
School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Names, Bindings, Scopes

COS 301: Programming Languages

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Variables
• In imperative languages

• Language: abstractions of von Neumann machine

• Variables: abstraction of memory cell or cells

• Sometimes close to machine (e.g., integers), sometimes not (e.g.,
arrays, etc.)

• In functional languages

• Pure functional: no variables — but can have named expressions

• Most have variables – more like pointers than true variables

• In OO languages (pure)

• Instance variables only

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Variable properties
• Name

• Type

• Scope & lifetime

Names

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Names
• Name = identifiers (more or less)

• Names not just for variables, of course

• subprograms

• modules

• classes

• parameters

• types

• program constructs

• …

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

“What’s in a name?”
• Name: string of characters that identifies some program entity

• Which characters?

• Restrictions on how name begins, other implicit typing?

• Is beginning of name meaningful?

• Any special characters allowed for readability?

• Case-sensitive or not?

• What’s allowed vs “culture” of language

• Underscores/hyphens

• Camel case (camel notation)

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Length
• Early languages: 1-character names

• Too short, not meaningful

• Fortran – 6 characters (initially; 31 as of ’95)

• C – no limit, but only 63 significant

• Java, C#, Ada, Lisp – no limit, all significant

• C++ varies by implementation

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Special words in the language
• Reserved words vs keywords
• Keywords: part of the syntax, special meaning

• E.g., Fortran “Integer”
• E.g., in Lisp: t, nil (cf. keyword package; package locks)

• Reserved words: cannot be used as keyword

• Eliminates some confusion with multiple meanings of keywords
• Keywords usually reserved and vice versa — but not always
• Too many ⇒ difficult for programmer

• E.g., Cobol has 300!
• But some may have too few: Fortran, PL/I: no reserved words!
 if if = then then then = else else else = then

• Imported names (packages, libraries) – function as reserved words locally

Variables

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Variables
• Here: concentrate on imperative languages

• Variable: abstraction of memory cell(s)

• More than just a value!

• Value is one attribute of the variable

• Others: address, type, lifetime, scope

• I.e., variable = <name,address,value,type,lifetime,scope>

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Names
• Binding of an identifier to a memory address

• Not all variables have names!

• Heap dynamic variables

• E.g.:

int *foo;

foo = new int;

*foo = 0;

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Names
• Binding of an identifier to a memory address

• Not all variables have names!

• Heap dynamic variables

• E.g.:

int *foo;

foo = new int;

*foo = 0;

addr

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Names
• Binding of an identifier to a memory address

• Not all variables have names!

• Heap dynamic variables

• E.g.:

int *foo;

foo = new int;

*foo = 0;
0

addr

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Addresses
• Address: where variable is (begins) in memory

• L-value = address

• Not that simple, though:

• Different addresses at different times – for the same variable

• Different addresses in different parts of the program for the same name

• Same address, multiple names (aliases)

• pointers

• reference variables

• unions (C, C++)

• decreases readability

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Type of variable
• Type determines

• size of variable (⇒ range of values possible)

• how to interpret bits

• which operations can be applied

• Much more about types later

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Value
• Value = r-value

• l-value ⇒ address

• Abstract memory cell:

• Real memory cells: usually a byte

• Abstract memory cell: size required by the type

• E.g.: float may be 4 bytes ⇒ 1 (abstract) memory

cell

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Pointers
• Pointers – indirect addressing

• Dereferencing

• C:

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Pointers
• Pointers – indirect addressing

• Dereferencing

• C:
int b;
b = 3;

int* ptr, other_ptr;
ptr = malloc(sizeof(int));
other_ptr = ptr;
*ptr = b;

*other_ptr = ?

