A Genetic Algorithm Implementation

Roy M. Turner (rturner@maine.edu)

Spring 2017

Contents

1 Introduction 3
2 Header information 3
3 Class definitions 3
3.1 Individual 3
3.2 Population 4
3.3 GA (genetic algorithm) 4
3.4 Initialization "after" methods 5
4 Variables 6
4.1 Alphabets 6
4.1.1 condition-string 6
4.1.2 Defined alphabets 6
4.2 UI variables 8
5 Methods/functions 8
5.1 get-alphabet 8
5.2 random-genome 9
5.3 Fitness computation methods 9
5.3.1 compute-fitnesses 9
5.3.2 compute-fitness. 9
5.3.3 sort-by-fitness 10
5.4 status 10
5.5 display 10
5.6 best-fitness, average-fitness, worst-fitness 11
5.7 genome-as-string 11
5.8 reproduce 11
5.9 crossover 12
5.10 mutate 13
5.11 choose? 13
5.12 add-individuals 13
5.13 fittest 13
6 User interface 13
6.1 Computing fitness 14
6.1.1 string-match-fitness 14
6.2 Running the GA 14
6.2.1 next-generation 14
6.2 .2 run 14
6.3 Sample GA task: Learn a string 16
6.4 Collect statistics 17
6.5 Finding out what the answer is 17
6.5.1 best-answer 17
6.5.2 best-answers 18
6.6 Another GA task: TSP 18
6.6.1 City map 18

1 Introduction

The file "genetic-algorithm.lisp" contains code for a simple genetic algorithm (GA), written using CLOS. It was written both to provide a genetic algorithm implementation to experiment with as well as to give an example of a reasonably complex Lisp program.

The file is written as a literate programming file, with (in this case, AT_{E}) documentation interleaved with the code. If you are interested in the program that converts back and forth from Lisp $\leftrightarrow \mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, let me know.

2 Header information

1 (in-package cl-user)

3 Class definitions

The program is structured using three CLOS classes:

- ga: the genetic algorithm object itself;
- population: an object holding the population of individuals; and
- individual: an object representing an individual solution.

3.1 Individual

The individual class holds all the information needed to represent an individual in the population, that is, a candidate solution to the problem. Each has:

- id: the name of the individual
- size: length of the genome
- kind: the name of the alphabet the genome is drawn from
- fitness: the individual's current

The size of the genome is set when the GA is set up, as is the kind of genome it is. "Kind" here refers to the alphabet that the elements of the genome are drawn from; see the description of the variable *alphabet-map* for the kinds of genomes supported and their names. The fitness is a number that is returned from the fitness function (see class ga).

The genome of an individual can be considered a string of characters by the user. Internally, however, the string is converted (via the function condition-string) to a list of symbols internally. Each symbol corresponds to a letter in the string. For example:

```
CL-USER> (condition-string "Hi there")
(H |i| | | |t| |h| |e| |r| |e|)
```

The I's in the symbol names mean that the symbol has special characters that are not usually part of symbol names, such as lower-case letters ${ }^{\dagger}$ The function genome-as-string converts this list back to a nice-looking string.

[^0]```
(defclass individual ()
 (
 (id :initform (intern (symbol-name (gensym "INDIV"))) :initarg :id :accessor id)
 (size :initform 20 :initarg :size :accessor size)
 (genome :initform nil :initarg :genome :accessor genome)
 (kind :initform 'bitstring :initarg :kind :accessor kind)
 (fitness :initform nil :initarg :fitness :accessor fitness)
)
)
```


### 3.2 Population

The population class defines a population of individuals. It has instance variables:

- id: the name of the population
- individuals: a list of all individuals in the population
- size: the size of the population
- individual-size: the size of each individual's genome (see 3.2)
- individual-kind: the kind of each individual's genome (see 3.2

