LP/LispLite: Trivial Lisp < Org Mode Conversion

Contents

(1 Introductionl

Roy M. Turner

Spring 2016

2 Using the tool

[3 Header/miscellaneous|

[4 Variables/parameters|

[4.1 Variable: =*short-comment-start-regexp™
[£27 Variable: —Forg-command-start™
[4.3 Variable: =*org-comment-start™
[4.4 Variable: *long-comment-start-regexp*
[4.5 Variable: *long-comment-end-regexp*o
[4.6 Variable: *lisp-block-begin-regexp*[.
[4.7 Variable: *1lisp-block-end-regexp*| Lo
[4.8 Variable: *results-line-regexp*
4.9 Variable: *org-mode-headerx
410 Variable —*org-to-lisp-line-number-regexp™| o v o oo
E G T . [eRnitions
[6 Convert from Lisp to Org Mode: the 1lisp-to-org class|
6.1 Method convert]l
6.2 Method do-comment-Tinel L
6.3 Method do-org-command-line| oo
[6.4 Method do-long-comment|
6.5 Method do-1isp-lines|
[6.6 Method empty-line|
6.7 Method line-type|
[6.8 Method strip-comment-chars|
6.9 Method strip-long-comment-start-chars|
[6.10 Method strip-long-comment-end-chars|

[Convert from Org Mode to Lisp: class org-to-1lisyp| 9
[T Method convert] 10
[7.2 Method extract-lisp-code|. L 10
7.3 Method comment-org-mode-lines| 11
7.4 Method line-type| 11

[8 Utility functions| 12
8.1 Method change-extension(old-filename new-extension)|. 12
8.2 Method tmatch (of string): trivial match function|. 12
8.3 Method strip-chars (of string)| 12

1 Introduction

This file is one of LP /Lisp’s/files. It implements a very trivial conversion between Lisp files and Org
Mode (Emacs) files—and I mean very trivial. Basically, this will take a Lisp file with Org Mode
text in comments and output a properly-formatted Org Mode file, complete with Lisp source in
#+BEGIN_SRC/#+END_SRC blocks. Alternatively, given an Org Mode file, it will produce a Lisp file
with the Org Mode text in comments. The two files will likely not look the same, however; there
will be extra blank lines, etc., in one or the other (or both). In particular, if you convert a Lisp file
to an Org Mode file and then back to Lisp. you’ll have a duplicate Org Mode header. . . one for each
time you make the conversion back and forth.

There is one other thing that currently is needed to make output from the Org Mode file look
good. For some reason, the tabs on the Lisp lines in the Org Mode file aren’t getting expanded right.
Org Mode (at least the version I have installed, which is 20160215, doesn’t work as advertised, and
neither the -i switch on the BEGIN_SRC line nor any variable setting seems to help anything. So
for now, you need to explicitly untabify the Org Mode buffer before output (e.g., M-x untabify in
Emacs). Argh.

If you are interested in a much more capable literate programming tool for Lisp, see [LP/Lisp
itself. Unfortunately, however, it only works at the moment with Allegro Common Lisp!

2 Using the tool

When you load the LP/LispLite Lisp file, it puts all functions in the 1plisp package. This means
that functions and object names, etc., from this file need to be prefaced with 1plisp:.
To convert from the Org version of your file to the Lisp version, do:

(1plisp:convert (make-instance ’lplisp:org-to-lisp :filename "your-file.org"))

By default, this will create a file "your-file.lisp" in the current directory. If you want the output
to go elsewhere, use the :output-file keyword parameter.
To convert from the Lisp version of your file to an Org version, do:

(1plisp:convert (make-instance ’lplisp:lisp-to-org :filename "your-file.lisp"))

By default, this will create a file "your-file.org" in the current directory. If you want the output
to go elsewhere, use the :output-file keyword parameter.

Note: Be careful! These functions will happily overwrite your .1lisp and .org files without
warning! So please back up your files before you convert them!

