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Types
• Type – collection of values +  operations on them 

• Ex: integers: 

• values:  …, -2, -1, 0, 1, 2, … 

• operations: +, -, *, /, <, >, …  

• Ex: Boolean: 

• values: true, false 

• operations: and, or, not, … 
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 Bit Strings
•Computer: Only deals with bit strings 

•No intrinsic “type” 
• E.g.: 

     0100 0000 0101 1000 0000 0000 0000 0000 
    could be:  

–The floating point number 3.375 
–The 32-bit integer 1,079,508,992 

–Two 16-bit integers 16472 and 0 

– Four ASCII characters: @ X NUL NUL

•What else? 
•What about 1111 1111?
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Levels of Abstraction
• First: machine language, bit strings 
• Then: assembly language 

• Mnemonics for operations, but also… 
• ...human-readable representations of bit strings 

• Then: HLLs 
• Virtual machine – hides real machine’s registers, operations, 

memory 
• Abstractions of data: maps human-friendly abstractions ⇒ bit 

strings 
• Sophisticated typing schemes for numbers, characters, 

strings, collections of data, … 
• OO – just another typing abstraction
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Types in Early Languages
• Early languages: types built in (FORTRAN, ALGOL, 

COBOL) 

• Suppose you needed to represent colors 

•Map to integers 

•But:  

•carry baggage of integer operations (what does 
it mean to multiply two colors?)  

•no type-specific operations (blending, e.g.) 

•E.g., days of the week, cards in a deck, etc.
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Evolution
• FORTRAN:  

• integers, “reals”, complex, character (string), logical 

•arrays as structured type 
•Lisp:  

•Symbols, linked lists, integers, floats (later rationals, 
complex, arrays,…) 

• COBOL:  

•programmer could specify accuracy 
• records
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Evolution
• Algol 68:  
• few basic types 
•structure defining mechanisms (user 

defined types) 
• 1980’s: abstract data types (ADTs) 
• Abstract data types ⇒ objects (though 

first developed in 1960’s)
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 Type Errors
• Type error: 

•operation attempted on data type for which it is undefined 
•operation could be just assignment 

• Machine data carries no type information. 
• Assembly language:  

• type errors easy to make,  
• little if any type checking 

• HLLs ⇒   reduce type errors 

•Greater abstraction ⇒ fewer type errors 

•Type system: type checking, detecting type errors
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Data types: Issues
• How to associate types with variables? 

• Recall symbol table: info about all variables 
• Descriptor in symbol table: all attributes 

• What operations are defined?   
• How are they specified? 
• Implementation of types?

COS 301 — Programming Languages UMAINE CIS

Overview
• Primitive data types 

• Character strings 

• User-defined ordinal 
types 

• Arrays 

• Associative arrays 
• Records 

• Unions 

• Pointers & 
references 

• Miscellaneous types 

• Type equivalence 

• Functions as types 
• Heap management
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Primitive Data types
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Primitive data types
• Primitive data type:  

• not defined in terms of others (scalar) or… 

• …provided natively by language (e.g., strings, 
arrays sometimes) 

• Some very close to hardware: integers, floats 

• Others: require non-hardware support
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Primitive scalar data types: 
Type C Ada Java Python Lisp

Byte char none byte none none (bit-
vector)

Integer short, int, long
Integer, 
Natural, 
Positive

short, int, long int fixnum, bignum,

Float float, double, 
ext’d double

Float, 
Decimal float, double real

single-float, 
double-float, 

ratio

Char char Character char none 
(string)

character

Bool none (0, not 
zero) Boolean boolean bool nil, t (and 

anything not nil)
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Integers
• Generally direct mapping to machine 

representation 

• Most common: 

• sign-magnitude 

• two’s complement 

• Others: 

• Unsigned (binary) 

• Binary coded decimal
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Review: Sign-magnitude
• Binary number, high-order bit is sign bit  

• E.g.: -34 in 8 bits: 

• binary 34 → 0010 0010 

• sign-magnitude -34 → 1010 0010 

• Easy, but: 

• 2 representations of 0 

• have to treat high-order bit differently
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Review: 2’s complement
• Divide possible range of n-bit binary numbers: 

• 0 — 2n-1-1  ⇒ positive numbers 

• 2n-1 to 2n-1 ⇒ negative numbers 

• E.g., 8 bits: 

• Positive 1 = 0000 0001 

• Negative 1? 

• Odometer-like 

• 1111 1111 

• 1 + (-1) = 0:  0000 0001 + 1111 1111 = (1)0000 0000
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Review: 2’s complement
• Mechanics:  

• Take 1’s complement, add 1 

• E.g.: -34 in 2’s complement 

• 34 = 0010 0010 in binary 

• 1’s complement: 1101 1101 

• 1101 1101 + 1 ⇒ 2’s complement: 1101 
1110 

• Advantages: subtraction can be done with addition
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Review: 2’s complement
• Example: 123 - 70 in 8 bits: 

• 12310 ⇒ 0111 10112 

• 7010 ⇒ 0100 01102 

• -7010 ⇒ 1011 10012 + 1 = 1011 10102 

0111 1011 
+ 1011 1010 

    (1)00110101  
⇒ 5310
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Size of integers
• Generally implementation-dependent 

• E.g., C/C++: 

• signed and unsigned 

• byte, short, int, long 

• Exception: Java 

•  byte = 8 bits 

• short = 16 

• int = 32 

• long = 64 

• Ada: programmer can specify size, error at compile time if too large
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Fixed-size integers
• Unsigned integers: e.g. C/C++ 

• Why? 

• Problem: how to mix operations? 

unsigned char foo = 128;
int bar = 1;
int baz;
baz = foo + bar;

• foo will be represented as 1000 0000 

• So will baz be 128+1 or -128+1?  → may depend on 
implementation! 

• Safer — casting:   

baz = (int)foo + bar;
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Overflow
• When can it occur? 

• Unsigned, sign-magnitude ⇒ result larger than 
representation can handle 

• Two’s-complement representation ⇒ 
wraparound 

• Many languages do not generate overflow 
exception — Why not?
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Arbitrary-precision integers
• Fixed-length integers: close mapping to hardware: 

• Pro: efficient 

• Con: limited range  

• Conceptually-unlimited range: arbitrary precision integers 

• Started with Lisp’s bignum type 

• Other languages: Ruby, Python, Haskell, Smalltalk 

• Requires software support ⇒ not as efficient 

• Limited only by available memory 

• May start with small (machine-based) integer, switch as 
numbers get too large
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Arbitrary-precision integers
• E.g., in Lisp, Fibonacci(10000) =  

3364476487643178326662161200510754331030214846068006390656476997468008144216666236815559551363373402
5582065332680836159373734790483865268263040892463056431887354544369559827491606602099884183933864652
7313000888302692356736131351175792974378544137521305205043477016022647583189065278908551543661595829
8727968298751063120057542878345321551510387081829896979161312785626503319548714021428753269818796204
6936097879900350962302291026368131493195275630227837628441540360584402572114334961180023091208287046
0889239623288354615057765832712525460935911282039252853934346209042452489294039017062338889910858410
6518317336043747073790855263176432573399371287193758774689747992630583706574283016163740896917842637
8624212835258112820516370298089332099905707920064367426202389783111470054074998459250360633560933883
8319233867830561364353518921332797329081337326426526339897639227234078829281779535805709936910491754
7080893184105614632233821746563732124822638309210329770164805472624384237486241145309381220656491403
2751086643394517512161526545361333111314042436854805106765843493523836959653428071768775328348234345
5573667197313927462736291082106792807847180353291311767789246590899386354593278945237776744061922403
3763867400402133034329749690202832814593341882681768389307200363479562311710310129195316979460763273
7589253530772552375943788434504067715555779056450443016640119462580972216729758615026968443146952034
6149322911059706762432685159928347098912847067408620085871350162603120719031720860940812983215810772
8207635318662461127824553720853236530577595643007251774431505153960090516860322034916322264088524885
2433158051534849622434848299380905070483482449327453732624567755879089187190803662058009594743150052
4025327097469953187707243768259074199396322659841474981936092852239450397071654431564213281576889080
5878318340491743455627052022356484649519611246026831397097506938264870661326450766507461151267752274
8621598642530711298441182622661057163515069260029861704945425047491378115154139941550671256271197133
252763631939606902895650288268608362241082050562430701794976171121233066073310059947366875  

• = 102089 

• This is the only way to represent this number — (much, much) 
larger than a double float type!
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Floating point numbers
• Not = real numbers – only some real numbers 

• Limited exponents ⇒ rules out very large, very small reals 

• Irrational numbers cannot be represented (duh) 

• Can’t represent repeating rationals 

• These may not be what you think! 