```
(defclass population ()
 (
 (id :initform (intern (symbol-name (gensym "POP"))) :initarg :id :accessor id)
 (individuals :initform nil :initarg :individuals :accessor individuals)
 (size :initform 50 :initarg :size :accessor size)
 (individual-size :initform 20 :initarg :individual-size :accessor individual-size)
 (individual-kind :initform 'bitstring :initarg :individual-kind
 :accessor individual-kind)
)
)
```


### 3.3 GA (genetic algorithm)

The ga class holds methods and instance variables needed for the operation of the GA. Instance variables include:

- id: the name of the GA
- population: the population (an instance of population)
- mutation-rate: the rate of mutations; that is, how likely a mutation is during each reproduction event
- crossover-rate: the rate of crossovers; that is, how likely a crossover event is during each reproduction
- fitness-function: a function that is applied to the genome of an individual to determine that individual's fitness (a number)
- individual-size: the size of an individual's genome
- population-size: the size of the population
- individual-kind: the kind of genome in use (see the individual class)
- breeding-pairs: the number of breeding pairs to select each generation
- silent: if $t$, then no status information is printed; this can speed up the execution of the GA

The breeding-pairs instance variable is used to determine how many of the fittest individuals are selected to produce children for the next generation. Currently, the top $2 n$ individuals, where $n=$ breeding-pairs, are selected and paired off in order. This is a place where other choices could be tried to see if it makes any difference. The pair then create two children. See the method reproduce for information about how reproduction actually takes place.

```
21 (defclass ga ()
22 (
23
24
25
26
27
28
29
30
31
32
33
34
35)
36)
```


### 3.4 Initialization "after" methods

Often in CLOS, it's useful to perform additional actions after an object is initialized by make-instance. Instead of calling a user-defined initialization function, it's cleaner in many cases to write an : after method for the built-in method initialize-instance, which is called as a result of calling make-instance. The : after method is called after the built-in method without the user having to do anything.

We use the : after methods here to set up the population and individuals when ga is instantiated.

```
37
38
39
4 0
4 1
4 3
4 4
```

```
42 (setq population (make-instance 'population :size population-size
```

42 (setq population (make-instance 'population :size population-size

```
(defmethod initialize-instance :after ((instance ga) &rest args)
```

(defmethod initialize-instance :after ((instance ga) \&rest args)
(declare (ignore args))
(declare (ignore args))
(with-slots (population individual-size
(with-slots (population individual-size
population-size generation individual-kind) instance
population-size generation individual-kind) instance
(setq generation 0)
(setq generation 0)
:individual-size individual-size
:individual-size individual-size
:individual-kind individual-kind))

```
 :individual-kind individual-kind))
```

```
45 (compute-fitnesses instance)
46
47)
48
4 9
52
53
54
55
56
5 7
58
6 0
```

```
 59 (with-slots (size genome kind) instance
```

    59 (with-slots (size genome kind) instance
    ```
(defmethod initialize-instance :after ((instance population) &rest args)
```

(defmethod initialize-instance :after ((instance population) \&rest args)
(declare (ignore args))
(declare (ignore args))
(with-slots (individuals individual-size size individual-kind) instance
(with-slots (individuals individual-size size individual-kind) instance
(setq individuals (loop for ind from 1 to size
(setq individuals (loop for ind from 1 to size
collect (make-instance 'individual :size individual-size
collect (make-instance 'individual :size individual-size
:kind individual-kind
:kind individual-kind
)))))
)))))
(defmethod initialize-instance :after ((instance individual) \&rest args)
(defmethod initialize-instance :after ((instance individual) \&rest args)
(declare (ignore args))
(declare (ignore args))
(setq genome (or genome (random-genome instance size kind)))))

```
 (setq genome (or genome (random-genome instance size kind)))))
```


## 4 Variables

### 4.1 Alphabets

We define several alphabets for you to use. You may define others; if you do, however, you will need to modify the get-alphabet function Each alphabet is present as a genome-like list and is in a variable named *alphabet-XXXX*, where XXXX describes the alphabet.

First, we define a function needed to convert strings into genomes.

### 4.1.1 condition-string

As we described when discussing the individual class, this will take a string and return a properlyformed genome. A genome is represented as a list of symbols, each of which corresponds to a character in the string. Two versions of this are provided, one, which just returns its argument, for when the genome is already a list, and the other that actually converts the string to a genome.

```
61 (defmethod condition-string ((str list))
6 2 ~ s t r)
63 (defmethod condition-string ((str string))
64 (map 'list #'(lambda (a) (intern (string a)))
65 str))
```


### 4.1.2 Defined alphabets

Here are the alphabets we have defined:

- Lower case letters:

```
66 (defvar *alphabet-lower-case*
67 (condition-string "abcdefghijklmnopqrstuvwxyz"))
```

- Upper case letters:
- Numerals 0-9:

70 (defvar *alphabet-numerals*
71 (condition-string "0123456789"))

- The space character:

72 (defvar *alphabet-space* (condition-string " "))

- Punctuation symbols:

73 (defvar *alphabet-punctuation*
74 (condition-string ":;.?!,-"))