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Pointers	
• Some languages: explicit dereferencing

• C: x = *y + 1;

• ML: x := !y + 1

• Pascal: x := ^y + 1

• Other languages: implicit dereferencing

• Java

• Lisp

• Python

Binding

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Binding
• Binding = association between attribute and entity

• E.g.: variable’s value attribute ⇔ value

• E.g., variable’s type attribute ⇔ data type

• Binding time:

• Static binding:

• Association happens prior to run-time

• Compiled languages, e.g.

• Dynamic binding:

• Association happens at run-time

• Interpreted languages, e.g., some things in compiled languages

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Binding times
• Language design time: e.g., operators ⇔ functions (operations)

• Language implementation time: e.g., data types ⇔ range of values

• Compile time: variable ⇔ type

• Link time: library subprogram name ⇔ code

• Load time: variable ⇔ address

• Run time:

• variables ⇔ values – via (e.g.) assignment

• variable ⇔ address in interpreted languages

• variable ⇔ address via malloc(), new

• instance variable ⇔ address in Java

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Example
• Statement (assume PI is a constant):

a = b + PI + 3

• Bindings:

• Types of a, b:

• Compiled languages: compile time

• Interpreted languages: run time

• Possible values of a, b: design time (in Java; implementation time in C)

• Value of PI: compile time or load time

• Value of a, b: runtime

• +: compile time or design time (or even run time)

• Meaning (representation) of 3: compiler design time

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Binding times – again
• Static binding, dynamic binding – but more complicated (of course)

• Virtual memory complicates things

• Even with static binding, it’s to a virtual address

• Paging ⇒ physical address changes

• Transparent to the program, user

• Garbage collecting systems (Lisp, Java, .NET, Objective C, …)

• Some GC systems: copy active memory to another chunk of memory

• Addresses of variables change over time

• E.g.: Lisp has no pointers, but references (sometimes called
locatives), for this reason

Type Bindings

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Type bindings
• Static bindings:

• Explicit declaration: statement specifies types

• Implicit declaration: binding via conventions

• Pros/cons of implicit declaration:

• Pro: writability

• Con: reliability (and possibly readability)

• E.g.: Fortran, VB: implicit declarations

• Fortran: I–N as first char ⇒ integer

• Currently can change this in Fortran (Implicit None) and VB (Option
Explicit)

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Type bindings
• Some languages set up different namespaces for

different types – e.g., Perl

• $foo ⇒ scalar

• @foo ⇒ array

• %foo ⇒ hash

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Type bindings
• Type inferencing: context ⇒ type

• VB, Go, ML, Haskell, OCaml, F#, C#, Swift,…

• C#: infers type from setting in var statement (Swift similar)

var foo = 3.0

var bar = 4

var baz = “a string”

• ML: compiler determines from context of reference

• fun degToRad(d) = d * 3.1415926 / 180;

• fun square(x) = x * x;

• int is default type

• call square(3.5) ⇒ error

• can fix: fun square(x) : real = x * x;

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Dynamic type binding
• Dynamic binding: no declarations, variable assigned type based

on what value it’s assigned

• Rare until relatively recently

• Lisp – early instance of dynamic binding

• More recently: JavaScript, Ruby, PHP, Python…

• Perl: scalar’s type is dynamically bound as are types of elements
of arrays and hashes

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Dynamic type binding
• Dynamic binding: no declarations, variable assigned type based

on what value it’s assigned

• Rare until relatively recently

• Lisp – early instance of dynamic binding

• More recently: JavaScript, Ruby, PHP, Python…

• Perl: scalar’s type is dynamically bound as are types of elements
of arrays and hashes

(setq a ’foo) (setq a ”hi”)
(setq a 3.14159) (setq a 5/16)

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Dynamic type binding
• Dynamic binding: no declarations, variable assigned type based

on what value it’s assigned

• Rare until relatively recently

• Lisp – early instance of dynamic binding

• More recently: JavaScript, Ruby, PHP, Python…

• Perl: scalar’s type is dynamically bound as are types of elements
of arrays and hashes