• ⅓ in binary is repeating… 

• ...but so is 0.1!   

• Limited precision ⇒ can’t represent some non-repeating 
rational numbers
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Floating point type
• Usually at least two floating point types 

supported (e.g., float, double) 

• Usually exactly reflects hardware 

• Currently: IEEE Floating-Point Standard 754 

• Some older data was in different format 

• Can’t precisely be represented in new format 

• So only accessible via software emulation of 
old hardware
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IEEE floats
• Instead of decimal point, have a binamal point (or 

just radix point for general concept) 

• Only two digits in binary (duh again) 

• Normalize number so that there is a 1 in front 
of the binamal point 

• E.g.:  0.0001010 ⟹ 1.010 × 2-4 

• But since all numbers (except 0) start with 1 ⟹ 
don’t store the 1 — “hidden bit” 

• Significand: fractional part
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IEEE floats
• Exponent is bias 127 – subtract 127 from it to get 

actual exponent 

• Number = (-1)S × 1.F2 × 2(E-127) 

where S is sign (0=pos, 1=neg), F is significand, and E is 
exponent (that is stored) 

• Example: sign bit, 8-bit exponent, 23-bit unsigned 
fraction: 

0 0001 0000 0100 0000 0000 0000 0000 000 ⟹  

(-1)0 × 1.012 × 2(16-127) = 1.25 × 2-111  

                                                   = 4.814824861×10-34

COS 301 — Programming Languages UMAINE CIS

IEEE floats: 0, NaN…
• Potential problem: 

• Any power of two:  1.0 x 2n ⇒ (0)S × 1.00 × 2([127+n]-127) 

• 2.0 = 1.0 x 21 ⇒ (0)S x 1.0 x 2(128-127) 

• 1.0 = 1.0 x 20 ⇒ (0)S × 1.00 × 2(127-127)  

0 0000 0000 0000 0000 0000 0000 0000 000 

• How can you tell this from 0? 

• Alternatively, how would you even represent 0 in this notation? 

• 0 0000 000 0000 0000 0000 0000 0000 0 

• NaN (not a number): S = 0/1, F = non-zero, E = all 1s 

• +/- infinity: S = 0/1, F = zero, E = all 1s
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IEEE floats: 0, NaN…
• Solution: define 

0 0000 0000 0000 0000 0000 0000 0000 000 

to be zero: S=0, E=0, F=0 

• Some languages allow other “numbers”:  

• NaN (not a number): S = 0/1, F = non-zero, 
E = all 1s 

• +/- infinity: S = 0/1, E = all 1s, F = 0
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IEEE 64-bit floats (double)
• Range for float (32 bits): approx. ±1038 with 6-7 

digits of precision 

• Double ⇒ 64 bits; range approx. ±10308 with 
14-15 digits of precision 

• Sign bit + 11-bit exponent (bias-1023) + 52-bit 
unsigned fraction 

• Val = (-1)S × 1.F2 × 2(E-1023)
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IEEE floats
• How would you represent the following as an 

IEEE 32-bit float? 

• -2048.328125
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IEEE floats
• How would you represent the following as an IEEE 32-bit float? 

• -2048.328125 

• 2048 in binary = 1000 0000 0000 

• 0.328125 = 1/4 + 1/16 + 1/64, in binary = 0.010101 

• So 2048.328125 = 1000 0000 0000.0101 01  

• Normalized = 1.00000000000010101 x 211 

• number = (-1)S × 1.F2 × 2(E-127) 

• S = 1, F = 00000000000010101, E = 138 = 1000 10102 

• Representation = 1 100 0101 0000 0000 0000 0101 0100 0000
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Rational numbers
• Some languages provide rational numbers 

directly 

• E.g., Lisp’s “ratio” data type, Haskell’s “Rational” 
data type 

• Stores numerator and denominator as integers — 
usually reduced, i.e., with no common divisor > 1 

• Arithmetic done specially 

• Advantages: eliminates floating point errors 
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Rational numbers
• E.g., 

CL-USER> (loop for i from 1 to 1000  

              sum (/ 1 3.0)) 

333.3341 

CL-USER> (loop for i from 1 to 1000 

              sum 1/3) 

1000/3 

CL-USER> (float (loop for i from 1 to 1000 

                     sum 1/3)) 

333.33334 
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Complex numbers
• Some languages support complex numbers as 

primitive type 

• E.g., Lisp, C (99+), Fortran, Python 

• Represented as two floats (real & imaginary parts) 

• E.g.: 

• Python:  (7 + 3j)

• Lisp:      #C(1 1)
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Decimal type

• Useful for business — COBOL, also C#, DBMS 

• Stores fixed number of decimal digits 

• Usually binary coded decimal (BCD) 
E.g.  2758 ⟹ 0010 0111 0101 1000 

• Some languages: ASCII 

• Some hardware: direct support 

• Pro: accuracy – exact decimal precision (within reason) 

• Cons: Limited range, more memory, slightly inefficient 
storage, & requires more CPU time for computation 
(unless hardware support)
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Boolean type
• Two values 

• Advantage: readability 

• Could be bits, but usually bytes (smallest addressable unit) 

• Some languages lack this type – C pre-1999, e.g. 

• When no Boolean type, usually use integers: 0 = false, non-zero = 
true 

• Other languages: 

• Perl – false: 0, ‘0’, ‘’, (), undef

• Python – false: None, False, 0, ‘’, (), [], {}, some 
others 

• Lisp – false = nil, otherwise true (including t) 

• PHP – false = “”, true = 1 (also FALSE, TRUE)
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Characters
• Characters: coded as bit strings (numbers) 

• ASCII 

• American Standard Code for Information Interchange 

• Early and long-standing standard 

• 7-bit code originally; usually 8-bit now 

• EBCDIC 

• Extended Binary Coded Decimal Interchange Code 

• IBM mainframes 

• 8-bit code
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ASCII
• 7-bit code, but generally languages store as 

bytes (e.g., C’s char type) 

• The upper 128 characters – vary by OS, other 
software 

• ISO 8859 encoding: uses the additional codes to 
encode European languages
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Unicode
• As computer use (esp. the Web) became 

globalized ⇒ needed more characters 

• Unicode designed to handle the ISO 10646 
Universal Character Set (UCS) 

• UCS: a 32-bit “alphabet” of all known human 
characters
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Unicode
• Characters exist in Unicode as code points that then get 

mapped to representations 

• E.g., U+0045 = D, U+3423 =      , U+1301D= 

• Different encodings map these to different numeric codes 

• Can encode all human languages 

• Also: private use area – has been used to encode, e.g., Klingon 

• Modern languages have adopted Unicode, including Java, XML, 
.NET, Python, Ruby, etc. 

• Common codes: UTF-8, UTF-16, UTF-32
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Unicode
• UTF8:  

• Most common on Web (> 90% of pages)  

• 1-4 byte code, can encode entire code point space 

• Byte 1: backward compatible w/ ASCII — encodes 128 
characters
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Unicode
• Good introduction to Unicode:  

 The Absolute Minimum Every Software Developer Absolutely, Positively 
Must Know about Unicode and Character Sets (No Excuses!)  

 http://www.joelonsoftware.com/articles/Unicode.html
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Character Strings
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Character Strings
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Character Strings

H…ppy H…lloween!
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Character String Types 
• Strings: sequences of characters 

• Design issues: 

• Primitive type?  Or kind of array? 

• Length - static or dynamic?

COS 301 — Programming Languages UMAINE CIS

Character String Operations
• Assignment, copying 

• Comparison 

• Concatenation 

• Accessing a character 

• Slicing/substring reference 

• Pattern matching

UMAINE CISCOS 301 — Programming Languages
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String Libraries
• Some languages: not much support for string 

operations 

• Most languages: string libraries 

• Libraries for:  primitive operations, regular 
expressions, substring replacement, etc.