- Special characters:

75 (defvar *alphabet-special*
76 (condition-string "@\#\$\%~\&*()_+=|<br>$]\{[’\"/><")) }$

- Bits (0, 1):

77 (defvar *alphabet-bitstring*
78 (condition-string "01"))

The variable *alphabet-map* contains a mapping from labels to the corresponding alphabets. The format of each entry in the map is:
(label(s) alphabet(s))
where the first element is a (keyword) label or list of labels and the remainder is a list of names of alphabet variables or labels. So, for example,

```
(:uppercase *alphabet-upper-case*)
```

maps the label :uppercase to the variable containing the uppercase letters, and
(:alphanumeric :alphabet :numerals)
maps the label :alphanumeric to the concatenation of the alphabets named :alphabet and :numerals.
The function get-alphabet uses this map to produce alphabets for (e.g.) reproduction and instantiation of individuals.

```
(defvar *alphabet-map*
 '(
 ((:bitstring :bits :binary) *alphabet-bitstring*)
 (:uppercase *alphabet-upper-case*)
 (:lowercase *alphabet-lower-case*)
 (:punctuation *alphabet-punctuation*)
 (:numerals *alphabet-numerals*)
 (:special-chars *alphabet-special*)
 (:alphabet+space :alphabet *alphabet-space*)
 ((:letters :alphabet) :uppercase :lowercase)
 (:alphanumeric :alphabet :numerals)
 (:alphanumeric+space :alphabet+space :numerals)
 (:all :alphanumeric+space :punctuation :special-chars)
)
)
```


### 4.2 UI variables

The user interface, at the moment consisting of just a few functions (see Section 6), stores the target string, the GA instance, and some execution statistics in these variables

```
94 (defvar *target* '(T h i s space i s space a space t e s t))
95 (defvar *ga* nil)
96 (defvar *stats* nil)
```


## 5 Methods/functions

## 5.1 get-alphabet

This uses the *alphabet-map* variable to find an alphabet based on a label; see that variable's description to see the valid alphabets. The label can be a symbol or a keyword. The alphabet is returned in the form of a genome, and it has been copied so that no modifications will affect the base alphabets themselves.

```
(defun get-alphabet (label)
 (unless (keywordp label)
 (setq label (intern (symbol-name label) 'keyword)))
 (labels ((compose-alphabets (alphabets)
 (cond
 ((null alphabets) nil)
 ((keywordp (car alphabets))
 (append (get-alphabet (car alphabets))
 (compose-alphabets (cdr alphabets))))
 (t
 (append (eval (car alphabets))
 (compose-alphabets (cdr alphabets)))))))
 (let ((alphabets (cdr (assoc label *alphabet-map*
 :test #'(lambda (a b)
 (if (listp b)
```

```
112 (member a b)
113 (eql a b)))))))
 (when (setq alphabets (compose-alphabets alphabets))
(copy-list alphabets)))))
```


## 5.2 random-genome

This returns a random genome of size size composed of characters drawn from the alphabet kind, which defaults bitstring.

```
116 (defmethod random-genome ((self individual) size &optional (kind 'bitstring))
117 (let ((alphabet (if (consp kind) kind (get-alphabet kind))))
118 (loop with len = (length alphabet)
119 for i from 1 to size
120 collect
121 (nth (random len) alphabet))))
```


### 5.3 Fitness computation methods

These compute the fitness of individuals based on a fitness function, contained in the GA instance.

### 5.3.1 compute-fitnesses

These two methods, one for ga instances and one for population instances, together compute the fitness of all the individuals in the GA.

```22123124
```

(defmethod compute-fitnesses ((self ga) \&key fcn \&allow-other-keys)

```
(defmethod compute-fitnesses ((self ga) &key fcn &allow-other-keys)
 (with-slots (population fitness-function) self
 (with-slots (population fitness-function) self
 (compute-fitnesses population :fitness-function (or fcn fitness-function))))
 (compute-fitnesses population :fitness-function (or fcn fitness-function))))
(defmethod compute-fitnesses ((self population) &key fitness-function &allow-other-keys)
(defmethod compute-fitnesses ((self population) &key fitness-function &allow-other-keys)
 (with-slots (individuals) self
 (with-slots (individuals) self
 (loop for indiv in individuals
 (loop for indiv in individuals
do (compute-fitness indiv fitness-function))
do (compute-fitness indiv fitness-function))
 (sort-by-fitness self)))
```

