
COS 301 — Programming Languages UMAINE CIS

Data Types
COS 301 - Programming Languages

Fall 2018

COS 301 — Programming Languages UMAINE CIS

Types
• Type – collection of values + operations on them

• Ex: integers:

• values: …, -2, -1, 0, 1, 2, …

• operations: +, -, *, /, <, >, …

• Ex: Boolean:

• values: true, false

• operations: and, or, not, …

COS 301 — Programming Languages UMAINE CIS

 Bit Strings
•Computer: Only deals with bit strings

•No intrinsic “type”
• E.g.:

 0100 0000 0101 1000 0000 0000 0000 0000
 could be:

–The floating point number 3.375
–The 32-bit integer 1,079,508,992

–Two 16-bit integers 16472 and 0

– Four ASCII characters: @ X NUL NUL

•What else?
•What about 1111 1111?

COS 301 — Programming Languages UMAINE CIS

Levels of Abstraction
• First: machine language, bit strings
• Then: assembly language

• Mnemonics for operations, but also…
• ...human-readable representations of bit strings

• Then: HLLs
• Virtual machine – hides real machine’s registers, operations,

memory
• Abstractions of data: maps human-friendly abstractions ⇒ bit

strings
• Sophisticated typing schemes for numbers, characters,

strings, collections of data, …
• OO – just another typing abstraction

COS 301 — Programming Languages UMAINE CIS

Types in Early Languages
• Early languages: types built in (FORTRAN, ALGOL,

COBOL)

• Suppose you needed to represent colors

•Map to integers

•But:

•carry baggage of integer operations (what does
it mean to multiply two colors?)

•no type-specific operations (blending, e.g.)

•E.g., days of the week, cards in a deck, etc.

COS 301 — Programming Languages UMAINE CIS

Evolution
• FORTRAN:

• integers, “reals”, complex, character (string), logical

•arrays as structured type
•Lisp:

•Symbols, linked lists, integers, floats (later rationals,
complex, arrays,…)

• COBOL:

•programmer could specify accuracy
• records

COS 301 — Programming Languages UMAINE CIS

Evolution
• Algol 68:
• few basic types
•structure defining mechanisms (user

defined types)
• 1980’s: abstract data types (ADTs)
• Abstract data types ⇒ objects (though

first developed in 1960’s)

COS 301 — Programming Languages UMAINE CIS

 Type Errors
• Type error:

•operation attempted on data type for which it is undefined
•operation could be just assignment

• Machine data carries no type information.
• Assembly language:

• type errors easy to make,
• little if any type checking

• HLLs ⇒ reduce type errors

•Greater abstraction ⇒ fewer type errors

•Type system: type checking, detecting type errors

COS 301 — Programming Languages UMAINE CIS

Data types: Issues
• How to associate types with variables?

• Recall symbol table: info about all variables
• Descriptor in symbol table: all attributes

• What operations are defined?
• How are they specified?
• Implementation of types?

COS 301 — Programming Languages UMAINE CIS

Overview
• Primitive data types

• Character strings

• User-defined ordinal
types

• Arrays

• Associative arrays
• Records

• Unions

• Pointers &
references

• Miscellaneous types

• Type equivalence

• Functions as types
• Heap management

COS 301 — Programming Languages UMAINE CIS

Primitive Data types

COS 301 — Programming Languages UMAINE CIS

Primitive data types
• Primitive data type:

• not defined in terms of others (scalar) or…

• …provided natively by language (e.g., strings,
arrays sometimes)

• Some very close to hardware: integers, floats

• Others: require non-hardware support

COS 301 — Programming Languages UMAINE CIS

Primitive scalar data types:
Type C Ada Java Python Lisp

Byte char none byte none none (bit-
vector)

Integer short, int, long
Integer,
Natural,
Positive

short, int, long int fixnum, bignum,

Float float, double,
ext’d double

Float,
Decimal float, double real

single-float,
double-float,

ratio

Char char Character char none
(string)

character

Bool none (0, not
zero) Boolean boolean bool nil, t (and

anything not nil)