UMAINE CISCOS 301 — Programming Languages
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Example: PHP string 
•addcslashes — Quote string with slashes in a C style 
•addslashes — Quote string with slashes 
•bin2hex — Convert binary data into hexadecimal representation 
•chop — Alias of rtrim 
•chr — Return a specific character 
•chunk_split — Split a string into smaller chunks 
•convert_cyr_string — Convert from one Cyrillic character set to another 
•convert_uudecode — Decode a uuencoded string 
•convert_uuencode — Uuencode a string 
•count_chars — Return information about characters used in a string 
•crc32 — Calculates the crc32 polynomial of a string 
•crypt — One-way string encryption (hashing) 
•echo — Output one or more strings 
•explode — Split a string by string 
•fprintf — Write a formatted string to a stream 
•get_html_translation_table — Returns the translation table used by htmlspecialchars and 
htmlentities 

•hebrev — Convert logical Hebrew text to visual text 
•hebrevc — Convert logical Hebrew text to visual text with newline conversion 
•html_entity_decode — Convert all HTML entities to their applicable characters 
•htmlentities — Convert all applicable characters to HTML entities
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Example: PHP string 
•html_entity_decode — Convert all HTML entities to their applicable characters 
•htmlentities — Convert all applicable characters to HTML entities 
•htmlspecialchars_decode — Convert special HTML entities back to characters 
•htmlspecialchars — Convert special characters to HTML entities 
•implode — Join array elements with a string 
•join — Alias of implode 
•lcfirst — Make a string's first character lowercase 
•levenshtein — Calculate Levenshtein distance between two strings 
•localeconv — Get numeric formatting information 
•ltrim — Strip whitespace (or other characters) from the beginning of a string 
•md5 — Calculate the md5 hash of a string 
•metaphone — Calculate the metaphone key of a string 
•money_format — Formats a number as a currency string 
•nl_langinfo — Query language and locale information 
•nl2br — Inserts HTML line breaks before all newlines in a string 
•number_format — Format a number with grouped thousands 
•ord — Return ASCII value of character 
•parse_str — Parses the string into variables
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Example: PHP string 
•print — Output a string 
•printf — Output a formatted string 
•quoted_printable_decode — Convert a quoted-printable string to an 8 bit string 
•quoted_printable_encode — Convert a 8 bit string to a quoted-printable string 
•quotemeta — Quote meta characters 
•rtrim — Strip whitespace (or other characters) from the end of a string 
•setlocale — Set locale information 
•sha1 — Calculate the sha1 hash of a string 
•similar_text — Calculate the similarity between two strings 
•soundex — Calculate the soundex key of a string 
•sprintf — Return a formatted string 
•sscanf — Parses input from a string according to a format 
•str_getcsv — Parse a CSV string into an array 
•str_ireplace — Case-insensitive version of str_replace. 
•str_pad — Pad a string to a certain length with another string 
•str_repeat — Repeat a string 
•str_replace — Replace all occurrences of the search string with the replacement 
•str_rot13 — Perform the rot13 transform on a string 
•str_shuffle — Randomly shuffles a string
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Example: PHP string 
•str_split — Convert a string to an array 
•str_word_count — Return information about words used in a string 
•strcasecmp — Binary safe case-insensitive string comparison 
•strchr — Alias of strstr 
•strcmp — Binary safe string comparison 
•strcoll — Locale based string comparison 
•strcspn — Find length of initial segment not matching mask 
•strip_tags — Strip HTML and PHP tags from a string 
•stripcslashes — Un-quote string quoted with addcslashes 
•stripos — Find position of first occurrence of a case-insensitive string 
•stripslashes — Un-quotes a quoted string 
•stristr — Case-insensitive strstr 
•strlen — Get string length 
•strnatcasecmp — Case insensitive string comparisons using a "natural order" algorithm 
•strnatcmp — String comparisons using a "natural order" algorithm 
•strncasecmp — Binary safe case-insensitive string comparison of the first n characters 
•strncmp — Binary safe string comparison of the first n characters
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Example: PHP string 
•strpbrk — Search a string for any of a set of characters 

•strpos — Find position of first occurrence of a string 

•strrchr — Find the last occurrence of a character in a string 

•strrev — Reverse a string 

•strripos — Find position of last occurrence of a case-insensitive string in a string 

•strrpos — Find position of last occurrence of a char in a string 

•strspn — Finds the length of the first segment of a string consisting entirely of characters contained within a given mask. 

•strstr — Find first occurrence of a string 

•strtok — Tokenize string 

•strtolower — Make a string lowercase 

•strtoupper — Make a string uppercase 

•strtr — Translate certain characters 

•substr_compare — Binary safe comparison of 2 strings from an offset, up to length characters 

•substr_count — Count the number of substring occurrences 

•substr_replace — Replace text within a portion of a string 

•substr — Return part of a string 

•trim — Strip whitespace (or other characters) from the beginning and end of a stringstrncmp — Binary safe string comparison of 
the first n characters * ucfirst — Make a string's first character uppercase 

•ucwords — Uppercase the first character of each word in a string 

•vfprintf — Write a formatted string to a stream 

•vprintf — Output a formatted string 

•vsprintf — Return a formatted string 

•wordwrap — Wraps a string to a given number of characters
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Strings in C & C++
• Strings are not primitive:  arrays of char 

• No simple variable assignment 
char line[MAXLINE]; 
char *p, q; 
p = &line[0]; 

• Have to use a library routine, strcpy() 

  if(argc==2) strcpy(filename, argv[1]); 

• strcpy() no bounds checking ⟹ possible 
overflow attack 

• C++ provides a more sophisticated string class
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Strings in other languages
• SNOBOL4 is a string manipulation language 

• Strings: primitive data type 

• Includes many basic operations 

• Includes built-in pattern-matching operations 

• Fortran and Python 

• Primitive type with assignment and several 
operations
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Strings in other languages
• Java: Primitive via the String class 

• Perl, JavaScript, Ruby, and PHP  

• Provide built-in pattern matching, using regular 
expressions 

• Extensive libraries 

• Lisp:  

• A type of sequence 

• Unlimited length, mutable
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String implementation
• Strings seldom supported directly by hardware 

• Software ⇒  implement strings 

• Choices for length: 

• Static: set at creation time, then unchanged (FORTRAN, 
COBOL, Java's/.NET's String class) 

• Limited dynamic: max length set at creation, actual length 
varies up to that (C, C++) 

• Dynamic: no maximum, varies at runtime (SNOBOL4, Perl, 
JavaScript, Lisp) 

• Some languages provide all three types - Ada, DBMS (Char, 
Varchar(n), Text/Blob)
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String implementation
• Static length: compile-time descriptor 

• Limited dynamic length:  

• may need a run-time descriptor 

• C/C++: null (0) terminates string  

• Dynamic length:  

• need run-time descriptor 

• computationally inefficient - allocation/de-
allocation problem
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Compile-time 
descriptor for 
static strings

Run-time 
descriptor for 

limited dynamic 
strings

What about dynamic 
strings?

Compile- and run-time descriptors
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Immutable strings
• Many languages allow strings to be changed 

• Character replacement 

• Insertion of slices 

• Changes of length 

• C, Lisp, many others 

• Others have immutable strings 

• Cannot change them 

• To make a “change”, have to create new string 

• Python, Java, .NET languages, C++ (except C-like 
strings)
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Immutable strings
• Advantages of immutable strings: 

• “Copying” is fast — just copy pointer/reference 

• Sharing of strings is safe — even across processes 

• No inadvertent changes (via, e.g., aliases or 
pointers) 

• Disadvantages: 

• For minor changes, still have to copy the entire 
string 

• Memory management (manual or GC)

COS 301 — Programming Languages UMAINE CIS

User-Defined Ordinal Types
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User-defined ordinal types
• Ordinal type:  range of possible values mapped 

to set of (usually positive) integers 

• Primitive ordinal types - e.g., integer, char, 
Boolean... 

• User-defined ordinal types: 

• Enumerations 

• Subranges
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Enumerations
• Define all possible values in definition 

• Values are essentially named constants 

• C#:  
enum days {mon, tue, wed, thu, fri, sat, sun};

• Pascal example (with subranges) 
Type   
 Days = (monday,tuesday,wednesday,thursday,

           friday, saturday,sunday);   
 WorkDays = monday .. friday;   
 WeekEnd = Saturday .. Sunday; 
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Enumerations
• First appeared in Pascal and C 

• Pascal-like languages: can subscript arrays using 
enumerations 

  var schedule : array[Monday..Saturday] of string; 
var beerPrice : array[Budweiser..Guinness] of real; 

• Primary purpose of enumerations: enhance 
readability 

• Some languages treat enums as integers and 
perform implicit conversions 

• Others (e.g., Java, Ada): strict type-checking, require 
explicit conversions (casting)
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Enumerations
• Languages not supporting enumerations: 

• Major scripting languages - Perl, JavaScript, PHP, Python, 
Ruby, Lua 

• Java, for first 10 years (until version 5.0) 

• Design issues 

• Can an enumeration value appear in more than one type? 

• If so, how is this handled? 