            (sort-by-fitness self)))
    ```

\subsection*{5.3.2 compute-fitness}

This applies a fitness function to the individual's genome. It updates the individual's fitness instance variable. There are two versions, one for an individual instance, and one for a genome; the former calls the latter.
```

132
133
134
135
136
1 3 7

```
```

(defmethod compute-fitness ((self individual) fcn)

```
(defmethod compute-fitness ((self individual) fcn)
 (with-slots (fitness genome) self
 (with-slots (fitness genome) self
 (setq fitness (compute-fitness genome fcn))))
 (setq fitness (compute-fitness genome fcn))))
(defmethod compute-fitness ((genome list) fcn)
(defmethod compute-fitness ((genome list) fcn)
 (funcall fcn genome))
```

    (funcall fcn genome))
    ```

\subsection*{5.3.3 sort-by-fitness}

This method (of population) sorts all of a population's individuals by their fitness, with the best individuals first.
```

138 (defmethod sort-by-fitness ((self population))
139 (with-slots (individuals) self
140 (setq individuals (sort individuals \#'(lambda (a b)
141 (> (fitness a) (fitness b)))))))

```

\section*{5.4 status}

This prints the status of ga to the screen.
```

142 (defmethod status ((self ga))
143 (with-slots (generation silent) self
144 (unless silent
145 (format t
146 "~\&Generation ~s: fitness (b/a/w) = ~,2f/~ ,2f/~ ,2f, best answer=~ s ~%"
147 generation (best-fitness self) (average-fitness self)
148 (worst-fitness self)
149 (car (best-answers self 1))))))

```

\section*{5.5 display}

The display generic function and its methods (one each for ga, population, and individual) show the GA and its pieces in a nice form for the user. If :individuals-too? is specified for the population or GA version, then all the individuals are displayed as well.
```

150
151
152
153
154
(defmethod display ((self individual) \&key (stream t))
(with-slots (id fitness genome) self
(format stream "~\&~2T~s (fitness=~,2f)~15T~s ~%"
id fitness (genome-as-string self))))
(defmethod display ((self population) \&key (stream t) (individuals-too? nil))
(with-slots (id individuals size individual-size individual-kind) self
(format stream "~\&~2T~s: ~s individuals with ~s genomes~%"
id size individual-kind)
(format stream "~5THighest/average/lowest fitness:~,2f/~ ,2f/~ ,2f~%"
(fitness (car individuals))
(average-fitness self)
(fitness (car (last individuals))))
(when individuals-too?
(mapcar \#'display individuals))))
(defmethod display ((self ga) \&key (stream t) (individuals-too? nil))
(with-slots (population id mutation-rate crossover-rate generation breeding-pairs) self
(format stream "~\&GA program ~s:~%" id)
(format stream "~\& Current generation: ~s ~%" generation)

```
```

(format stream "~\& Mutation rate: ~s~%" mutation-rate)
(format stream "~\& Crossover-rate: ~s~%" crossover-rate)
(format stream "~\& \# breeding pairs: ~s~%" breeding-pairs)
(format stream "~\& Population:~%")
(display population :stream stream :individuals-too? individuals-too?)))

```

\section*{5.6 best-fitness, average-fitness, worst-fitness}

These generic functions and their methods (for population, ga, individual) return the best, average, and worst fitnesses in the population.
```

(defmethod best-fitness ((self ga))
(with-slots (population) self
(best-fitness population)))
(defmethod worst-fitness ((self ga))
(with-slots (population) self
(worst-fitness population)))
(defmethod best-fitness ((self population))
(with-slots (individuals) self
(fitness (car individuals))))
(defmethod worst-fitness ((self population))
(with-slots (individuals) self
(fitness (car (last individuals)))))
(defmethod average-fitness ((self ga))
(with-slots (population) self
(average-fitness population)))
(defmethod average-fitness ((self population))
(with-slots (individuals size) self
(float (/ (apply \#'+ (mapcar \#'fitness individuals)) size))))

```

\section*{5.7 genome-as-string}

This takes a genome (a list) and converts the symbols back into characters and concatenates them. This make is much easier for the user to read.
```

(defmethod genome-as-string ((self individual) \&key genome-list)
(with-slots (genome) self
(apply \#'concatenate (cons 'string (mapcar \#'symbol-name (or genome-list genome))))))

```

\section*{5.8 reproduce}

These methods of the generic function reproduce together take two individuals and return two children (as two separate values). With probability crossover-rate, the genomes of the parents will be crossed over at some random point to create the children; with probability mutation-rate,
one or both of the children will suffer a random mutation. If no mutation or crossover occurs, the children are copies of the parents.
```