COS 301 — Programming Languages UMAINE CIS

Integers
• Generally direct mapping to machine

representation

• Most common:

• sign-magnitude

• two’s complement

• Others:

• Unsigned (binary)

• Binary coded decimal

COS 301 — Programming Languages UMAINE CIS

Review: Sign-magnitude
• Binary number, high-order bit is sign bit

• E.g.: -34 in 8 bits:

• binary 34 → 0010 0010

• sign-magnitude -34 → 1010 0010

• Easy, but:

• 2 representations of 0

• have to treat high-order bit differently

COS 301 — Programming Languages UMAINE CIS

Review: 2’s complement
• Divide possible range of n-bit binary numbers:

• 0 — 2n-1-1 ⇒ positive numbers

• 2n-1 to 2n-1 ⇒ negative numbers

• E.g., 8 bits:

• Positive 1 = 0000 0001

• Negative 1?

• Odometer-like

• 1111 1111

• 1 + (-1) = 0: 0000 0001 + 1111 1111 = (1)0000 0000

COS 301 — Programming Languages UMAINE CIS

Review: 2’s complement
• Mechanics:

• Take 1’s complement, add 1

• E.g.: -34 in 2’s complement

• 34 = 0010 0010 in binary

• 1’s complement: 1101 1101

• 1101 1101 + 1 ⇒ 2’s complement: 1101
1110

• Advantages: subtraction can be done with addition

COS 301 — Programming Languages UMAINE CIS

Review: 2’s complement
• Example: 123 - 70 in 8 bits:

• 12310 ⇒ 0111 10112

• 7010 ⇒ 0100 01102

• -7010 ⇒ 1011 10012 + 1 = 1011 10102

0111 1011
+ 1011 1010

 (1)00110101
⇒ 5310

COS 301 — Programming Languages UMAINE CIS

Size of integers
• Generally implementation-dependent

• E.g., C/C++:

• signed and unsigned

• byte, short, int, long

• Exception: Java

• byte = 8 bits

• short = 16

• int = 32

• long = 64

• Ada: programmer can specify size, error at compile time if too large

COS 301 — Programming Languages UMAINE CIS

Fixed-size integers
• Unsigned integers: e.g. C/C++

• Why?

• Problem: how to mix operations?

unsigned char foo = 128;
int bar = 1;
int baz;
baz = foo + bar;

• foo will be represented as 1000 0000

• So will baz be 128+1 or -128+1? → may depend on
implementation!

• Safer — casting:

baz = (int)foo + bar;

COS 301 — Programming Languages UMAINE CIS

Overflow
• When can it occur?

• Unsigned, sign-magnitude ⇒ result larger than
representation can handle

• Two’s-complement representation ⇒
wraparound

• Many languages do not generate overflow
exception — Why not?

COS 301 — Programming Languages UMAINE CIS

Arbitrary-precision integers
• Fixed-length integers: close mapping to hardware:

• Pro: efficient

• Con: limited range

• Conceptually-unlimited range: arbitrary precision integers

• Started with Lisp’s bignum type

• Other languages: Ruby, Python, Haskell, Smalltalk

• Requires software support ⇒ not as efficient

• Limited only by available memory

• May start with small (machine-based) integer, switch as
numbers get too large

COS 301 — Programming Languages UMAINE CIS

Arbitrary-precision integers
• E.g., in Lisp, Fibonacci(10000) =

3364476487643178326662161200510754331030214846068006390656476997468008144216666236815559551363373402
5582065332680836159373734790483865268263040892463056431887354544369559827491606602099884183933864652
7313000888302692356736131351175792974378544137521305205043477016022647583189065278908551543661595829
8727968298751063120057542878345321551510387081829896979161312785626503319548714021428753269818796204
6936097879900350962302291026368131493195275630227837628441540360584402572114334961180023091208287046
0889239623288354615057765832712525460935911282039252853934346209042452489294039017062338889910858410
6518317336043747073790855263176432573399371287193758774689747992630583706574283016163740896917842637
8624212835258112820516370298089332099905707920064367426202389783111470054074998459250360633560933883
8319233867830561364353518921332797329081337326426526339897639227234078829281779535805709936910491754
7080893184105614632233821746563732124822638309210329770164805472624384237486241145309381220656491403
2751086643394517512161526545361333111314042436854805106765843493523836959653428071768775328348234345
5573667197313927462736291082106792807847180353291311767789246590899386354593278945237776744061922403
3763867400402133034329749690202832814593341882681768389307200363479562311710310129195316979460763273
7589253530772552375943788434504067715555779056450443016640119462580972216729758615026968443146952034
6149322911059706762432685159928347098912847067408620085871350162603120719031720860940812983215810772
8207635318662461127824553720853236530577595643007251774431505153960090516860322034916322264088524885
2433158051534849622434848299380905070483482449327453732624567755879089187190803662058009594743150052
4025327097469953187707243768259074199396322659841474981936092852239450397071654431564213281576889080
5878318340491743455627052022356484649519611246026831397097506938264870661326450766507461151267752274
8621598642530711298441182622661057163515069260029861704945425047491378115154139941550671256271197133
252763631939606902895650288268608362241082050562430701794976171121233066073310059947366875

• = 102089

• This is the only way to represent this number — (much, much)
larger than a double float type!

COS 301 — Programming Languages UMAINE CIS

Floating point numbers
• Not = real numbers – only some real numbers

• Limited exponents ⇒ rules out very large, very small reals

• Irrational numbers cannot be represented (duh)

• Can’t represent repeating rationals

• These may not be what you think!

• ⅓ in binary is repeating…

• ...but so is 0.1!

• Limited precision ⇒ can’t represent some non-repeating
rational numbers

COS 301 — Programming Languages UMAINE CIS

Floating point type
• Usually at least two floating point types

supported (e.g., float, double)

• Usually exactly reflects hardware

• Currently: IEEE Floating-Point Standard 754

• Some older data was in different format

• Can’t precisely be represented in new format

• So only accessible via software emulation of
old hardware

COS 301 — Programming Languages UMAINE CIS

IEEE floats
• Instead of decimal point, have a binamal point (or

just radix point for general concept)

• Only two digits in binary (duh again)

• Normalize number so that there is a 1 in front
of the binamal point

• E.g.: 0.0001010 ⟹ 1.010 × 2-4

• But since all numbers (except 0) start with 1 ⟹
don’t store the 1 — “hidden bit”

• Significand: fractional part

COS 301 — Programming Languages UMAINE CIS

IEEE floats
• Exponent is bias 127 – subtract 127 from it to get

actual exponent

• Number = (-1)S × 1.F2 × 2(E-127)

where S is sign (0=pos, 1=neg), F is significand, and E is
exponent (that is stored)

• Example: sign bit, 8-bit exponent, 23-bit unsigned
fraction:

0 0001 0000 0100 0000 0000 0000 0000 000 ⟹

(-1)0 × 1.012 × 2(16-127) = 1.25 × 2-111

 = 4.814824861×10-34

COS 301 — Programming Languages UMAINE CIS

IEEE floats: 0, NaN…
• Potential problem:

• Any power of two: 1.0 x 2n ⇒ (0)S × 1.00 × 2([127+n]-127)

• 2.0 = 1.0 x 21 ⇒ (0)S x 1.0 x 2(128-127)

• 1.0 = 1.0 x 20 ⇒ (0)S × 1.00 × 2(127-127)

0 0000 0000 0000 0000 0000 0000 0000 000

• How can you tell this from 0?

• Alternatively, how would you even represent 0 in this notation?