• Are enumeration values coerced to integers? 

for (day = Sunday; day <= Saturday; day++)

• Any other type coerced to an enumeration type? 

day = monday * 2;
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Why use enumerated types?
• Readability - e.g., no need to code a color as a 

number 

• Reliability - compiler can check:  

• operations (don’t allow colors to be added)  

• range checking 

• Some languages better than others at this  

• E.g., Java, Ada, C# - can't coerce to integers 

• Ada, C#, and Java 5.0 provide better support 
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Subranges
• Subrange:  ordered, contiguous subsequence of an ordinal 

type 

• E.g., 12 ..18 — subrange of integer type 

• E.g. - Ada: 
type Days is (mon, tue, wed, thu, fri, sat, sun);

subtype Weekdays is Days range mon..fri;

subtype Index is Integer range 1..100;

Day1: Days;

Day2: Weekday;

Day2 := wed;

Day1 := Day2;
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Why use subranges?
• Readability - way to explicitly state that variable 

can only store one of a range of values 

• Reliability - compile-time, run-time type checking
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User-defined ordinal types: 
• Enumeration types:  usually implemented as 

integers 

• Issue: how well does the compiler hide 
implementation? 

• Subrange types: implemented like parent types 

• Run-time checking via code inserted by the 
compiler
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Arrays
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Array Type
• Array:   

• collection of homogeneous data elements 

• each element: identified by position relative to 
the first element 

• Except for strings, arrays are the most widely-use 
non-scalar data type
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Array Design Issues
• What types are legal for subscripts? 

• Are subscripting expressions in element references 
range checked? 

• When are subscript ranges bound? 

• When does allocation take place? 

• What is the maximum number of subscripts? 

• Can array objects be initialized? 

• Are any kind of slices supported?
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Array Indexing
• Indexing (subscripting): mapping from indices to elements 

          array_name (index_value_list) →  an element 

• Index syntax 

• FORTRAN, PL/I, Ada, Basic, Pascal: foo(3)

• Ada: uses bar(4)  

• to explicitly show uniformity between array references and 
function calls  

• why? both are mappings 

• Most other languages use brackets 

• Some are odd: e.g., Lisp: 

(aref baz 7)
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Array index type
• FORTRAN, C: integer only 

• Ada, Pascal : any ordinal type, e.g., integer, 
integer subranges, enumerations, Boolean and 
characters 

• Java: integer types only
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Array index range checking
• Tradeoff between safety, efficiency 

• No bounds checking ⇒ buffer overflow attacks 

•  C, C++, Perl, and Fortran — no range checking 

• Java, ML, C# specify range checking 

• Ada: default is range checking, but can be turned 
off
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Arrays in Perl
• Array names in Perl start with @ 

• Elements, however, are scalars ⟹ array element 
references start with $ 

• Negative indices: from end 
@friends = ("Rachel", "Monica", "Phoebe",    
            "Chandler", "Joey", “Ross"); 
# prints "Phoebe" 

print $friends[2]; 

# prints "Joey" 

print $friends[-2]; 
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Lower bounds
• Some are implicit 

• C-like languages: lower bound is always 0 

• Fortran: implicit lower bound is 1 

• Other languages allow user-specified lower 
bounds 

• Pascal-like languages, some Basic variants: 
arbitrary lower bounds 

• Some Basic variants: Option Base statement 
sets implicit lower bound
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Subscript binding and array 
• Static:  

• subscript ranges statically bound 

• storage allocation static (compile time) 

• efficient with respect to time — no dynamic 
allocation 

• Fixed stack-dynamic:  

• subscript ranges: statically bound 

• allocation at runtime function invocation 

• efficient with respect to space (but slower)
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Subscript Binding and Array 
• Stack-dynamic:  

• subscript ranges are dynamically bound 

• storage allocation is dynamic (at run-time) 

• flexible — array size isn’t needed to be known until 
array is used 

• Fixed heap-dynamic:  

• similar to fixed stack-dynamic 

• storage binding is dynamic — but fixed after allocation 

• i.e., binding done when requested, storage from heap
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Subscript Binding and Array 
• Heap-dynamic:  

• binding of subscript ranges, storage allocation 
is dynamic  

• can change any number of times 

• flexible —arrays can grow or shrink during 
program execution
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Sparse Arrays
• Sparse array: some elements are missing values 

• Some languages support sparse arrays: 
JavaScript, e.g. 

• subscripts needn’t be contiguous 

• e.g.,  
var myColors = new Array ("Red, “Green",
                  "Blue", "Indigo",      
                  "Violet"); 
myColors[15] = “Orange“;
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Subscript binding and array 
• C and C++  

• Declare array outside function body or using static 
modifier ⟹ static array 

• Arrays declared in function bodies: fixed stack-
dynamic 

• Can allocate fixed heap-dynamic arrays 

• C# — ArrayList class provides heap-dynamic 

• Perl, JavaScript, PHP, Python, and Ruby: heap-dynamic 

• Lisp: fixed heap-dynamic or heap-dynamic (although 
adjusting size requires function call)
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Array initialization
• C, C++, Java, C# 

int list [] = {4, 5, 7, 83} 

• Character strings in C and C++ 
char name [] = “freddie";

char name [] = {‘f’, ‘r’, ‘e’, ‘d’, ‘d’, ‘i’, ‘e’};

• Arrays of strings in C and C++ 
char *names [] = {"Bob", "Jake", “Joe”};

• Java initialization of String objects 

String[] names = {"Bob", "Jake", "Joe"};
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Array initialization
• Ada 
Primary : array(Red .. Violet) of Boolean =   
              (True, False, False, True, False);
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Heterogeneous arrays
• Heterogeneous array: elements need not be the 

same type 

• Supported by Perl, Python, JavaScript, Ruby, PHP, 
Lisp 

• PHP: 
$fruits = array ("fruits"  => array("a" => "orange", 

                                       "b" => "banana", 

                                       "c" => "apple"),

                 "numbers" => array(1, 2, 3, 4, 5, 6),

                 "holes"   => array("first", 

                                     5 => “second",

                                     "third"));
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Initialization with comprehensions
• Intensional rather than extensional definition of list

• First appeared in Haskell, now in Python

• Function is applied to each element of an array or thing in 
iterator to construct a new array:

list = [x ** 2 for x in range(12) if x % 3 == 0]

⟹ puts [0, 9, 36, 81] in list

• Smalltalk: block of code could be passed to any iterator

• Lisp/Scheme: mapping functions do similar thing:

(remove-if 'null (mapcar '(lambda (a)

                 (if (= 0 (mod a 3))

               (expt a 2)))

                  '(0 1 2 3 4 5 6 7 8 9 10 11)))
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Automatic array initialization
• Some languages — pre-initialize arrays 

• E.g., Java, most BASICs 

• Numeric values set to 0  

• Characters to  \0 or \u0000 

• Booleans to false 

• Objects to null pointers 

• Relying on automatic initialization: dangerous 
programming practice
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Array operations
• Array operations work on the array as a single 

object  

• Assignment  

• Concatenation 

• Equality / Inequality 

• Array slicing
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Array operations
• C/C++/C# : none	  

• Java: assignment 

• Ada: assignment, concatenation 

• Python: numerous operations, but assignment is 
reference only 

• Deep vs shallow copy 

• Deep copy: a separate copy where all 
elements are copied as well 

• Shallow copy: copy reference only
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Array operations – implied 
• Fortran 95 — “elemental” array operations 

• Operations on the elements of the arrays 

• Ex: C = A + B ⟹ C[i] = A[i] + B[i] 

• Provides assignment, arithmetic, relational and logical 
operators 

• APL has the most powerful array processing facilities of 
any language 

• operations for vectors and matrixes 

• unary operators (e.g., to reverse column elements, 
transpose matrices, etc.)
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Jagged arrays
• Most arrays: rectangular 

• multidimensional array 

• all rows have same number of elements (equivalently, all 
columns have the same number of elements) 

• Jagged arrays:  

• rows have varying number of elements 

• possible in languages where multidimensional arrays are really 
arrays of arrays 

• C, C++, Java, C#: both rectangular and jagged arrays 

• Subscripting expressions vary: 

arr[3][7] arr[3,7]
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Jagged arrays — C#
int[][] jaggedArray = new int[3][];  

jaggedArray[0] = new int[5];  

jaggedArray[1] = new int[4];  

jaggedArray[2] = new int[2]; 

• Or 
int[][] jaggedArray2 = new int[][] { 

    new int[] {1,3,5,7,9}, 

    new int[] {0,2,4,6}, 

    new int[] {11,22} 

};
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Type signatures
•A type signature — usually used to denote the types of a 

functions’ parameters and output 

•E.g., int foo(int a, float b) {…} 

has the signature (int) (int, float)

•Can also think of type signature applying to data, variables 

E.g., float x[3][5]  

•Type of x: float[][]

•Type of x[1]: float[]

•Type of x[1][2]: float

•
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Arrays in dynamically typed languages
• Most languages with dynamic typing: arrays elements can be of different types 

• Implemented as array of pointers 

• Many such languages: dynamic array sizing 

• Many have built-in support for lists 

• one-dimensional arrays 

• not (quite) same as Lisp’s lists 

• Some languages: recursive arrays —  array can have itself as an element 

• E.g., from Lisp:   

(setf a ’(1 2 3))

(setf (cdr (last a)) a)

a ! #1=(1 2 3 . #1#) ! (1 2 3 1 2 3 1 2 3 …)
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Slices
• A slice is a substructure of an array 

• Just a referencing mechanism

COS 301 — Programming Languages UMAINE CIS

Quick quiz!
1. What are the most common hardware-

supported numeric types? 