201 (defmethod reproduce ((p1 individual) (p2 individual) \&key mutation-rate
202 crossover-rate alphabet)
203 (multiple-value-bind (ng1 ng2)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
(multiple-value-setq (g1 g2) (crossover g1 g2)))
(when (choose? mutation-rate)
(setq g1 (mutate g1 alphabet)))
(when (choose? mutation-rate)
(setq g2 (mutate g2 alphabet)))
(values g1 g2))

```

\section*{5.9 crossover}

The crossover method picks a random spot and crosses over two genomes: i.e., from that point on, the genomes of the two are switched. The method returns the genomes as two values.
```

224
225
226
227
228
229
230
231
232
233
234
235
236

```
```

(defmethod crossover ((a list) (b list))

```
(defmethod crossover ((a list) (b list))
 (let ((position (1+ (random (1- (length a)))))
 (let ((position (1+ (random (1- (length a)))))
 kids)
 kids)
 (setq kids
 (setq kids
 (loop for counter from 1 to (length a)
 (loop for counter from 1 to (length a)
 for i in a
 for i in a
 for j in b
 for j in b
 when (>= counter position)
 when (>= counter position)
 collect (list i j)
 collect (list i j)
 else
 else
 collect (list j i)))
 collect (list j i)))
 (values (mapcar #'car kids)
 (values (mapcar #'car kids)
 (mapcar #'cadr kids))))
```

            (mapcar #'cadr kids))))
    ```

\subsection*{5.10 mutate}

This method will mutate a genome by replacing a character at a random position by a random character from the alphabet the genome is composed of.
```

237 (defmethod mutate ((genome list) alphabet)
238 (setf (nth (random (length genome)) genome)
239 (nth (random (length alphabet)) alphabet))
240
genome)

```

\subsection*{5.11 choose?}

This function takes a probability and returns t with that probability.
```

241

```
```

(defun choose? (probability)
(<= (random 1.0) probability))

```

\subsection*{5.12 add-individuals}

Add the new individuals to the population. This then sorts the list of individuals by decreasing fitness. (Probably not the most efficient way I could have done this; I'll maybe change it later to insert rather than sort.)
```

(defmethod add-individuals ((self population) new)
(with-slots (individuals size) self
(setq individuals (append new individuals))
(sort-by-fitness self)
(setq individuals (fittest self size))))

```

\subsection*{5.13 fittest}

This returns the n fittest individuals in the population as a list.
```

(defmethod fittest ((self ga) \&optional (n 1))
(with-slots (population) self
(fittest population n)))
(defmethod fittest ((self population) \&optional (n 1))
(with-slots (individuals) self
(loop for i from 1 to n
for indiv in individuals
collect indiv)))

```

\section*{6 User interface}

There are several functions the user can use to set up and run a genetic algorithm. One way, of course, is to create a ga instance using make-instance, then run it using the run method. For complex problems (e.g., learning a traveling salesperson task, etc.), this is probably the best thing to do.

However, we provide a simple interface here for learning strings. The learn-string function creates a ga instance, stores it in the variable \(* \mathrm{GA} *\), and runs the GA.

\subsection*{6.1 Computing fitness}

You can define your own fitness functions, of course. Each should take one argument, a genome, and return a number. Other than that, there are no restrictions on what kinds of functions you can have.

We have provided one for the learn-string function (below):

\subsection*{6.1.1 string-match-fitness}

The string-match-fitness function simply counts the number of correct letters. Probably the GA's hill-climbing could be made more efficient by changing this to take into account how close the letters are to the target's and using the order of the letters in the alphabet.
```

257 (defun string-match-fitness (i)
258 (count t (mapcar \#'eql i *target*)))

```

\subsection*{6.2 Running the GA}

\subsection*{6.2.1 next-generation}

This method does the bulk of the GA's work. It is called by run repeatedly to evolve the GA. Each call, next-generation selects the fittest \(n\) individuals (as specified by the ga instance's breeding-pairs instance variable) and lets pairs of them reproduce. The children are added to the list of individuals, then the list is sorted and the best are kept (as specified by the population's size instance variable).
```

2 5 9
2 6 0
2 6 1
2 6 2
2 6 3
2 6 4
265
266
267
268
269
270
271
272
273 (add-individuals population (list c1 c2))
274 )
275 (incf generation)
276 )))