(setq a ’foo) (setq a ”hi”)
(setq a 3.14159) (setq a 5/16)

list = 3
list = [3, 4.5]

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Dynamic type binding
• Dynamic binding: no declarations, variable assigned type based

on what value it’s assigned

• Rare until relatively recently

• Lisp – early instance of dynamic binding

• More recently: JavaScript, Ruby, PHP, Python…

• Perl: scalar’s type is dynamically bound as are types of elements
of arrays and hashes

(setq a ’foo) (setq a ”hi”)
(setq a 3.14159) (setq a 5/16)

list = 3
list = [3, 4.5]

$foo = 3; $foo = ‘a’;
@foo=[3, “foo”,3.54];
%foo = (“a” => 4, 3 => “b”, “pi” => 3);
$foo{“pi”} = 3.1415926;

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Dynamic type binding
• C# (2010) allows dynamic binding

• OOP

• In pure OO languages: all variables are dynamic and
can reference any object (Smalltalk, Ruby)

• In Java: restricted to referencing particular kind(s) of
object

dynamic foo;

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Dynamic type binding
• Advantage: flexibility

• E.g., write a Perl, Lisp, etc., program to average
numbers without knowing what kind of numbers they
are

• Cannot do this in C, e.g. (without using pointers)

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Dynamic type binding
• Disadvantages:

• Reliability issues: compiler can’t check types

• Costs:

• Dynamic type checking ⇒ extra code/time

• ⇒ maintain type information (runtime descriptor) ⇒ symbol
table at runtime

• Variable-sized values ⇒ heap storage, GC

• Often interpreted languages (but can compile some [e.g., Lisp])

i = 3; j = “hi there”
…
foo = j; ← typo - meant i

Storage Bindings, Lifetime

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Storage bindings, lifetime
• Every variable has some storage bound to it

• Allocation: taking storage from pool of storage locations ⇒ variable

• Deallocation: returning storage to pool

• Variable lifetime: time variable is bound to storage – for scalars:

• static

• stack-dynamic

• explicit heap-dynamic

• implicit heap-dynamic

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Static variables
• Storage (addresses) bound prior to run-time

• Lifetime: entire program lifetime

• Used for:

• Global variables

• Subroutine variables that need to exist across invocations
(e.g., C/C++ static variable type)

• “Static” variables in Java, C#, C++ classes – class variables

int incCounter() {
 static int counter = 0;
 return ++count;

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Static variables
• Efficient:

• direct memory addressing

• unless implementation uses a base register

• But:

• No recursion (if only static variables)

• No storage sharing among subprograms

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Stack-dynamic variables
• Storage is on the run-time stack

• Type: statically bound

• Storage created at time of declaration elaboration:

• Elaboration: when execution reaches declaration

• Allocation of storage

• Binding of storage

• Examples:

• Parameters

• Local variables in subroutines/methods

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Stack-dynamic variables
• Everything static but address

• Indirect addressing…

• …but offset into stack is static

• Advantages:

• Recursion

• Shared memory space for all subprograms

(defun fact (n)
 (cond
 ((<= n 1) 1)
 (t (* n (fact (1- n))))))

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Stack-dynamic variables
• Disadvantages:

• Speed of access – indirect addressing

• Time to allocate/deallocate variables (but done as a
block)

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Heap-dynamic variables
• Heap: portion of memory allocated to process, initially

unused

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Heap-dynamic variables
• Heap: portion of memory allocated to process, initially

unused

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Heap-dynamic variables
• Heap: portion of memory allocated to process, initially

unused

Text

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Heap-dynamic variables
• Heap: portion of memory allocated to process, initially

unused

Data

Text

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Heap-dynamic variables
• Heap: portion of memory allocated to process, initially

unused

bss
Data

Text

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Heap-dynamic variables
• Heap: portion of memory allocated to process, initially

unused

Stack

bss
Data

Text

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Heap-dynamic variables
• Heap: portion of memory allocated to process, initially

unused

Stack

Heap

bss
Data

Text

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Heap-dynamic variables
• Heap: portion of memory allocated to process, initially

unused

Stack

Heap

bss
Data

Text

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Heap-dynamic variables
• Heap: portion of memory allocated to process, initially

unused

Stack

Heap

bss
Data

Text

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Heap-dynamic variables
• Dynamic: allocated as needed by operator, system call