3 Header/miscellaneous

This resides in the 1plisp package, which we have to create if it doesn’t exist.

1 (unless (find-package "LPLISP")
2 (defpackage "LPLISP"

3 (:use "COMMON-LISP")

4 (:export "LISP-TO-0RG"

5 "ORG-TO-LISP"

6 "CONVERT"
7)))

http://MaineSAIL.umcs.maine.edu/software/LPLisp
http://MaineSAIL.umcs.maine.edu/software/LPLisp

8 (in-package lplisp)
Require the pattern matcher
9 (require ’CL-PPCRE)

10 (use-package ’cl-ppcre)

4 Variables/parameters

4.1 Variable: =*short-comment-start-regexp*

Set this to what starts short (single-line) comments in the input language. By default, it’s set for
Lisp. Like other “regexp” variables, this one is initially set to contain a CL-PPCRE “scanner”; this
should speed up processing.

11 (defvar *short-comment-start-regexp* (create-scanner "~\\sx;;;+ 7"))

4.2 Variable: —*org-command-start*

This regexp matches the start of Org Mode commands. Note that in going from to Org, this will
be preceded by the input language’s short comment string.

12 (defvar *org-command-start* (create-scanner "~\\s*#\\+"))

4.3 Variable: =*org-comment-start*

This regexp matches the start of Org Mode comments. Note that in going from to Org, this will
be preceded by the input language’s short comment string.

13 (defvar *org-comment-start* (create-scanner "~\\s*#[~+]"))

4.4 Variable: *long-comment-start-regexp*

This matches the start of along comment. We expect this to be the first thing on the line, other
than white space.

14 (defvar *long-comment-start-regexp* (create-scanner "~\\s*#\\|"))

4.5 Variable: *long-comment-end-regexp*

This matches the end of along comment. We expect this to be the last thing on a line — anything
after this will be deleted.

15 (defvar *long-comment-end-regexp* (create-scanner "\\[#"))

4.6 Variable: *1lisp-block-begin-regexp*

This is used to find the #+begin_src line that starts a Lisp code block. Since we need this to be
case-insensitive, we use a scanner rather than just a regular expression.

16 (defvar *lisp-block-begin-regexp* (create-scanner "~\\s*#\\+begin_src\\s+lisp"
17 :case-insensitive-mode t))

4.7 Variable: *lisp-block-end-regexp*

This is used to find the #+end_src line that ending a Lisp code block. Since we need this to be
case-insensitive, we use a scanner rather than just a regular expression.

18 (defvar *lisp-block-end-regexp* (create-scanner "~\\s*#\\+end_src"
19 :case-insensitive-mode t))

4.8 Variable: *results-line-regexpx*

20 (defvar *results-line-regexp* (create-scanner "~\\s*#\\+results"

21 :case-insensitive-mode t))

4.9 Variable: *org-mode-headerx

Header lines to include at the start of the Org Mode file when converting from Lisp.

22 (defvar *org-mode-header*

23 ?(

24 BRI 22 S S s S s S S
25 "# Start: Added by LP/Lisp"

26 "#+STARTUP: hidestars"

27 "#+STARTUP: showall"

28 "#+0PTIONS: toc:t num:t"

29 "#+DATE: "

30 "#+LATEX_CLASS_OPTIONS: [11pt]"

31 "# Fix the margins -- following from Clark Donley (clarkdonley.com)"

32 "#+LATEX_HEADER: \\usepackage[margin=1in]{geometry}"

33 "# This line makes lists work better:"

34 "# It eliminates whitespace before/within a list and pushes it tt the left margin"
35 "#+LATEX_HEADER: \\usepackage{enumitem}"

36 "#+LATEX: \\newpage"

37 "# End: Added by LP/Lisp"

38 BRI 2 s s s
39)

40)

4.10 Variable =*org-to-lisp-line-number-regexp*

This variable holds a regexp matching the numbers that LP /Lisp puts in front of source (Lisp) lines
in the Org Mode file. These are stripped out when importing back into Lisp from an Org File by
org-to-lisp.