```

\subsection*{6.2.2 run}

The primary method for running the GA is just called run. It takes one positional argument, the ga instance, and several keyword arguments:
- :for - if set, run for this many generations, then stop
- :until-best-fitness - if set, run until the fitness of the best individual is \(\geq\) this
- :until-average-fitness - if set, run until the average fitness of the population is \(\geq\) this
- :until-generation - if set, run until this generation
- :recompute-fitness? - if set, recompute the fitness of all the individuals each generation; this would be useful, for example, if the situation is changing such that the fitnesses are likely to change
- :file - a filename to hold the data generated by the run
- : status-every - if set, print the status only one every this many generations

Data is written to the file in the form:
generation\# best-fitness average-fitness worst-fitness fittest-genome
Careful, though, since this will overwrite any old file of the same name.

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
```

(defmethod run ((self ga) \&key until-best-fitness until-average-fitness
for until-generation recompute-fitness? (file "ga-results.dat")
(status-every 50))
(with-open-file (out file :direction :output
:if-exists :supersede
:if-does-not-exist :create)
(with-slots (generation silent) self
(loop with status-counter = status-every
do (next-generation self)
(when recompute-fitness?
(compute-fitnesses self))
(format out "~s ~s ~
generation (best-fitness self)
(average-fitness self)
(worst-fitness self)
(genome-as-string (car (fittest self 1)))
)
(when (or (null status-counter)
(zerop status-counter))
(status self)
(when status-counter
(setq status-counter status-every)))
(when for (decf for))
(when status-counter (decf status-counter))
until (or (and until-best-fitness (>= (best-fitness self) until-best-fitness))
(and until-average-fitness (>= (average-fitness self) until-average-fitness))
(and until-generation (>= generation until-generation))
(and for (zerop for))))
(unless silent
(format t "Run complete:")
(status self))
(values (best-answer self) generation))))

```

\subsection*{6.3 Sample GA task: Learn a string}

The learn-string function is used to create a GA and learn a string. It takes one positional argument, the string to be learned (as a string, which is converted to genome form), and several keyword arguments:
- :individual-kind - the kind of individual (genome); defaults to :alphanumeric+space
- :until-best-fitness - if set, the GA will run until the best fitness \(\geq\) this value
- :until-average-fitness - if set, the GA will run until the average fitness \(\geq\) this value
- :for - if set, the GA will run for this many generations
- :until-generation - if set, the GA will run until this generation is reached
- :status-every - this determines how often a status message is printed (default is every 50 generations)
- :breeding-pairs - how many breeding pairs to use (default 4)
- :mutation-rate - the mutation rate (0.1)
- : crossover-rate - the crossover rage (0.1)
- :population-size - the size of the population (50)
- : silent - if set, no there are no status messages (default is nil)
- :file - data is written to this file (default is "learn-string-results.dat") in the form described in the discussion of run.

312 (file "learn-string-results.dat")
313 (status-every 50)
314 (breeding-pairs 4)
315 (mutation-rate 0.1)
316 (crossover-rate 0.1)
317 (population-size 50)
318 (silent nil)
319
320
321
322
323
324
325
326

\section*{327}

328
```

(defun learn-string (string \&key (individual-kind :alphanumeric+space)
until-best-fitness until-average-fitness
for until-generation
(file "learn-string-results.dat")
(status-every 50)
(fitness-function \#'string-match-fitness))
(setq *target* (condition-string string))
(setq *ga* (make-instance 'ga
:breeding-pairs breeding-pairs
:mutation-rate mutation-rate
:crossover-rate crossover-rate
:population-size population-size
:individual-size (length *target*)

```
```

        :individual-kind individual-kind
        :fitness-function fitness-function
        :silent silent))
    (run *ga* :status-every status-every :file file
:until-generation until-generation
:until-best-fitness (or until-best-fitness (length string))
:until-average-fitness until-average-fitness
:for for))

```

\subsection*{6.4 Collect statistics}

The stats function takes a string and runs learn-string on substrings of it iterations times each, from 2 to the length of the string, collecting the average of the generations needed fro each substring. The stats are put into *stats*. The kind argument determines the kind of alphabet to use. (I should probably have this generate random strings for this in future.)
```

338 (defun stats (string \&key (iterations 10) (kind :all))
339 (setq *stats* nil)
340 (format t "~%")
341 (loop for i from 2 to (length string)
342 do (format t "~s" i)
343 (loop
344 for j from 1 to iterations
345 collect (multiple-value-bind (val gens)
346 (learn-string (subseq string (- (length string) i))
:until-best-fitness i
:silent t
:individual-kind kind)
(format t ".")
gens)
into sum
finally (push (list i (float (/ (apply \#'+ sum) iterations))) *stats*))
finally (setq *stats* (reverse *stats*)))
(loop for run in *stats*
do (format t "~\&~ s~10T~,2f~%" (car run) (cadr run)))
*stats*)