• 0 0000 000 0000 0000 0000 0000 0000 0

• NaN (not a number): S = 0/1, F = non-zero, E = all 1s

• +/- infinity: S = 0/1, F = zero, E = all 1s

COS 301 — Programming Languages UMAINE CIS

IEEE floats: 0, NaN…
• Solution: define

0 0000 0000 0000 0000 0000 0000 0000 000

to be zero: S=0, E=0, F=0

• Some languages allow other “numbers”:

• NaN (not a number): S = 0/1, F = non-zero,
E = all 1s

• +/- infinity: S = 0/1, E = all 1s, F = 0

COS 301 — Programming Languages UMAINE CIS

IEEE 64-bit floats (double)
• Range for float (32 bits): approx. ±1038 with 6-7

digits of precision

• Double ⇒ 64 bits; range approx. ±10308 with
14-15 digits of precision

• Sign bit + 11-bit exponent (bias-1023) + 52-bit
unsigned fraction

• Val = (-1)S × 1.F2 × 2(E-1023)

COS 301 — Programming Languages UMAINE CIS

IEEE floats
• How would you represent the following as an

IEEE 32-bit float?

• -2048.328125

COS 301 — Programming Languages UMAINE CIS

IEEE floats
• How would you represent the following as an IEEE 32-bit float?

• -2048.328125

• 2048 in binary = 1000 0000 0000

• 0.328125 = 1/4 + 1/16 + 1/64, in binary = 0.010101

• So 2048.328125 = 1000 0000 0000.0101 01

• Normalized = 1.00000000000010101 x 211

• number = (-1)S × 1.F2 × 2(E-127)

• S = 1, F = 00000000000010101, E = 138 = 1000 10102

• Representation = 1 100 0101 0000 0000 0000 0101 0100 0000

COS 301 — Programming Languages UMAINE CIS

Rational numbers
• Some languages provide rational numbers

directly

• E.g., Lisp’s “ratio” data type, Haskell’s “Rational”
data type

• Stores numerator and denominator as integers —
usually reduced, i.e., with no common divisor > 1

• Arithmetic done specially

• Advantages: eliminates floating point errors

COS 301 — Programming Languages UMAINE CIS

Rational numbers
• E.g.,

CL-USER> (loop for i from 1 to 1000

 sum (/ 1 3.0))

333.3341

CL-USER> (loop for i from 1 to 1000

 sum 1/3)

1000/3

CL-USER> (float (loop for i from 1 to 1000

 sum 1/3))

333.33334

COS 301 — Programming Languages UMAINE CIS

Complex numbers
• Some languages support complex numbers as

primitive type

• E.g., Lisp, C (99+), Fortran, Python

• Represented as two floats (real & imaginary parts)

• E.g.:

• Python: (7 + 3j)

• Lisp: #C(1 1)

COS 301 — Programming Languages UMAINE CIS

Decimal type

• Useful for business — COBOL, also C#, DBMS

• Stores fixed number of decimal digits

• Usually binary coded decimal (BCD)
E.g. 2758 ⟹ 0010 0111 0101 1000

• Some languages: ASCII

• Some hardware: direct support

• Pro: accuracy – exact decimal precision (within reason)

• Cons: Limited range, more memory, slightly inefficient
storage, & requires more CPU time for computation
(unless hardware support)

COS 301 — Programming Languages UMAINE CIS

Boolean type
• Two values

• Advantage: readability

• Could be bits, but usually bytes (smallest addressable unit)

• Some languages lack this type – C pre-1999, e.g.