41 (defvar *org-to-lisp-line-number-regexp* "~\\s*\[[0-91*\1\\s?")

5 Generic function definitions

This section is here because apparently initialize-instance has to have functions it calls defined
before it is defined. Go figure. Lisp thinks it’s C, maybe?

42 (defgeneric change-extension (old-filename new-extension))

6 Convert from Lisp to Org Mode: the 1lisp-to-org class

43 (defclass lisp-to-org ()

44 (

45 (filename :initform nil :initarg :filename)

46 (output-file :initform nil :initarg :output-file)
47 ;3 Streams:

48 (in :initform nil)

49 (out :initform nil)

50 (lineno :initform 0)

51)

52)

Initialize instance (:after) method
This adds functionality to the initialize-instance method for lisp-to-org to create the
output filename from the input filename, if it isn’t specified.

53 (defmethod initialize-instance :after ((self lisp-to-org) &key &allow-other-keys)
54 (with-slots (filename output-file) self

55 (when filename

56 (unless output-file

57 (setf (slot-value self ’output-file) (change-extension filename ".org"))))))

6.1 Method convert

This method does all the work for 1isp-to-org.

58 (defmethod convert ((self lisp-to-org) &key (omit-header nil) &allow-other-keys)

59 (with-slots (lineno in out filename output-file) self

60 (with-open-file (instream filename :direction :input)

61 (setq lineno 0)

62 (setq in instream)

63 (with-open-file (outstream output-file :direction :output :if-exists :supersede
64 :if-does-not-exist :create)

65 (setq out outstream)
66 (unless omit-header

67 (dolist (header *org-mode-header*)

68 (format out ""a~%" header)))

69 (let ((line (read-line in nil :eof)))

70 (loop until (eql :eof line)

71 do (setq line (case (line-type self line)

72 (:empty-line (read-line in nil :eof))

73 (:long-comment (do-long-comment self line))

74 (:comment (do-comment-line self line))

7% (:org-command (do-org-command-line self line))
76 (otherwise (do-lisp-lines self line))))))))))

6.2 Method do-comment-line

This takes care of a comment line by converting it to a plain Org Mode line.

77 (defmethod do-comment-line ((self lisp-to-org) line)
78 (with-slots (in out) self

79 (let ((start-char (search ";" line)))
80 (write-line (strip-chars line *short-comment-start-regexp*) out)
81 (read-line in nil :eof))))

6.3 Method do-org-command-line

[OBSOLETE]| This isn’t really needed, I don’t think?

82 (defmethod do-org-command-line ((self lisp-to-org) line)
83 (with-slots (in out) self

84 (write-line (concatenate ’string ";;; " line) out)
85 (read-line in nil :eof)))

6.4 Method do-long-comment

This handles an entire long comment. It just takes the leading and trailing delimiters off and writes
out all other lines directly.

86 (defmethod do-long-comment ((self lisp-to-org) line)
87 (with-slots (in out) self

88 ;3 Output first line, minus the #| -- in case it wasn’t otherwise empty:
89 (write-line (strip-long-comment-start-chars self line) out)

90 (loop until (or (eql :eof (setq line (read-line in nil :eof)))

91 (eql :long-comment-end (line-type self line)))

92 do

93 (write-line line out))

94 (cond

95 ((eql :eof lime)

96 teof)

97 (t (write-line (strip-long-comment-end-chars self line) out)

98 (read-line in nil :eof)))))

6.5 Method do-lisp-lines

This handles an entire section of Lisp code by wrapping it in a #+BEGIN_SRC/#+END_SRC block. It
also causes line numbers to be output from the Org file by using Org’s +n switch to the source block.
We also keep track of the line number, though, so we can (later) write an index for the functions,
etc.