```

\subsection*{6.5 Finding out what the answer is}

\subsection*{6.5.1 best-answer}

This returns the best answer (i.e., the genome of the fittest individual).
```

(defmethod best-answer ((self ga))
(car (best-answers self 1)))
(defmethod best-answers ((self ga) \&optional (n 1) (as-strings? t))
(with-slots (population) self
(best-answers population n as-strings?)))

```

\subsection*{6.5.2 best-answers}

This returns the n best answers at the current time. If as-strings? is set, then the genomes are translated to strings before being returned.
```

364 (defmethod best-answers ((self population) \&optional (n 1) (as-strings? t))
365
366
367
368
369
370
371
3 7 2 ~ c o l l e c t ~ ( f i t n e s s ~ ( n t h ~ ( 1 - ~ i ) ~ i n d i v i d u a l s ) ) ~ i n t o ~ b f
373 finally (return (values ba bf)))))

```

\subsection*{6.6 Another GA task: TSP}

The Traveling Salesperson Problem (TSP) is a well-known NP-hard problem. Here, we will attempt to solve it with a GA. The task is to find the shortest route through a group of cities, visiting each city only once and ending up at the start city. The model uses (usually) a complete graph, though we can add extremely long (or infinite) paths between cities that don't have a real connection.

We'll model the cities as a simple list of the form:
```

((a b 15)
(b c 20)...)

```
etc., meaning that the route from city a to city b is 15 units, etc. We assume a undirected graph.
To convert this into a GA, we'll simply use a letter per city and let a string represent a path. Thus for 4 cities, a path might be:
"abcda"
representing starting at city "a", going to "b", "c", and "d", then back to "a".
The fitness function will compute the cost, and the GA will try to minimize that cost. Note that this inverts the sense of fitness. Thus, we'll make the costs negative, so that as we "reduce" the costs, we really get closer to 0 , and so the fitness can be in the usual, increasing, sense.

\subsection*{6.6.1 City map}

\section*{1. generate-tsp}

First, a function that will generate a random TSP problem given the number of cities and min and max link costs.

374 375 376
```

(defun generate-tsp (n mincost maxcost)
(let ((possible (loop for city in *alphabet-upper-case*
for i from 1 to n
collect city)))
(labels ((paths (city rest min max)
(cond

```

380 ((null rest) nil)
381 (t (append (loop for other in rest
382 collect (list city other (+ min (random (- max min)))))
383 (paths (car rest) (cdr rest) min max))))))
384 (paths (car possible) (cdr possible) mincost maxcost))))
2. *tsp*

Now, a variable to hold the newly-created TSP.

385 (defvar *tsp* (generate-tsp 5 1 10))
3. solve-tsp

This function uses learn-string in order to solve a TSP. The fitness function is defined below.
```

386 (defun solve-tsp (\&key tsp (n 5) (min 1) (max 10)
387 (individual-kind :alphanumeric+space)
388 until-best-fitness until-average-fitness
389
390
391
392
393
394
395
396
397
398
399
4 0 0
4 0 1
4 0 2
4 0 3
4 0 4
4 0 5
4 0 6
4 0 7
408 (unless ga
409 (setq *ga* (make-instance 'ga
4 1 0 ~ : b r e e d i n g - p a i r s ~ b r e e d i n g - p a i r s ~
4 1 1 ~ : i n d i v i d u a l - k i n d ~ ( c o p y - l i s t ~ c i t i e s )
4 1 2 ~ : i n d i v i d u a l - s i z e ~ ( 1 + ~ ( l e n g t h ~ c i t i e s ) ) ~
4 1 3 ~ : b r e e d i n g - p a i r s ~ b r e e d i n g - p a i r s
414 :mutation-rate mutation-rate
415 :crossover-rate crossover-rate
416 :population-size population-size
4 1 7 ~ : s i l e n t ~ s i l e n t

