Programming Assignment 1: Lisp

COS 470/570 — Spring 2019 — UMaine
Assigned: 1/24,/2019 Due: 2/1/2019

Lisp is one of the primary languages used in AI, and much of the homework in this class will
be in Lisp. Aside from this, there are other reasons to learn (or review) Lisp. For one thing, it is
one of the most rapidly-growing languages in terms of use. In addition, many programs and other
languages use concepts and, more often, syntax from Lisp, and some programs use Lisp itself. Also,
learning different languages, especially ones that are quite different from ones they know, is a very
good thing for computer science majors—and it’s required for accreditation. And, finally, if past
experience is any guide, some of you might find that you fall in love with the language and want to
keep using it.

What others have said about Lisp (from Wikiquotﬂ via CLikﬂ):

Lisp is a programmable programming language. —John Foderaro

One of the most important and fascinating of all computer languages is Lisp...
—Douglas Hofstadter, /Godel, Escher, Bach: an Eternal Golden Braid/

The greatest single programming language ever designed. —Alan Kay
Lisp isn’t a language, its a building material. —Alan Kay

Lisp is worth learning for the profound enlightenment experience you will have

when you finally get it; that experience will make you a better programmer

for the rest of your days, even if you never actually use Lisp itself a lot.
—Eric S. Raymond, "How to Become a Hacker"

Emacs is written in Lisp, which is the only computer language that is beautiful.
— Neal Stephenson, /In the Beginning was the Command Line/

Greenspun’s Tenth Rule: Any sufficiently complicated C or Fortran program
contains an ad hoc informally-specified bug-ridden slow implementation of
half of Common Lisp.

Getting started

The first hurdle to using Lisp is finding and installing a Lisp interpreter. See the “Lisp Packet” on
the course web siteE| for detailed directions on installing and running Lisp.

"Mttp://en.wikiquote.org/wiki/Lisp_programming_language
Zhttps://www.cliki.net
3http://bit.ly/umaineC0S470

With respect to programming in Lisp, I will have a two-hour Lisp “review” next week to help
you become familiar (or refamiliarize yourself) with the language. There are many on-line resources
for learning Lisp; some of these are listed in the Lisp Packet document.

The Assignment

For this assignment, you will do each of the following exercises. You will need to format and
comment your code as described in the Lisp Packet. You will turn in your code and examples of it
running electronically as via Google Classroom, as directed.

1.

first2: Simple list manipulation.

Write a function, first2, that takes a list as its argument and returns the first two elements
of that list as a new list. Note: this should return a list, not a dotted pair. For example,

> (first2 ’(a b c d e £f))
(A B)

In this example and those to follow, > represents the Lisp interpreter prompt, with the line
after being the result of evaluating the Lisp expression after the prompt. The prompt from
your Lisp will probably be different.

. add1: Simple math.

Write a function, add1, that takes an integer as an argument and returns that integer plus 1.

. listadd: Recursion and iteration.

(a) Write a function, listadd1, that will add 1 to each element in a list of integers:

> (listaddl (2 3 4 5))
(345 6)

This function must use recursion to do this.

(b) Write another function, 1istadd2, that uses mapcar to do the same thing.

(c) Write another function, 1istadd3, that uses one of Lisp’s loop constructs (e.g., dolist,
dotimes, or loop) to do the same thing.

. flatten: Complex recursion.

Write a recursive function, flatten, that takes as an argument a list that can include embed-
ded lists and returns a list in which the embedded parentheses have been “removed™—i.e., a
list whose elements are all of the elements of all of the embedded lists. For example,

> (flatten ’(a (b c) d (e (f (g (M) 1))) j))
(ABCDEFGHTIJ)

. last2: More complex list manipulation.

Write a function, last2, that takes a list as its argument and returns the last two elements,
e.g.:

> (last2 ’(a b cd e))
(D E)

6. my-reverse: More complex list manipulation and recursion.

Write a function, reverse, that reverses the order of the elements in a list:

> (my-reverse (a b c 12 3))
(321 CBA)

You must use recursion, and you may not use the built-in reverse function!

7. printlist: Using formatted output.

Lisp has a function, format, for producing formatted output that is similar to C’s printf
facility. Use this function to write a function, printlist, that takes a list as an argument
and produces the following output:

> (printlist (1 2 34 ... 100)) ;; "..." here replaces the actual elements
First element: 1
Second element: 2
Third element: 3
Fourth element: 4
Fifth element: 5
Sixth element: 6
Seventh element: 7
Eighth element: 8
Ninth element: 9
Tenth element: 10
Eleventh element: 11

Ninety-ninth element: 99
One hundredth element: 100
NIL

This should work for any list, with any number of elements (which need not be numeric).
Note: the words “first”’, “second”, etc., are ordinal numbers generated by format. Also note
that format should be used to automatically capitalize the ordinal numbers.

In order to do this problem, you’ll need documentation for the format statement. The defini-
tive source is Common Lisp: The Languag (224 ed.) by Guy Steele.

8. copyfile: File IO.

Write a function, copyfile, that takes two file names as arguments and copies the contents
of the first file to the second. You cannot simply use Lisp’s shell interface to get the operating
system to do it for you.

As in any programming language, you’ll need to open and close the files. In Lisp, the easy
way to do this is with the with-open-file special form; for example, to open a file “foo” and
read all its contents, you could do:

“http://www-2.cs.cmu.edu/Groups/AI/html/cltl/clt12.html

10.

(with-open-file (in "foo" :direction :input)
(loop with line
with i =1
until (eql :eof (setq line (read-line in nil :eof)))
do (format t "Read line “s~)" i)
(incf i)))

In this, in is a stream variable (which doesn’t have to have the name “in”) that is read from.
This form is also used to write to files, with some slight changes, e.g.:

(with-open-file (out "bar" :direction :output :if-exists :supersede
:if-does-not-exist :create)

o)

You can use read to read an entire Lisp expression and write or print to write such an
expression. You can read a line at a time with read-line and write an entire line with
write-line.

. Create a CLOS (Common Lisp Object System) class animal. Create two more, bird and

cat, and make them subclasses of animal. The animal class should have an instance variable,
num-legs, that is initialized to 4. bird should override this with the value 2. There should
be a method speak of animal. Using only method definitions, when speak is called on an
instance of bird, the value “tweet” should be printed, while if called on cat, the value “meow”
should be printed. After defining these, do the following:

(setq ¢ (make-instance ’cat))
(setq b (make-instance ’bird))
(describe c)

(describe b)

(speak c)

(speak Db)

O N

Using no global variables, define a function next that has the following behavior: If called
with an argument that is a list, it returns nothing, but the nezt time it is called, without an
argument, it returns the first element of the list. If called without an argument, it returns the
next item on whichever list was passed to it most recently. The behavior looks like this:

> (next ’(a b c 4))
NIL

> (next)

A

> (next)

B

> (next)

C

> (next)

D

> (next)

NIL

> (next)

NIL

> (next (1 2 3))
NIL

> (next)

1

Show the output on different lists than those used in the example.