2. What is the primary advantage of using the 
internal machine representation of integers for 
arithmetic? 

3. What is a significant disadvantage? 

4. Why are Booleans rarely represented as single 
bits even though this is the most space-efficient 
representation?
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Slice Examples
• Fortran 95 

• E.g., Vector(3:6) → 
four-element array 

• Also allows 
strides:  
Vector(3:100:2) → 
slice composed of 
Vector(3), 
Vector(5),…, 
Vector(99) 
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Slice Examples
• Ruby: slice method: 

foo.slice(b,l) → slice starting at b, length       
list.slice(2, 2) → third and fourth elements  

• Perl: slices with ranges, specific subscripts: 

@foo[3..7]     @bar[1, 5, 20, 22]
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Python lists and slices
• Example from Python: 

B = [33, 55, ‘hello’,’R2D2’]

• Elements accessed with subscripts: B[0] = 33

• Slice is a contiguous series of entries:  

Ex: B[1:2]  B[1:] B[:2] B[-2:]

• Strings are character arrays ⟹ slicing very useful 
for strings

COS 301 — Programming Languages UMAINE CIS

Array implementation
• Requires more compile-time effort than scalars 

• Need access function to map subscript 
expression to address 

• Function must support as many dimensions as 
allowed by language

COS 301 — Programming Languages UMAINE CIS

Vectors
• Access function for single-dimensioned arrays: 

• let: 

• b = starting address of array 

• i = index of desired element 

• l = lower bound (0 for C-like languages) 

• s = element size 

• Then address A of desired element: 

A = b + (i − l)s
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Vectors
• Operations performed at runtime 

• For static arrays, can rearrange: 

• (b - ls) can be done at compile time → A’ 

• Access function: A’ + is

• Can use indirect addressing modes of computer

A = b + is − ls = (b − ls) + is
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Array storage order
• Order of storing the columns and rows (2D array): 

• Row-major order: each row stored 
contiguously, then the next, etc. 

• Column-major order:  columns are stored 
contiguously, then the next, etc. 

• Most languages: row-major order 

• Exceptions: Fortran, Matlab
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Array addresses
• Given: 

int A[20][30] 

an int is 4 bytes, and A[0][0]’s address is 10096, 

• what is the address of A[10][12]?
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Array addresses
• Given: 

int A[20][30] 

an int is 4 bytes, and A[0][0]’s address is 10096, 

• what is the address of A[10][12]?
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Array storage order
• For higher dimensions:  store indices first → last 

• E.g., 3D matrix A:  

• store A[0], then A[0]… 

• within A[1]: store A[1,0], then A[1,1], …  

• within A[1,1]: store A[1,1,0], A[1,1,1],… 
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Array storage order
• Why does this matter? 

• Inefficient to access elements in wrong order 

• E.g.,  initialize A[128,128] array of 4-byte ints, 4 KB 
pages using nested loops: 

for(i=0;i<128;i++)
for(j=0;j<128;j++)
 A[i,j] = 0;

• Row-major order: 8 rows/page, so 16 pages: A[0,0] 
→ A[7,127] on page 1, A[8,0] → A[15,127] on page 2, 
…  

        ⇒ 16 page faults max
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Array storage order
• Column-major order:  8 columns/page, 16 pages:  

A[0,0] , A[1,0], A[2,0], … , A[127,7]  

on page 1,  

A[0,8]→ A[127,15] 

on page 2 

• Accessing: A[0,0] … A[0,7] on first page, then A[0,8] … 
A[0,15] on second, etc. 

• 8 page faults max iteration of i ⇒ 8 * 128 = 1024 page faults 
possible 

• Essential to know for mixed-language programming 

• Need to know when accessing 2D+ array via pointer arithmetic
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Array storage order
• Calculation of element addresses for 2D array A 

• s: element size 

• n: number of elements/row (= number of columns) 

• m: number of elements/column (= number of rows) 

• b: base address of A 

• Then: 

• Row-major order: 

• addr(A[i][j]) = b + s(ni + j)

• Column-major order 

• address(A[i][j]) = b + s(mj + i)
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• General format:   addr(a[i,j] = b  + ((i - lbr)n + (j - lbc))s 

• For each additional dimension: one more addition and one more 
multiplication 

UMAINE CIS

Locating an Element in an n-dimensioned Array

*
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Single-dimensioned array Multi-dimensional array

Compile-time descriptors (Dope Vectors)
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Associative Arrays

to here, 11/4/14
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Associative arrays
• Unordered data elements 

• Indexed by keys, not numeric indices 

• Unlike arrays, keys have to be stored 

• Called associative arrays, hashes, dictionaries 

• Built-in types in Perl (hashes), Python 
(dictionaries), PHP, Ruby, Lua (sort of), Lisp (hash 
tables, association lists) 

• Other languages: via classes — .NET’s collection 
class, Smalltalk’s dictionaries
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Associative arrays: Perl
• Hashes — elements are stored in hash tables 

• Names begin with %, initialized via an array: 

	 	 %hi_temp = (“Monday”, 60, “Tuesday”, 55,…);

or

	 	 %hi_temp = (“Monday” => 60, “Tuesday” => 55,…); 

• Elements accessed via key — elements are scalars, so: 

	 	 print $hi_temp{“Tuesday”};  → 55

$hi_temp{“Wednesday”} = 50;

• Dynamic size 

	 	 $hi_temp{“Tuesday”} = 100;

delete($hi_temp{“Tuesday});

%hi_temp = {};
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Associative arrays: PHP
• Both indexed numerically and associative — i.e., 

ordered collections 

• No special naming conventions 
	 $hi_temps = array("Mon"=>77,"Tue"=>79,“Wed”=>65, …);

$hi_temps["Wed"] = 83;

$hi_temps[2] = 83;

• Dynamic size — e.g., add via $hi_temps[] = 99

• Rich set of array functions 

• Web form processing: query string is in an array 
($_GET[]) as are post values ($_POST[])
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Associative arrays: Python
• Python: dictionaries 

• No special naming conventions 
  hi_temps = {‘Mon’: 77, ‘Tue’: 79, ‘Wed’: 65}
hi_temps[‘Wed’] = 83

• Dynamic size: can insert, append, shorten 

• Only restriction on keys: immutable
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Implementing associative arrays
• Perl 

• hash function → fast lookup 

• optimized for fast reorganization 

• 32-bit hash value — but use fewer bits for small arrays 

• need more → add bit (doubling array size), move elements 

• PHP  

• hash function 

• stores arrays as linked lists for traversal 

• can have both keys and numeric indices ⟹ can have gaps in 
numeric sequence 

• Python: hash, linked lists as well
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Implementing associative arrays
• Lisp 

• hash tables 

• built-in data type 

• optimized for size: small table uses list, at some point → true 
hash table 

• association lists (“a-lists”, “assocs”) 

• format: ((key1 . val1) (key2 . val2)…) 

(setq hi-temp ’((monday . 60) (tuesday . 55)…))

• access with assoc: 

(assoc ’tuesday hi-temp) ! (TUESDAY . 55)
        (cdr (assoc ’tuesday hi-temp)) ! 55

• implemented as list
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Records
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Record type
• Record composite data type 

• can be heterogeneous 

• identified by name 

• Often also called structs, defstructs, structures, etc. 

• Record type related to relational/hierarchical databases 

• Design issues: 

• How to reference? 