(via subroutine)

• Referenced only via pointer

• Useful for:

• data structures with size unknown at compile time

• dynamic data structures (trees, linked lists)

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Heap-dynamic variables
• Ex – C++:

• Ex – C:

int *foo;
foo = new int;
…
delete foo;

int *foo;
foo = malloc(sizeof(int));
…
free(foo);

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Heap-dynamic variables
• Java:

• All objects except primitive scalars → heap-dynamic

• Created via new, accessed by reference variables

• No destructor: garbage collection

• C#:

• Heap-dynamic and stack-dynamic variables

• Also has pointers

• Lisp/CLOS – objects via make-instance

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Heap-dynamic variables
• Advantage: flexibility

• Disadvantages:

• Danger of pointers

• Cost of reference, pointer access

• Memory management

• Garbage collection or manual

• Fragmentation

• Memory leaks

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Implicit heap-dynamic variables
• Bound only when assigned variables (all attributes)

• JavaScript, Perl, Python…

• Lisp’s cons cells

• Advantage: flexibility

• Disadvantages:

• Those of other heap-dynamic variables

• Also have to manage all attributes – maintain symbol
table at runtime

Scope

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Scope
• Scope:

• Where the variable is visible

• I.e., the statements in which it is visible/useable

• Scope rules of language:

• Determine how references to names are associated with
variables

• Common error: inadvertently referencing a non-local variable

• Local variables – in program or block

• Non-local variables

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Lexical (static) scoping
• Lexical (static) scoping — most modern languages

• Where name defined in program matters
• Binding of name ⇔ variable can be determined prior to runtime

• Name bound to variable in a collection of statements
• Subprograms

• Blocks

• Nested functions/blocks

• Algol 60 introduced lexical scoping – including begin–end blocks,
nested scoping

• Nested scopes: Common Lisp, Ada, JavaScript, Scheme, Fortran
(2003 and newer)

• C, C++, Java – can’t nest functions

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Non-local names in lexical scope
• Look in local scope first for declaration of variable

• If not found ⇒ look in static parent scope

• If not found there, look in its static parent scope, etc.

• I.e., look in static ancestors

• Ultimately: look in global scope

• If not found ⇒ undeclared variable error

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Example
function outer {
function inner1 {

var x = 1;
inner2(x);

}
function inner2 (y){

function inner3 (x){
x = x * x;

}
x = y + 3;

}

var x = 2;
inner1();

}

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Example
function outer {
function inner1 {

var x = 1;
inner2(x);

}
function inner2 (y){

function inner3 (x){
x = x * x;

}
x = y + 3;

}

var x = 2;
inner1();

}

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Example
function outer {
function inner1 {

var x = 1;
inner2(x);

}
function inner2 (y){

function inner3 (x){
x = x * x;

}
x = y + 3;

}

var x = 2;
inner1();

}

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Example
function outer {
function inner1 {

var x = 1;
inner2(x);

}
function inner2 (y){

function inner3 (x){
x = x * x;

}
x = y + 3;

}

var x = 2;
inner1();

}

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Blocks
• Algol 60 → blocks — with scope

• Many modern languages: block-structured languages

• Block’s local variables ⇒ stack dynamic

• C-based languages: any compound statement can have
declarations ⇒ new scope

• JavaScript does not allow non-function blocks (as
scopes)

• Lisp, others: let construct

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Block example: C

int* swap(int* foo) {
int bigger;
if (foo[0] > foo[1]) {
int temp;
bigger = foo[0];
temp = foo[1];
foo[1] = foo[0];
foo[0] = temp;

