
315 (mutation-rate 0.1)
316 (crossover-rate 0.1)
317 (population-size 50)
318 (silent nil)
319 (fitness-function #’string-match-fitness))
320
321 (setq *target* (condition-string string))
322
323 (setq *ga* (make-instance ’ga
324 :breeding-pairs breeding-pairs
325 :mutation-rate mutation-rate
326 :crossover-rate crossover-rate
327 :population-size population-size
328 :individual-size (length *target*)
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329 :individual-kind individual-kind
330 :fitness-function fitness-function
331 :silent silent))
332
333 (run *ga* :status-every status-every :file file
334 :until-generation until-generation
335 :until-best-fitness (or until-best-fitness (length string))
336 :until-average-fitness until-average-fitness
337 :for for))

6.4 Collect statistics

The stats function takes a string and runs learn-string on substrings of it iterations times
each, from 2 to the length of the string, collecting the average of the generations needed fro each
substring. The stats are put into *stats*. The kind argument determines the kind of alphabet to
use. (I should probably have this generate random strings for this in future.)

338 (defun stats (string &key (iterations 10) (kind :all))
339 (setq *stats* nil)
340 (format t "~%")
341 (loop for i from 2 to (length string)
342 do (format t "~s" i)
343 (loop
344 for j from 1 to iterations
345 collect (multiple-value-bind (val gens)
346 (learn-string (subseq string (- (length string) i))
347 :until-best-fitness i
348 :silent t
349 :individual-kind kind)
350 (format t ".")
351 gens)
352 into sum
353 finally (push (list i (float (/ (apply #’+ sum) iterations))) *stats*))
354 finally (setq *stats* (reverse *stats*)))
355 (loop for run in *stats*
356 do (format t "~&~s~10T~,2f~%" (car run) (cadr run)))
357 *stats*)

6.5 Finding out what the answer is

6.5.1 best-answer

This returns the best answer (i.e., the genome of the fittest individual).

358 (defmethod best-answer ((self ga))
359 (car (best-answers self 1)))
360
361 (defmethod best-answers ((self ga) &optional (n 1) (as-strings? t))
362 (with-slots (population) self
363 (best-answers population n as-strings?)))
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6.5.2 best-answers

This returns the n best answers at the current time. If as-strings? is set, then the genomes are
translated to strings before being returned.

364 (defmethod best-answers ((self population) &optional (n 1) (as-strings? t))
365 (with-slots (individuals) self
366 (loop
367 for i from 1 to n
368 collect (if (not as-strings?)
369 (genome (nth (1- i) individuals))
370 (genome-as-string (nth (1- i) individuals)))
371 into ba
372 collect (fitness (nth (1- i) individuals)) into bf
373 finally (return (values ba bf)))))

6.6 Another GA task: TSP

The Traveling Salesperson Problem (TSP) is a well-known NP-hard problem. Here, we will attempt
to solve it with a GA. The task is to find the shortest route through a group of cities, visiting each
city only once and ending up at the start city. The model uses (usually) a complete graph, though
we can add extremely long (or infinite) paths between cities that don’t have a real connection.

We’ll model the cities as a simple list of the form:

((a b 15)
(b c 20)...)

etc., meaning that the route from city a to city b is 15 units, etc. We assume a undirected graph.
To convert this into a GA, we’ll simply use a letter per city and let a string represent a path.

Thus for 4 cities, a path might be:

"abcda"

representing starting at city “a”, going to “b”, “c”, and “d”, then back to “a”.
The fitness function will compute the cost, and the GA will try to minimize that cost. Note

that this inverts the sense of fitness. Thus, we’ll make the costs negative, so that as we “reduce” the
costs, we really get closer to 0, and so the fitness can be in the usual, increasing, sense.

6.6.1 City map

1. generate-tsp

First, a function that will generate a random TSP problem given the number of cities and
min and max link costs.

374 (defun generate-tsp (n mincost maxcost)
375 (let ((possible (loop for city in *alphabet-upper-case*
376 for i from 1 to n
377 collect city)))
378 (labels ((paths (city rest min max)
379 (cond
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380 ((null rest) nil)
381 (t (append (loop for other in rest
382 collect (list city other (+ min (random (- max min)))))
383 (paths (car rest) (cdr rest) min max))))))
384 (paths (car possible) (cdr possible) mincost maxcost))))

2. *tsp*

Now, a variable to hold the newly-created TSP.

385 (defvar *tsp* (generate-tsp 5 1 10))

3. solve-tsp

This function uses learn-string in order to solve a TSP. The fitness function is defined
below.

386 (defun solve-tsp (&key tsp (n 5) (min 1) (max 10)
387 (individual-kind :alphanumeric+space)
388 until-best-fitness until-average-fitness
389 for until-generation
390 (file "learn-string-results.dat")
391 (status-every 50)
392 (breeding-pairs 4)
393 (mutation-rate 0.1)
394 (crossover-rate 0.1)
395 (population-size 50)
396 (silent nil)
397 ga)
398
399 (setq *tsp*
400 (if tsp
401 tsp
402 (setq tsp (generate-tsp n min max))))
403
404 (let ((cities (remove-duplicates (apply #’append
405 (mapcar #’(lambda (a)
406 (list (car a) (cadr a)))
407 tsp)))))
408 (unless ga
409 (setq *ga* (make-instance ’ga
410 :breeding-pairs breeding-pairs
411 :individual-kind (copy-list cities)
412 :individual-size (1+ (length cities))
413 :breeding-pairs breeding-pairs
414 :mutation-rate mutation-rate
415 :crossover-rate crossover-rate
416 :population-size population-size
417 :silent silent
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418 :fitness-function #’tsp-fitness-function
419 )))
420
421 (run *ga* :status-every status-every :file file
422 :until-generation until-generation
423 :until-best-fitness until-best-fitness
424 :until-average-fitness until-average-fitness
425 :for for)))

4. tsp-fitness-function

This simply calculates the cost of the current path and returns it as a negative number. Thus
shorter paths will be less negative, hence fitter. If a path does not begin and end at the same
place, then it’s penalized, as it is if a city occurs more than once (other than start and end).

426 (defvar *tsp-non-circuit-penalty* most-positive-fixnum)
427 (defvar *tsp-duplicate-city-penalty* most-positive-fixnum)
428
429 (defun tsp-fitness-function (path)
430 (cond
431 ((not (eql (car path) (car (last path))))
432 (- *tsp-non-circuit-penalty*))
433 ((< (length (remove-duplicates path)) (1- (length path)))
434 (- *tsp-duplicate-city-penalty*))
435 (t
436 (- (path-cost path *tsp*)))))
437
438
439 (defun path-cost (path &optional (tsp *tsp*))
440 (cond
441 ((< (length path) 2) 0)
442 (t (+ (segment-cost (car path) (cadr path) tsp)
443 (path-cost (cdr path) tsp)))))
444
445 (defun segment-cost (a b &optional (tsp *tsp*))
446 (or (third (car (member (list a b) tsp
447 :test #’(lambda (target candidate)
448 (or (and (eql (car target) (car candidate))
449 (eql (cadr target) (cadr candidate)))
450 (and (eql (car target) (cadr candidate))
451 (eql (cadr target) (car candidate))))))))
452 most-positive-fixnum))
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