• How to implement (e.g., find element)?
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Record type
• First used: COBOL, then PL/I — not in 

FORTRAN, ALGOL 60 

• Common in Pascal-like (“record”) and C-like 
languages (“struct”) 

• Part of all major imperative and OO languages 
except pre-1990 Fortran 

• Similar to classes in OO languages:  but no 
methods 

• Not in Java, since classes subsume functionality
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Records in COBOL
• Level numbers (rather than recursion) to show nested records: 

01 EMP-REC.
   02 EMP-NAME.
      05 FIRST PIC X(20).
      05 MID   PIC X(10).
      05 LAST  PIC X(20).
   02 HOURLY-RATE PIC 99V99.

• Layouts have levels, from level 01 to level 49.   

• Level 01 is a special case → reserved for the record level: its 
name 

• Levels from 02 to 49 are all "equal"
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Definition of Records: Ada
type Emp_Name is record 

		 First: String (1..20); 

		 Mid: String (1..10); 

		 Last: String (1..20); 

  end record; 

	type Emp_Rec is record 

		 name: Emp_Name; 

		 Hourly_Rate: Float; 

  end record;
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 C example
struct employeeType {

   int id;

   char name[25];

   int age;

   float salary;

   char dept;

};

struct employeeType employee;

...

employee.age = 45;

• Fields usually allocated in contiguous block of memory 

• But actual memory layout is compiler dependent  

• Minimum memory allocation not guaranteed
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References to record fields
• COBOL 

field_name OF record_name_1 OF ... OF record_name_n   

e.g., FIRST OF EMP-NAME OF EMP-RECORD

• Other languages: usually “dot notation” 

recname1.recname2. … .fieldname

emp_record.emp_name.first;      

• Fully-qualified references: include all record names 

• COBOL allowed elliptical reference:  as long as reference is 
unambiguous: 

• E.g.: SALARY OF EMPLOYEE OF DEPARTMENT 

• could refer to as: SALARY, SALARY OF EMPLOYEE, or fully-qualified
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Operations on records
• Assignment : most languages →  memory copy 

• Usually types have to be identical 

• Sometimes can have same structure, even if 
different names — Ada, e.g. 

• COBOL — MOVE CORRESPONDING

• Moves according to name 

• Structure doesn’t have to be same
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Operations on records
• Comparison of records: 

• Ada: equality/inequality 

• C, etc.:  

• usually not 

• have to compare field-by-field or… 

• …use memcmp(), etc.
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Implementation of Record 
• Implemented as contiguous 

memory 

• Descriptors →  

• Compiled languages: need 
descriptors at compile time only 

• Interpreted: need runtime 
descriptors
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Unions
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Unions
• Union: data type that can store different types at different times/situations 

• E.g.: tree nodes 

• if internal → left/right pointers 

• if leaf → data 

• E.g.: vehicle representation 

• if truck, maybe have size of bed, etc. 

• if car, maybe have seating capacity, etc. 

• Often in records — subsumed (somewhat) by objects & inheritance 

• Design issues  

• Should type checking be required? 

• Should unions be (only) embedded in records?
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Unions
• Memory shared between members ⇒ not particularly safe  

• C: free unions 

• type can be changed on the fly 

• lousy type-checking — even for C: 
int main() {

  int c;

    union {char a; unsigned char b;} u;

    u.b = 128;

   c = u.b;

    printf("u.b=%d, u.a=%d, c=%d\n", u.b, u.a, c);
}

• called:  u.b=128, u.a=-128, c=128
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Discriminated vs. Free Unions
• Free unions: no type checking—FORTRAN, C, C++ 

• Discriminated unions:  Pascal, Ada 

• At time of declaration, have to set discriminant 

• Type of union is then static → type checking 
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Ada Unions
type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);
type Figure (Form: Shape) is record

Filled: Boolean;
Color: Colors;
case Form is

when Circle => Diameter: Float;
when Triangle =>

Leftside, Rightside: Integer;
Angle: Float;

when Rectangle => Side1, Side2: Integer;
end case;

end record;
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Ada Union Type
A discriminated union of three shape variables
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Unions
• Free unions are unsafe — major hole in static typing 

• Designed when memory was very expensive 

• Little or no reason to use these structures today 

• Physical memory: much cheaper today 

• Virtual memory → memory space many 
times the size of actual physical memory 

• Java and C# do not support unions 

• Ada’s discriminated unions are safe — but why use 
them? 

• What to use instead?
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Pointers and References
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Pointer & reference types
Pointer holds address or special value (nil or null) 

Null → invalid address 

Usually address 0 ⟹ invalid on most modern hardware 

Two uses: 

Simulate indirect addressing 

Provide access to anonymous variables (e.g., from heap) 

References:   

Like pointers — contain memory addresses  

But operations on them restricted — no pointer arithmetic

COS 301 — Programming Languages UMAINE CIS

Design issues
• Scope & lifetime? 

• Lifetime of heap-dynamic variable pointed to? 

• Restricted as to what they point to or not? 

• For dynamic storage management, indirection, or 
both? 

• Pointers, reference types, or both?
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Pointer operations
• Assignment — pointer’s value  ← address 

	   int data;  int* ptr1, ptr2;
 ptr1 = &data;
 ptr2 = malloc(sizeof(int));

• Dereferencing: finding value at 
location pointed to 

• explicit or implicit (depends on 
language) 

• C/C++: explicit via *: 

val = *ptr1;
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Pointer operations
• Some languages (C, C++): pointer arithmetic 

	 	  ptr1 = ptr2++; 

• Incrementing a pointer: increment depends on 
type! 
int a[3];
int* p = &a;  //p ! &a[0]
p++           //p ! &a[0] + 4 = a[1]
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Problems with pointers
• Pointers can ⇒ aliases 

• Readability 

• Non-local effects 

• Dangling pointers 

• Pointer p points to heap-dynamic variable 

• Free the variable, but don’t zero p 

• What does it point to?  

• Lost heap-dynamic variables (“garbage”) 

• Pointer p points to heap-dynamic variable 

• Pointer p set to zero or another address 

• Lost variable ⇒ memory leak
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Pointers & arrays: C
• Pass an array variable to function ⟹ behaves 

like a pointer 
float sum(float a[], int n) {

int i;

float s = 0.0;

for (i=0; i<n; i++)

s += a[i];

return s;

}

float sum(float *a, int n) {

int i;

float s = 0.0;

for (i=0; i<n; i++)

s += *a++;

return s;

}
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• Common misconception: pointers and arrays are equivalent in C: 
int x[3] = {1, 2, 3};
int *p = &x[0]; //p points to first element of x
if (p[1] == x[1])

return 1;
else

return 0;

• Returns 1 

• But: 

• x & p have different storage — maybe different scopes, lifetimes 

• p doesn’t always have to point to x’s storage 

• p can be indexed, but x cannot be assigned a new address
UMAINE CIS

Pointers & arrays: C

p x
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C pointer arithmetic
float stuff[100];
float *p;
p = stuff;

*(p+5) ≣ stuff[5]
*(p+i) ≣ stuff[i]
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C pointer arithmetic
String copy: 

void strcopy (char *s, char *t) {
// Kernighan & Ritchie classic:
while (*s++ = *t++) ;

}

Push, pop (where p → next element — initially base of array):

*p++ = value;  //push
val = *--p;       //pop
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Void pointers
• C/C++: pointers of type void* allowed 

• These are generic pointers — can be used to get 
around type system 

• But cannot be explicitly dereferenced 

void* p;
float a;
float num = 123.456;  
p = &num;  
a = *(float*)p;  

• Must cast to a float* type first, then dereference
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Pointer representation
• Prior to ANSI C — pointers and integers were 

often treated as being the same 

• Intel x86 — pointers somewhat more complex: 
e.g., segment and offset 

• Since ANSI C — programmers don’t worry too 
much about the implementation
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References
• References: similar to pointers … but whereas: 

int a = 1;
int* p;
printf("size of int = %i\n”,(int)sizeof(int));
p = &a;
printf("p=%lu, *p=%i\n", (unsigned long)p, *p);

⇒ call it: size of int = 4 
p=140732783793308, *p=1 

• …a reference can’t: 

• be printed 

• participate in “reference arithmetic” 

• be dereferenced manually (usually)
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References
• C++ includes reference — special type of pointer 

• Primarily used for formal parameters 

• Constant pointer, always implicitly dereferenced 

• Used to pass parameters by reference (rather than value) 

void square(int x, int& result) {

result = x * x;
}

int myint = 12;
int z;

square(myint, &z);
⇒ z == 144 afterward
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References
• Java — extends C++ references ⟹ replace 

pointers completely 

• References aren’t treated as addresses — they 
just refer to objects 

• C# — both Java-like references and C++ -like 
pointers
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Reference implementation
• Implementation depends on compiler/interpreter 