}
printf(“bigger=%d”,bigger);
return foo;

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Block example: Lisp

(defun swap (a)
(let ((bigger 0) (smaller 0)) ;; scope 1

(if (> (first a) (second (a))
(let ((temp (first a))) ;; scope 2

(setf bigger (first a)
 smaller (second a))
(setf (first a) (second a))
(setf (second a) temp))

(setf bigger (second a)
 smaller (first a)))

(format t “Bigger=~s, smaller=~s.~%”
 bigger smaller)

)
a
)

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Nesting scope
• Varying support: JavaScript, Perl, Ruby, Python

• Nested classes, blocks in C++, Java

• Nested blocks, not subprograms, in C

• Reusing names in nested scopes:

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Nesting scope
• Varying support: JavaScript, Perl, Ruby, Python

• Nested classes, blocks in C++, Java

• Nested blocks, not subprograms, in C

• Reusing names in nested scopes:
int count;
…
while (…) {
int count;
count++;
}

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Nesting scope
• Varying support: JavaScript, Perl, Ruby, Python

• Nested classes, blocks in C++, Java

• Nested blocks, not subprograms, in C

• Reusing names in nested scopes:

int count;
…
while (…) {
int count;
count++;
}

• Allowed in C, C++
• Not in Java, C#

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Nesting in for loop
• Some languages: for loop has its own scope

• Scope includes variables declared in initialization of loop

• E.g., C:

int i;
…
for (int i = -100; i<100 ;i++) {
 …
 a = 3 * i;
 …
}

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Nesting scope – Why?
• Saves memory – only allocate what is needed

• Encapsulation (cf. OO)

• Readability/writability: keeps names close to where they
are used

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Accessing hidden/shadowed variables
• Variable in local scope hides or shadows one with same

name in outer scope(s)

• Some languages (Java, C#) don’t allow this in general

• Some languages allow accessing hidden variables

• E.g., Ada: unit.name

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Lexical scope: Summary

 Algol C Java Ada Lisp

Package n/a n/a yes yes yes
(namespace)

Class n/a n/a nested yes yes

Function nested yes yes nested yes

Block nested nested nested nested nested

For Loop no post ’89 yes automatic automatic

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Declaration order
• Some languages: declaration can appear anywhere

• E.g., C (99+), C++, Java, VB, C#

• C, C++, Java – scope from declaration → end of block

• C# – scope is whole block (but must be declared prior to
use)

• Other languages:

• Variables have to be defined prior to executable statements
(e.g., Pascal)

• Readability? Writability?

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Global scope
• Global variables — e.g., C, C++, Lisp, Python, etc.)

• No enclosing scope

• Globals appear outside any function

• C/C++: one definition, but multiple declarations

• Definition ⇒ where storage is allocated

• Definition often also initializes the variable

• Declarations:
extern int sum;

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Global variables – accessing
• Last place to look in lexical scoping (most languages)

• Some languages: can explicitly access them – e.g., ::foo (in C++)

• PHP: globals aren’t accessible by default

• Access via $GLOBALS (associative) array…

• …or explicitly declare in function: global $foo

• Python:

• Can access (read) globals inside function unless you also try to set them

• Can set them only if declared — e.g., global foo

• Can only access variables in nonlocal scope with nonlocal

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Example – Python (v.2)
day = "Monday"
def tester():

print "The global day is: ",day #reading ok
tester()

output:

 The global day is: Monday

day = "Monday"
def tester():

print "The global day is: ",day #reading OK
day = "Tuesday“ #oops! Writing not OK
print "The new value of day is: ",day

tester()
output:
UnboundLocalError: local variable 'day' referenced before assignment

day = "Monday"
def tester():

global day
print "The global day is: ",day
day = "Tuesday"
print "The new value of day is: ",day

tester()
output:
 The global day is: Monday
 The new value of day is: Tuesday

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Globals and compilation units
• Compilation unit: file (e.g.) compiled separately