```
```

418 :fitness-function \#'tsp-fitness-function
419 )))
4 2 0
421 (run *ga* :status-every status-every :file file
4 2 2 ~ : u n t i l - g e n e r a t i o n ~ u n t i l - g e n e r a t i o n ~
423 :until-best-fitness until-best-fitness
4 2 4 ~ : u n t i l - a v e r a g e - f i t n e s s ~ u n t i l - a v e r a g e - f i t n e s s
425 :for for)))

```

\section*{4. tsp-fitness-function}

This simply calculates the cost of the current path and returns it as a negative number. Thus shorter paths will be less negative, hence fitter. If a path does not begin and end at the same place, then it's penalized, as it is if a city occurs more than once (other than start and end).
4 2 8
4 3 0 ~ (c o n d
4 3 2
4 3 3
4 3 4
4 3 5
4 3 6
4 3 7
4 3 8
4 3 9
4 4 0
```

```
426 (defvar *tsp-non-circuit-penalty* most-positive-fixnum)
```

```
426 (defvar *tsp-non-circuit-penalty* most-positive-fixnum)
427 (defvar *tsp-duplicate-city-penalty* most-positive-fixnum)
427 (defvar *tsp-duplicate-city-penalty* most-positive-fixnum)
429 (defun tsp-fitness-function (path)
429 (defun tsp-fitness-function (path)
431 ((not (eql (car path) (car (last path))))
431 ((not (eql (car path) (car (last path))))
```

            (- *tsp-non-circuit-penalty*))
    ```
 (- *tsp-non-circuit-penalty*))
 ((< (length (remove-duplicates path)) (1- (length path)))
 ((< (length (remove-duplicates path)) (1- (length path)))
 (- *tsp-duplicate-city-penalty*))
 (- *tsp-duplicate-city-penalty*))
 (t
 (t
 (- (path-cost path *tsp*)))))
 (- (path-cost path *tsp*)))))
(defun path-cost (path &optional (tsp *tsp*))
(defun path-cost (path &optional (tsp *tsp*))
 (cond
 (cond
 ((< (length path) 2) 0)
 ((< (length path) 2) 0)
 (t (+ (segment-cost (car path) (cadr path) tsp)
 (t (+ (segment-cost (car path) (cadr path) tsp)
 (path-cost (cdr path) tsp)))))
 (path-cost (cdr path) tsp)))))
(defun segment-cost (a b &optional (tsp *tsp*))
(defun segment-cost (a b &optional (tsp *tsp*))
 (or (third (car (member (list a b) tsp
 (or (third (car (member (list a b) tsp
 :test #'(lambda (target candidate)
 :test #'(lambda (target candidate)
 (or (and (eql (car target) (car candidate))
 (or (and (eql (car target) (car candidate))
 (eql (cadr target) (cadr candidate)))
 (eql (cadr target) (cadr candidate)))
 (and (eql (car target) (cadr candidate))
 (and (eql (car target) (cadr candidate))
 (eql (cadr target) (car candidate))))))))
 (eql (cadr target) (car candidate))))))))
 most-positive-fixnum))
```

            most-positive-fixnum))
    ```

\section*{Index}
TSP (variable), 19
alphabet-bitstring (variable), 7
alphabet-lower-case (variable), 6
alphabet-map (variable), 7
alphabet-numerals (variable), 7
alphabet-punctuation (variable), 7
alphabet-space (variable), 7
alphabet-special (variable), 7
alphabet-upper-case (variable), 6
ga (variable), 8
stats (variable), 8
target (variable), 8
tsp-duplicate-city-penalty (variable), 20
tsp-non-circuit-penalty (variable), 20
add-individuals (method), 13
average-fitness (method), 11
best-answer (method), 17
best-answers (method), 18
best-fitness (method), 11
choose? (function), 13
compute-fitness (method), 9
compute-fitnesses (method), 9
condition-string (method), 6
crossover (method), 12
display (method), 10
fittest (method), 13
ga (class), 4
generate-tsp (function), 18
genome-as-string (method), 11
get-alphabet (function), 8
individual (class), 3
learn-string (function), 16
mutate (method), 13
next-generation (method), 14
path-cost (function), 20
population (class), 4
random-genome (method), 9
reproduce (method), 11
run (method), 15
segment-cost (function), 20
solve-tsp (function), 19
sort-by-fitness (method), 10
stats (function), 17
status (method), 10
string-match-fitness (function), 14
tsp-fitness-function (function), 20
worst-fitness (method), 11```

[^0]: ${ }^{1}$ These aren't usually found in symbol names if we are using a case-insensitive Lisp, as I usually do.