• Not usually part of specification of language 

• E.g., early Java VM: 

• Pointers to pointers ← handles 

• Can store constant pointers in table, always point to 
same pointer 

• That pointer can change as GC moves object around 

• Disadvantage: speed (2-level indirection) 

• Modern Java VMs: addresses (depends, though)
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Miscellaneous Types 
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Symbols
• Primitive type in Lisp, Scheme 

• Access to symbol table itself 

• No need to code a symbol as an int or string → 
use primitive data type 

COS 301 — Programming Languages UMAINE CIS

Symbols
cl-user> ’a

A
cl-user>  (push ’The (quick brown fox))
(THE QUICK BROWN FOX)
cl-user> (set ’a 23)
23

cl-user> a
23
cl-user> (set ‘a ’b)
B

cl-user> a
B
cl-user> (set a 4)
4
cl-user> b

4

CL-USER> (setf exp '(+ (* b b) 10))
(+ (* B B) 10)
CL-USER> (eval exp)
26
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Lists
• Ordered datatypes 

• Imply sequential access (but cf. PHP, Python) 

• Most: heterogeneous elements 

• Nested lists 

• Usually implicit linked-lists
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Lists: Lisp
• Basic data type in Lisp language family 

• Linked list — not indexed 

• Cons cells:  two pointers (references):  

• car: points to first element 

• cdr: points to the rest of the list 

• Basic element of list (also its own type) 

• car, cdr can point to any Lisp object: 

• ⇒ heterogenous lists 

• cdr = null pointer (nil) ⇒ end of list 

• car → cons cell: embedded list 

• either can point to list itself ⇒ circular lists
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Type Checking
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Type checking
• Ensures that operands, operator are compatible 

• Operators/operands: also subprograms, assignment 

• Compatible types: 

• either explicitly allowed for context 

• can be implicitly converted (coercion) 

• following language rules 

• & by code inserted by compiler 

• Mismatched types → type error
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Type conversion
• Can’t just treat same bit string differently! 

• Ex., 2 stored in variable “foo” in C 

• char foo → 0011 0010  — as ASCII 

• char foo → 0000 0010  — as integer 

• short foo → 0000 0000 0000 0010 

• int foo → 0000 0000 0000 0000 0000 0000 0000 0010 

• float foo → 0100 0000 0000 0000 0000 0000 0000 0000

sign exponent +127 fractional part 
(without leading 1)
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Type conversions
• Narrowing conversion:  

• result has fewer bits 

• ⟹ potential lost info 

• E.g., double → int 

• Widening conversion: 

• E.g., int → double 

• 32-bit int → 64 bit int — no loss of precision 

• 32-bit int → 32- or 64-bit float — but may lose 
precision
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Type casting & coercion
• Type cast: explicit type conversion 

float z; 
int i = 42;
z = (float) i;

• Coercion: implicit type conversion 

• Rules are language-dependent — can be 
complex, source of error 

• With signed/unsigned types (e.g., C) — even 
more complex
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C coercion rules
IF Then Convert
either operand is long double the other to long double
either operand is double the other to double
either operand is float the other to float
either operand is unisgned long int the other to unsigned long int
the operands are long int and 
unsigned int and long int can 
represent unsigned int the unsigned int to long int
the operands are long int and 
unsigned int and long int cannot 
represent unsigned int both operands to unsigned long int
one operand is long int the other to long int
one operand is unsigned int the other to unsigned int

From K&R; also “Unexpected results may occur when an unsigned 
expression is compared to a signed expression of same size.”
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Type checking
• Static type bindings → almost all type checking 

can be static (at compile time) 

• Dynamic type binding → runtime type checking 

• Strongly-typed language:  

• if type errors are almost always detected 

• advantage: type errors caught that otherwise 
might ⇒ difficult-to-detect runtime errors
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Strong/weak typing 
• Weakly-typed: 

• Fortran 95 — equivalence statements map 
memory to memory, e.g. 

• C/C++:  parameter type checking can be 
avoided, void pointers, unions not type checked, 
etc. 

• Scripting languages — free use of coercions ⟹ 
type errors  

• Lisp — though runtime system catches most type 
errors from coercion, casting, programming errors
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Strong/weak typing 
• Strongly-typed: 

• Ada — unless generic function 
Unchecked_Conversion used 

• Java, C# — but casts, coercions can still 
introduce errors
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Strong typing
• Coercion rules affect strength of typing 

• Java has half the assignment coercions of C++ 

• no narrowing conversions 

• can still have loss of precision 

• strength of typing still less than (e.g.) Ada
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Type Equivalence
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Type equivalence
• When are types considered equivalent? 

• Depends on purpose 

• Depends on language 

• Pascal report [Jensen & Wirth] on assignment 
statements: 

“The variable […] and the expression must be of 
identical type.” 

• Problem: didn’t say what “identical” meant 

• E.g.: can integer be assigned to an enum var? 

• Standard (ANSI/ISO) fixed this
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Type equivalence: C 
struct complex {

float re, im;
};
struct polar {

float x,y;
};
struct {

float re, im;
} a, b;
struct complex c, d;
struct polar e;
int f[5], g[5]

Which are equivalent?
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Type equivalence
• Two general types of equivalence:  

• Name equivalence 

• Structural equivalence
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Name equivalence
• Two variables are name equivalent if: 

• in the same declaration or 

• in declarations using the same type name 

• Easy to implement 

• Restrictive, though: 

• subranges of integers aren’t equivalent to 
integer types 

• formal parameters have to be same type as 
actual parameters (arguments)
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Structural equivalence
• Two variables are structurally equivalent if both 

types have identical structures 

• Flexible 

• Harder to implement
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Type equivalence
• Some languages are very strict: Ada uses only 

name equivalence, e.g. 

• C — uses both 

• structural equivalence for all types except 
unions and structs where member names are 
significant 

• name equivalence for unions & structs
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Type equivalence: C 
struct complex {

float re, im;

};

struct polar {

float x,y;

};

struct {

float re, im;

} a, b;

struct complex c, d;

struct polar e;

int f[5], g[5]

a, b are (name) equivalent
c,d are name equivalent

e is not equivalent to c or d — 
member names
differ
f, g are structurally equivalent
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Pointers in C
• All pointers are structurally-equivalent, but 

• object pointed to determines type equivalence 

• e.g., int * foo; float * baz — not equivalent 

• void* pointers…? 

• BTW: Array declarations: int f[5], g[10]; → not 
equiv.
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Ada & Java
• Ada:  

• name equivalence for all types 

• forbids most anonymous types 

• Java 

• name equivalence for classes 

• method signatures must match for 
implementation of interfaces
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Functions as Types
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Functions as types
• Some languages: can’t assign a function to a 

variable → not “first-class objects” 

• Why would we want to, though? 

• E.g., graphing routine: pass in function to be 
graphed 

• E.g., root solver for f(x) 

• E.g., sorting routine, where pass in f(x) to 
compare items (e.g., generic routine) 

• “Callbacks” in many system APIs
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Functions as parameters
• So major need: pass function as a parameter 

• Functional language generally have the best 
support (more later) 

• Fortran: function pointers, but no type checking 

• Pascal-like languages — function prototype in 
parameters: 

  Function Newton (A,B : real; function f(x: real): real): real;
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Function pointers in C
• ANSI C (K&R, 2nd ed.): 

• Functions are not variables 

• Can have pointers to them 

• Can call via pointer 

• Can assign to functions 

• Can return functions
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Function pointers in C
• Specification: 

• uses type signatures 

• e.g.: 
int (*foo)(float, int)

int cmp_int (int a, b);

int* sort(int array[], int (*cmp) (int, int) 
    {… cmp(array[i], array[j]);…}

int temp[20];
…
sort(temp, &cmp_int);

• Can be quite messy: 

int *(*foo) (*int);
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Java interfaces
• Can do some of same things with interface 

• Abstract type specifying methods class must 
implement 

• Contains method signatures only — no 
implementations 

• Can specify classes that can be passed by specifying 
the interface 
public interface RootSolvable {

double valueAt(double x);
}
public double Newton(double a, double b, RootSolvable f);
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Functions as first-class objects
• Functions considered first-class objects if can be constructed 

by a function at runtime and returned 

• Characteristic of functional languages — not confined to them   
in modern languages 

(defun fun-create (op)

   #'(lambda (a b)

      (funcall op a b)))

>> (funcall a 2 3)

5

• Even better in Scheme 

• Others can do this, too, though: e.g., JavaScript, Python
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• Python example: 

def make_counter(start=0):
    def counter():
       nonlocal start
       start += 1
       return start
     return counter ← return function
f = make_counter()
f ! <function make_counter.<locals>.counter at 0x1022dcd90>
f() ! 1
f() ! 2
…

UMAINE CIS

Functions as first-class objects
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Heap Management

Start, 11/10/14
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Memory & heap 
• With respect to memory management and other 

things: 

C makes it easy to shoot yourself in the foot; 
C++ makes it harder, but when you do it blows 
your whole leg off. 