• Most languages: declarations at compilation unit level

• Multiple compilation units ⇒ need mechanism to make
variables truly global

• C: header files – #include <foo>

• Or use extern and allow linker to resolve

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Advantages of static scoping
• Static type checking is possible — at compile time

• Can directly translate references → addresses

• Does not require maintenance and traversal of binding
stacks (or even symbol tables for compiled languages) at
runtime

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Problems with static scoping
• May provide more access to variables, functions, than

necessary

• As programs evolve:

• Initial static structure may become cumbersome

• Tempts programmers toward making more things
global over time

• Alternative: encapsulation (construct or objects)

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Dynamic Scope
• Static (lexical) scope: depends on how program units are

written

• Dynamic scope: depends on how they are called

Dynamic is temporal, static is spatial

• To find which variable is being referenced: Look back
through chain of subprogram calls

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Scope Example
Big

 declaration of X

 Sub1

 declaration of X -

 ...

 call Sub2

 ...

 Sub2

 ...

 reference to X -

 ...

 ...

 call Sub1

 call Sub2

 …

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Scope Example
Big

 declaration of X

 Sub1

 declaration of X -

 ...

 call Sub2

 ...

 Sub2

 ...

 reference to X -

 ...

 ...

 call Sub1

 call Sub2

 …

Static scoping:
 Sub2’s X always...

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Scope Example
Big

 declaration of X

 Sub1

 declaration of X -

 ...

 call Sub2

 ...

 Sub2

 ...

 reference to X -

 ...

 ...

 call Sub1

 call Sub2

 …

Static scoping:
 Sub2’s X always...

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Scope Example
Big

 declaration of X

 Sub1

 declaration of X -

 ...

 call Sub2

 ...

 Sub2

 ...

 reference to X -

 ...

 ...

 call Sub1

 call Sub2

 …

Static scoping:
 Sub2’s X always...

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Scope Example
Big

 declaration of X

 Sub1

 declaration of X -

 ...

 call Sub2

 ...

 Sub2

 ...

 reference to X -

 ...

 ...

 call Sub1

 call Sub2

 …

Static scoping:
 Sub2’s X always...
Dynamic scoping:
 Big → Sub1 → Sub2...

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Scope Example
Big

 declaration of X

 Sub1

 declaration of X -

 ...

 call Sub2

 ...

 Sub2

 ...

 reference to X -

 ...

 ...

 call Sub1

 call Sub2

 …

Static scoping:
 Sub2’s X always...
Dynamic scoping:
 Big → Sub1 → Sub2...

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Scope Example
Big

 declaration of X

 Sub1

 declaration of X -

 ...

 call Sub2

 ...

 Sub2

 ...

 reference to X -

 ...

 ...

 call Sub1

 call Sub2

 …

Static scoping:
 Sub2’s X always...
Dynamic scoping:
 Big → Sub1 → Sub2...

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Scope Example
Big

 declaration of X

 Sub1

 declaration of X -

 ...

 call Sub2

 ...

 Sub2

 ...

 reference to X -

 ...

 ...

 call Sub1

 call Sub2

 …

Static scoping:
 Sub2’s X always...
Dynamic scoping:
 Big → Sub1 → Sub2...
 Big → Sub2...

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Scope Example
Big

 declaration of X

 Sub1

 declaration of X -

 ...

 call Sub2

 ...

 Sub2

 ...

 reference to X -

 ...

 ...

 call Sub1

 call Sub2

 …

Static scoping:
 Sub2’s X always...
Dynamic scoping:
 Big → Sub1 → Sub2...
 Big → Sub2...