99 (defmethod do-lisp-lines ((self lisp-to-org) line)

100 (with-slots (in out lineno) self

101 (write-org-begin-src self)

102 (format out "[~5,°0d] ~a~%" (incf lineno) line)

103 (incf lineno)

104 (write-line line out)

105 (loop until (or (eql :eof (setq line (read-line in nil :eof)))

106 (not (member (line-type self line) ’(:source-line :empty-line))))

107 (not (eql :source-line (line-type self line))))

108 do

109 ; (format out "[~5,°0d] ~a~%" (incf lineno) line)
110 (incf lineno)

111 (write-line line out)

112)

113 (write-org-end-src self)

114 (if (eql :eof line)

115 reof

116 line)))

6.6 Method empty-line

Returns t if the line contains nothing but white space.

117 (defmethod empty-line ((self lisp-to-org) line)
118 (tmatch "~\\s*$" line))

6.7 Method line-type

This returns the type of line. It can be one of:

e :comment — a single-line comment

e :long-comment/:long-comment-end — start/finish of a long comment block
e :org-command [obsolete]

e :empty-line — just that

e :source-line — a Lisp (e.g.) source code line

Note: There is a comment convention in play here for Lisp files. Lines with 3 or more semi-
colons are considered :comment lines, and so will be formatted as Org Mode text. Less than
this, :source-line will be returned as the type, so that in-line comments that don’t warrant
documentation-level treatment on their own, as well as commented-out functions, can be left in the
Lisp source code.

119 (defmethod line-type ((self lisp-to-org) line)

120 (cond

121 ((tmatch *short-comment-start-regexp* line) :comment)

122 ((tmatch *long-comment-start-regexp* line) :long-comment)
123 ((tmatch *long-comment-end-regexp* line) :long-comment-end)
124 ((tmatch *org-command-start* line) :org-command)

125 ((tmatch "~\\s*$" line) :empty-line)

126 (t :source-line)))

127 (defmethod write-org-begin-src ((self lisp-to-org))
128 (with-slots (out) self
129 (write-line "#+BEGIN_SRC lisp +n -i :tangle yes :comments link" out)))

130 (defmethod write-org-end-src ((self lisp-to-org))
131 (with-slots (out) self
132 (write-line "#+END_SRC" out)))

6.8 Method strip-comment-chars

This will strip comment characters from the front of line.

133 (defmethod strip-comment-chars ((self lisp-to-org) line)

134 (strip-chars self line *short-comment-start-regexpx*))

6.9 Method strip-long-comment-start-chars

135 (defmethod strip-long-comment-start-chars ((self lisp-to-org) line)
136 (strip-chars self 1line *long-comment-start-regexp*))

6.10 Method strip-long-comment-end-chars

Unlike mos of the strip-xyz methods, this one strips stuff off the end rather than the beginning.
Note that everything after the end regexp is deleted, as it is assumed that this is the last thing on
the line.

137 (defmethod strip-long-comment-end-chars ((self lisp-to-org) line)
138 (multiple-value-bind (start end)

139 (tmatch *long-comment-end-regexp* line)
140 (declare (ignore end))

141 (cond

142 ((null start) line)

143 (t (subseq line 0 start)))))

7 Convert from Org Mode to Lisp: class org-to-lisp

This class takes an Org Mode file containing Lisp code and converts it into a Lisp file, with all Org
Mode commands, etc., in comments, and with the Lisp source code (in #+BEGIN_SRC/#+END_SRC
blocks) extracted. This does not, unfortunately, do any moving around of code like a true literate
programming system (like the full-fledged LP /Lisp) should do. It can handle, however, Lisp lines
preceeded by [XXXXX] strings (line numbering), and it will remove the leading numbering.

144 (defclass org-to-lisp (O

145 (

146 (filename :initform nil :initarg :filename)

147 (output-file :initform nil :initarg :output-file)

148 (in :initform nil :initarg :in)

149 (out :initform nil :initarg :out)

150 (comment-start :initform ";;;" :initarg :comment-start)
151)

152)

Initialize instance (:after) method
This adds functionality to the initialize-instance method for org-to-lisp to create the
output filename from the input filename, if it isn’t specified.