—Bjarne Stroustrop (creator of C++)
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Heap
• Major areas of memory: text, data, stack, heap 

• Text (program) area 

• Data area 

• Static, initialized variables 

• Dynamic area (BSS) 

• Stack area 

• Heap: dynamically-allocated objects
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Run-time Memory

Static data
BSS

Heap

Stack
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Heap management
• Allocation of data: malloc(), new Obj 

• Deallocation: free() 

• Managing heap: 

• How to find memory for malloc()? 

• Avoiding dangling pointers 

• Avoiding memory leaks — user or language? 

• If language: how to collect the garbage?
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Garbage example
class node { 
 int value; 
 node next; 
} 
node p, q; 
p = new node(); 
q = new node(); 
q = p; 
delete p;
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A solution to dangling pointers: Tombstones

• Allocate a piece of memory from heap → get back a 
tombstone 

• Tombstone is a memory cell that itself points to the 
allocated heap-dynamic variable 

• Pointer access is only through tombstones 

• When deallocate heap-dynamic variable → tombstone 
remains, but has null pointer 

• Prevents dangling pointers, but… 

• Need extra space for tombstones 

• Every reference to heap-dynamic variable requires one 
more indirect memory access
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A solution to dangling pointers: Tombstones

COS 301 — Programming Languages UMAINE CIS

Another solution: Locks and keys

• Heap-dynamic variables = variable + a cell for an integer 
lock value 

• Pointers: have both the address and a key 

• When allocating — create lock, also store in key cell 

• Copying pointer: copy key as well 

• When accessing: compare lock and key — don’t match ⟹ 
error 

• Deallocate heap-dynamic variable: put invalid lock in lock 
cell 

• Future: can’t access the data, since lock and key don’t 
match
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Another solution: Locks and keys
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Garbage collection
• Could be responsibility of programmer 

• E.g., C, C++ (via malloc()), Objective C (on iOS) 

• Pros: 

• Gives programmer complete control of heap 

• Fast: don’t have to search for garbage 

• Cons: 

• Makes programming more complex 

• Bugs ⟹ memory leaks — difficult to detect
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Garbage collection
• Automatic garbage collection algorithms 

• E.g., Lisp, Java, Python… 

• Pros: 

• No memory leaks 

• Simpler for programmer 

• Cons: 

• Complex 

• Costly with respect to time
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GC algorithms
• First designed, used in 1960s: Lisp 

• 1990s: OOP, interpreted scripting languages ⟹ 
renewed interest 

• Recall garbage = areas of heap no longer in use 

• No longer in use = nothing in program points to it 

• Functions of GC: 

• Reclaim garbage → free space list 

• If non-uniform allocation: compact free space as 
needed to reduce fragmentation
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GC issues
• How long does it take? 

• Time program is “paused” 

• Full vs incremental 

• How much memory does GC itself take? 

• Some schemes may halve the size of available 
heap
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GC issues
• How does it interact with VM? 

• Does GC cause extra page faults? 

• Does GC cause cache misses? 

• Can GC be used to improve locality of reference 
by reorganizing data? 

• How much runtime bookkeeping? 

• Does this impact speed? 

• Does this impact available memory?
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GC algorithms
• Reference counting 

• Mark-and-sweep 

• Copy collection
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GC: Reference counting
• Occurs when heap block is allocated/deallocated 

• Heap is a chain of nodes:  free list 

• Each node has extra field — reference count 

• Nodes taken from chain, connected to each other via 
pointers 

• When allocated via new(), object allocated from heap, 
ref count = 1 

• When deallocated via delete(), ref count 
decremented 

• Reference count = 0 ⟹ return object to heap
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GC: Reference counting
• Assignment of pointer variable, say q = p: 

• object pointed to by p → ref count++ 

• if q was pointing to object → ref count-- 

• if uniform size nodes in linked chain, do this for 
all linked nodes, too
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GC: Reference counting
• Come up with an example in which reference 

counting would not work — i.e., in which 
garbage would remain.
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GC: Reference counting
• Pros:  

• Reclaims objects as soon as possible 

• No pauses for GC to inspect heap — 
intrinsically incremental 

• Cons:  

• Requires space for ref counter 

• Increased cost of assignment — bookkeeping 

• Difficulty with circular references
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GC: Mark-and-sweep
• Allocate cells from heap as needed 

• No explicit deallocation — just change pointer at will 

• When heap is full: 

• Find all non-garbage by following (e.g.) all 
pointers/references in program, marking them as 
good 

• Return garbage to heap’s free list 

• Requires two passes over heap 

• Also called tracing collector
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Marking
• Start at every pointer/reference, say r, in some 

known live/root set of pointers:
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Sweep
• For every node in the heap: 

• If not marked as in use, then return to free list
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Allocation in mark-and-sweep
if (free_list == null) 
  mark_sweep();
if (free_list != null) {
  q = free_list;
  free_list = free_list.next;
}
else abort('Heap full')
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Where to start marking?
• Root set:  set of references that are active 

• Pointers in global memory 

• Pointers on the stack 

• May be difficult — e.g., Java has six classes of reachability (see, 
e.g., here): 

• strongly reachable 

• weakly reachable 

• softly reachable 

• finalizable 

• phantom reachable 

• unreachable
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Problems
• GC can take a long time 

• Page faults when visiting old (inactive) objects ⟹ 
more delay 

• If non-uniform allocations ⟹ fragmentation of 
heap 

• Requires additional space for the mark (not a 
problem in tagged architectures) 

• Have to maintain linked list of free blocks
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GC: Copy collection
• Trades space for time, compared to mark-and-sweep 

• Partition heap into two halves — old space, new space 

• Allocate from old space till full 

• Then, start from the root set and copy all objects to the 
new space 

• New space now becomes the old space 

• No need for reference counts, mark bits 

• No need for a free list — just a pointer to end of the 
allocated area
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Copy collection
• Advantages: 

• Faster than mark-and-sweep 

• Heap is always one big block → allocation is cheap, easy 

• Improves locality of reference → objects allocated close 
to each other, no fragmentation 

• Disadvantages: 

• Can only use 1/2 heap space (i.e., more space needed) 

• If most objects are short-lived → good — most won’t be 
copied — but if lots of long-lived objects, spend 
unnecessary time always copying them back and forth
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Generational GC
• Empirical studies: most objects in OOP tend to 

“die young” 

• If an object survives one GC, good chance it will 
become long-lived or permanent 

• Most sources: 90% of GC-collected objects 
created since last GC 

• Pure copying collector: continues to copy the 
old objects 

• Generational (ephemeral) GCs: make use of this 
to divide heap into generations for different objects
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Generational GC
• Heap divided into generations 

• Objects start in a generation for new objects 

• When object meets some promotion criteria → promote to longer-
lived generation 

• Different algorithms for different generations 

• GC:  

• When heap manager needs more space → minor collection — 
only youngest generation considered 

• If this doesn’t work → older generations 

• Only fail if all generations have been collected 

• Some objects may be unreachable ⟹ need full GC occasionally 
(mark-and-sweep or copying)
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Generational GC: Java
All figures from Oracle: https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
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Generational GC: Java
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Generational GC: Java

COS 301 — Programming Languages UMAINE CIS

Generational GC: Java
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Generational GC: Java
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Generational GC: Java
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Generational GC: Java
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Generational GC: Java
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Problem: Intergenerational references 
• Generational GC: only visits objects in youngest 

generation 

• But what if object in older generation references 
object in younger generation that isn’t otherwise 
reachable? 

• Solution:  explicitly track intergenerational 
references 

• Easy to do when an object is promoted 

• Harder when change a pointer reference after 
promotion
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Tracking intergenerational references
• Naïve approach: check each pointer assignment for 

intergenerational reference 

• Most common algorithm: card table or card marking 

• Card map: one bit per block of memory (where 
block usually < VM page) 

• Bit set ⟹ block is dirty (written to) 

• When we do a GC, have to consider not just root 
set, but also any dirty blocks — treat as part of root 
set 

• If no reference to a younger generation, clear bit