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Dynamic scoping
• Examples:

• APL, SNOBOL, some (early) Lisp dialects

• Perl, Common Lisp: can declare some variables to be
dynamic – e.g.:

(defvar *foo* 3) ;; special (dynamic) variable

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Dynamic scoping
• Advantage: convenience – e.g., no need for some

parameter passing

• Disadvantages:

1. While a subprogram is executing, its variables are
visible to all subprograms it calls

2. Impossible to statically type check

3. Poor readability

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Scope and Lifetime
• Scope: where the variable is visible

• Lifetime: when the variable has storage bound

• Often appear related – parameters, e.g.

• Often not, however – e.g., a static variable in C

• Scope is lexical, lifetime is temporal

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Scope and Lifetime
• Fortran, COBOL:

• static allocation to global memory area
• ⇒ lifetime of all variables = life of program

• memory management, ensuring unique names: programmer’s
responsibility

• Why?
• Early machines had limited memory:

• E.g., IBM 1130: 32 KB; IBM 360: 64 KB
• Also lacked support for a call stack!
• Could argue: use dynamic storage, but…
• ...static gives programmer control of memory

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Recall: Stack-dynamic allocation
• Algol: memory allocated/deallocated at scope entry/exit

• Allowed recursion

• Almost all modern languages do this
• Stack frame: What is pushed onto stack when subroutine

called
• Return address

• Parameters!

• Local variables

• Pointers to stack frames for caller &/or outer scope

• On exit: pop stack frame

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

When Scope ≠ Lifetime
• Static scope: sometimes variable alive when out of scope

• Static allocation (e.g., C, C++, …)

• Closures

sub A (x)
 B(3);
 return x;
sub B (y)
 return 4*y;

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

When Scope ≠ Lifetime
• Static allocation (e.g., C, C++, …)

• Suppose we want to count times subroutine called:

• Problem – counter created and destroyed

• Solution:

void foo () {
 int counter = 0;
 counter++;
 … }

void foo () {
 static int counter = 0;
 counter++;
 … }

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

When Scope ≠ Lifetime
• Closures

• A function with free (nonlocal) variables

• Plus an environment that closes the function

• E.g., in Python (3.0):

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

When Scope ≠ Lifetime
• Closures

• A function with free (nonlocal) variables

• Plus an environment that closes the function

• E.g., in Python (3.0):

def makeCounter (init):
 counter = init
 def increment():
 nonlocal counter
 counter += 1
 return counter
 return increment

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

When Scope ≠ Lifetime
• Closures

• A function with free (nonlocal) variables

• Plus an environment that closes the function

• E.g., in Python (3.0):

def makeCounter (init):
 counter = init
 def increment():
 nonlocal counter
 counter += 1
 return counter
 return increment

>>> c = makeCounter(0)
>>> c()
1
>>> c()
2
>>>

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

When Scope ≠ Lifetime
• Closures

• A function with free (nonlocal) variables

• Plus an environment that closes the function

• E.g., in Lisp

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

When Scope ≠ Lifetime
• Closures

• A function with free (nonlocal) variables

• Plus an environment that closes the function

• E.g., in Lisp

(let ((counter 0))
 (defun count ()
 (incf counter)
 counter))

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

When Scope ≠ Lifetime
• Closures

• A function with free (nonlocal) variables

• Plus an environment that closes the function

• E.g., in Lisp

(let ((counter 0))
 (defun count ()
 (incf counter)
 counter))

CL-USER> (count)
1
CL-USER> (count)
2

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Referencing environments
• Referencing environment: All the names visible at some

point in a program (e.g., at a statement)

• Static scoping: local vars + vars in all enclosing lexical
scopes (ancestor scopes)

• Dynamic scoping: local vars + all visible vars in all active
subprograms

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 1:

• At point 2:

• At point 3:

• At point 4:

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 1:

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 1:

X and Y of Sub1, A and B of Example

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 1:

X and Y of Sub1, A and B of Example

• At point 2:

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 1:

X and Y of Sub1, A and B of Example

• At point 2:
X of Sub3 (X of Sub 2 is hidden), Z of Sub3,

A and B of Example

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 1:

X and Y of Sub1, A and B of Example

• At point 2:
X of Sub3 (X of Sub 2 is hidden), Z of Sub3,

A and B of Example

• At point 3:

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 1:

X and Y of Sub1, A and B of Example

• At point 2:
X of Sub3 (X of Sub 2 is hidden), Z of Sub3,

A and B of Example

• At point 3:
X and Z of Sub 2, A and B of Example

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 1:

X and Y of Sub1, A and B of Example

• At point 2:
X of Sub3 (X of Sub 2 is hidden), Z of Sub3,

A and B of Example

• At point 3:
X and Z of Sub 2, A and B of Example

• At point 4:

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Static scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 1:

X and Y of Sub1, A and B of Example

• At point 2:
X of Sub3 (X of Sub 2 is hidden), Z of Sub3,

A and B of Example

• At point 3:
X and Z of Sub 2, A and B of Example

• At point 4:
A and B of Example

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Dynamic scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Dynamic scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 3:

• At point 2:

•At point 1:

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Dynamic scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Dynamic scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Dynamic scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 3:

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Dynamic scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 3:

c and d of main

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Dynamic scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 3:

c and d of main

• At point 2:

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Dynamic scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 3:

c and d of main

• At point 2:
b and c of sub2, d of main (c of main is

hidden)

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Dynamic scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 3:

c and d of main

• At point 2:
b and c of sub2, d of main (c of main is

hidden)

•At point 1:

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Dynamic scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 3:

c and d of main

• At point 2:
b and c of sub2, d of main (c of main is

hidden)

•At point 1:
a and b of sub1, c of sub2, d of main (c of

main and b of sub2 are hidden)

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Dynamic scope example
procedure Example is
 A, B : Integer;
 ...
 procedure Sub1 is
 X, Y : Integer;
 begin -- of Sub1
 ... <----------- 1
 end -- of Sub1
 procedure Sub2 is
 X, Z : Integer;
 procedure Sub3 is
 X : Integer;
 begin -- of Sub3
 ... <----------- 2
 end -- of Sub3
 begin -- of Sub2
 ... <----------- 3
 end -- of Sub2
 begin -- of Example
 ... <------------ 4
 end -- of Example

• Referencing Environments
• At point 3:

c and d of main

• At point 2:
b and c of sub2, d of main (c of main is

hidden)

•At point 1:
a and b of sub1, c of sub2, d of main (c of

main and b of sub2 are hidden)

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PLrogramming
anguages

Named constants
• Named constant: a “variable” bound only once to a value

• Advantages:

• Readability: e.g., pi rather than 3.14159…

• Parameterization/modifiability: e.g., #define numAnswers 40

• Binding:

• Static (manifest constants): bound at compile time

• Dynamic:

•bound to value when storage is created

•useful to bind to an expression whose value is not known until
runtime

COS 301: Programming Languages School of Computing and Information Science, University of Maine

P
L

rogramming
anguages

Named constants
• Example static binding in some languages:

•Constant-valued expressions only
•E.g., Fortran 95, C, C++ (#define)
•Often no storage needed (why not?)

• Dynamic binding:
•Example: C++

 const int numElements = rows * columns
•Ada, C++, and Java: expressions of any kind

• C# has two kinds, readonly and const
•const – static
•readonly – dynamic

COS 301: Programming Languages School of Computing and Information Science, University of Maine

PL
rogramming
anguages

Initialized data
• Variables can be initialized statically or dynamically

• Static: at compile time

• Dynamic: at runtime

• Ex:

int x = 0;

int c[5] = {10,20,30,40,50}

int * foo = c; /* foo ⇒ alias of c */

• Static initialization: literal values/expressions known at compile time

• Compiled language: statically-initialized variables reside in the data
section of the executable file