163 (defmethod initialize-instance :after ((self org-to-lisp) &key &allow-other-keys)
154 (with-slots (filename output-file) self

155 (when filename

156 (unless output-file

157 (setf (slot-value self ’output-file) (change-extension filename ".lisp"))))))

7.1 Method convert

This does the real work of conversion.

168 (defmethod convert ((self org-to-lisp) &key &allow-other-keys)

159 (format t "*short-comment-start-regexp*="s~}" *short-comment-start-regexp*)

160 (with-slots (in out filename output-file) self

161 (with-open-file (instream filename :direction :input)

162 (setq in instream)

163 (with-open-file (outstream output-file :direction :output :if-exists :supersede
164 :if-does-not-exist :create)

165 (setq out outstream)
166 (let ((line (read-line in nil :eof)))

167 (loop until (eql :eof line)

168 do (setq line (case (line-type self line)

169 (:begin-src (extract-lisp-code self line))

170 (otherwise (comment-org-mode-lines self line))))))))))

7.2 Method extract-lisp-code

This will handle a source code block by getting rid of the delimiters and any leading line numbers
of the form [xxxxxx].

171 (defmethod extract-lisp-code ((self org-to-lisp) line)
172 (with-slots (in out) self

173 ;; Skip the =BEGIN_SRC= command by reading the file again immediately at
174 ;; the head of the loop. However, I should put a blank line in its place.
175 (write-line "" out)

176 (loop with start

177 with end
178 until (or (eql :eof (setq line (read-line in nil :EQF)))

179 (eql :end-src (line-type self line)))

180 do

181 (multiple-value-setq (start end)

182 (tmatch *org-to-lisp-line-number-regexp* line))
183 (cond

184 ((null start) (write-line line out))

185 (t

186 (write-line (subseq line end) out))))

187 (write-line "" out)

188 ;3 1f not at the end of the file, then we’ve encountered an =END_SRC_
189 ;; command; read another line to skip it.

190 (unless (eql line :eof)

10

191 (setq line (read-line in nil :eof)))

192 line))

7.3 Method comment-org-mode-lines

This inserts non-source lines as comment lines in the Lisp file.

193 (defmethod comment-org-mode-lines ((self org-to-lisp) line)

194 (with-slots (in out comment-start) self

195 (write-line comment-start out)

196 (loop until (or (eql :eof line)

197 (eql :begin-src (line-type self line)))
198 do

199 (cond

200 ((eql :results-line (line-type self line))
201 ;3 Skip the results, if any:

202 (setq line (skip-results-line self line)))
203 (t

204 (write-line (concatenate ’string comment-start " " line) out)
205 (setq line (read-line in nil :eo0f)))))

206 line))

207 (defmethod skip-results-line ((self org-to-lisp) line)
208 (with-slots (in) self

209 (format t "Skipping ~s”%" line)

210 (loop until (or (eql :eof (setq line (read-line in nil :eof)))
211 (not (tmatch "~\\s*: " line)))

212 do (format t "Skipping ~s" line))

213 line))

7.4 Method line-type

Similar to the corresponding method for class 1isp-to-org; the valid types are :org-mode-line
and :begin/end-src.

Note that we have to bind *package* to the 1plisp package for the duration of this method,
since otherwise read-from-string will intern the thing read into whatever package the user is in,
not 1plisp. I know this is how it is supposed to work, but it sure seems like a poor design choice
to me. (Or maybe it’s just due to 1plisp “using” cl-user?)

214 (defmethod line-type ((self org-to-lisp) line)
215 (let ((*package* (find-package ’lplisp)))

216 (cond

217 ((tmatch *1lisp-block-begin-regexp* line)
218 :begin-src)

219 ((tmatch *1lisp-block-end-regexp* line)
220 :end-src)

221 ((tmatch *results-line-regexp* line)

222 :results-line)

223 (t

224 :org-mode-line))))

11

8 Utility functions

8.1

225
226
227
228
229
230

8.2

Method change-extension(old-filename new-extension)

(defmethod change-extension ((self string) new)
(let ((period (search "." self :from-end t)))
(concatenate ’string (if period
(subseq self 0 period)
self)
new)))

Method tmatch (of string): trivial match function

This is just a wrapper around CL-PPCRE’s scan function for now. It also returns what scan
returns (i.e., 4 values). Regexp can be a scanner or a regexp.

231
232
233

234
235
236

8.3

(defmethod tmatch ((regexp string) (string string) &key (start 0) (end (length
string)))
(scan regexp string :start start :end end))

(defmethod tmatch (regexp (string string) &key (start 0) (end (length
string)))
(scan regexp string :start start :end end))

Method strip-chars (of string)

This is called by most of the other strip-xyz methods to do the bulk of the work. It strips off the
leading portion of string that matches regexp.

237
238
239
240
241
242
243
244

245
246
247

248
249
250
2561
252
253
254
255

(defmethod strip-chars ((line string) regexp)
(multiple-value-bind (start end)
(tmatch regexp line)
(cond
((null start)
line)
(t
(subseq line end)))))

(defclass python-to-org (lisp-to-org)
O
)

(defmethod convert :around ((self python-to-org) &key (omit-header nil) &allow-other-keys)
(let (
(xshort-comment-start-regexp* (create-scanner "~\\s*#+ ?"))
(¥long-comment-start-regexp* (create-scanner
(concatenate ’string > (#\" #\" #\"))))

(¥long-comment-end-regexp* (create-scanner

(concatenate ’string > (#\" #\" #\"))))
(¥lisp-block-begin-regexp* (create-scanner "~\\s*#\\+begin_src\\s+python"

12

256 :case-insensitive-mode t)))
257 (call-next-method)))

258 (defclass org-to-python (org-to-lisp)
259 ((comment-start :initform "##"))
260)

261 (defmethod initialize-instance :after ((self org-to-python) &key &allow-other-keys)
262 (with-slots (filename output-file) self

263 (when filename

264 (unless output-file

265 (setf (slot-value self ’output-file) (change-extension filename ".py"))))))

266 (defmethod convert :around ((self org-to-python) &key &allow-other-keys)
267 (let (

268 (*short-comment-start-regexp* (create-scanner "~\\s*#+ 7"))

269 (¥*long-comment-start-regexp* (create-scanner

270 (concatenate ’string ’(#\" #\" #\"))))
271 (*long-comment-end-regexp* (create-scanner
272 (concatenate ’string > (#\" #\" #\"))))

273 (*lisp-block-begin-regexp* (create-scanner "~\\s*#\\+begin_src\\s+python"
274 :case-insensitive-mode t)))
275 (call-next-method)))

13

	Introduction
	Using the tool
	Header/miscellaneous
	Variables/parameters
	Variable: =*short-comment-start-regexp*
	Variable: =*org-command-start*
	Variable: =*org-comment-start*
	Variable: *long-comment-start-regexp*
	Variable: *long-comment-end-regexp*
	Variable: *lisp-block-begin-regexp*
	Variable: *lisp-block-end-regexp*
	Variable: *results-line-regexp*
	Variable: *org-mode-header*
	Variable =*org-to-lisp-line-number-regexp*

	Generic function definitions
	Convert from Lisp to Org Mode: the lisp-to-org class
	Method convert
	Method do-comment-line
	Method do-org-command-line
	Method do-long-comment
	Method do-lisp-lines
	Method empty-line
	Method line-type
	Method strip-comment-chars
	Method strip-long-comment-start-chars
	Method strip-long-comment-end-chars

	Convert from Org Mode to Lisp: class org-to-lisp
	Method convert
	Method extract-lisp-code
	Method comment-org-mode-lines
	Method line-type

	Utility functions
	Method change-extension(old-filename new-extension)
	Method tmatch (of string): trivial match function
	Method strip-chars (of string)