• When no Boolean type, usually use integers: 0 = false, non-zero =
true

• Other languages:

• Perl – false: 0, ‘0’, ‘’, (), undef

• Python – false: None, False, 0, ‘’, (), [], {}, some
others

• Lisp – false = nil, otherwise true (including t)

• PHP – false = “”, true = 1 (also FALSE, TRUE)

COS 301 — Programming Languages UMAINE CIS

Characters
• Characters: coded as bit strings (numbers)

• ASCII

• American Standard Code for Information Interchange

• Early and long-standing standard

• 7-bit code originally; usually 8-bit now

• EBCDIC

• Extended Binary Coded Decimal Interchange Code

• IBM mainframes

• 8-bit code

COS 301 — Programming Languages UMAINE CIS

ASCII
• 7-bit code, but generally languages store as

bytes (e.g., C’s char type)

• The upper 128 characters – vary by OS, other
software

• ISO 8859 encoding: uses the additional codes to
encode European languages

COS 301 — Programming Languages UMAINE CIS

Unicode
• As computer use (esp. the Web) became

globalized ⇒ needed more characters

• Unicode designed to handle the ISO 10646
Universal Character Set (UCS)

• UCS: a 32-bit “alphabet” of all known human
characters

COS 301 — Programming Languages UMAINE CIS

Unicode
• Characters exist in Unicode as code points that then get

mapped to representations

• E.g., U+0045 = D, U+3423 = , U+1301D=

• Different encodings map these to different numeric codes

• Can encode all human languages

• Also: private use area – has been used to encode, e.g., Klingon

• Modern languages have adopted Unicode, including Java, XML,
.NET, Python, Ruby, etc.

• Common codes: UTF-8, UTF-16, UTF-32

COS 301 — Programming Languages UMAINE CIS

Unicode
• UTF8:

• Most common on Web (> 90% of pages)

• 1-4 byte code, can encode entire code point space

• Byte 1: backward compatible w/ ASCII — encodes 128
characters

COS 301 — Programming Languages UMAINE CIS

Unicode
• Good introduction to Unicode:

 The Absolute Minimum Every Software Developer Absolutely, Positively
Must Know about Unicode and Character Sets (No Excuses!)

 http://www.joelonsoftware.com/articles/Unicode.html

COS 301 — Programming Languages UMAINE CIS

Character Strings

COS 301 — Programming Languages UMAINE CIS

Character Strings

COS 301 — Programming Languages UMAINE CIS

Character Strings

H…ppy H…lloween!

COS 301 — Programming Languages UMAINE CIS

Character String Types
• Strings: sequences of characters

• Design issues:

• Primitive type? Or kind of array?

• Length - static or dynamic?

COS 301 — Programming Languages UMAINE CIS

Character String Operations
• Assignment, copying

• Comparison

• Concatenation

• Accessing a character

• Slicing/substring reference

• Pattern matching

UMAINE CISCOS 301 — Programming Languages

COS 301 — Programming Languages UMAINE CIS

String Libraries
• Some languages: not much support for string

operations

• Most languages: string libraries

• Libraries for: primitive operations, regular
expressions, substring replacement, etc.

UMAINE CISCOS 301 — Programming Languages

COS 301 — Programming Languages UMAINE CIS

Example: PHP string
•addcslashes — Quote string with slashes in a C style
•addslashes — Quote string with slashes
•bin2hex — Convert binary data into hexadecimal representation
•chop — Alias of rtrim
•chr — Return a specific character
•chunk_split — Split a string into smaller chunks
•convert_cyr_string — Convert from one Cyrillic character set to another
•convert_uudecode — Decode a uuencoded string
•convert_uuencode — Uuencode a string
•count_chars — Return information about characters used in a string
•crc32 — Calculates the crc32 polynomial of a string
•crypt — One-way string encryption (hashing)
•echo — Output one or more strings
•explode — Split a string by string
•fprintf — Write a formatted string to a stream
•get_html_translation_table — Returns the translation table used by htmlspecialchars and
htmlentities

•hebrev — Convert logical Hebrew text to visual text
•hebrevc — Convert logical Hebrew text to visual text with newline conversion
•html_entity_decode — Convert all HTML entities to their applicable characters
•htmlentities — Convert all applicable characters to HTML entities

COS 301 — Programming Languages UMAINE CIS

Example: PHP string
•html_entity_decode — Convert all HTML entities to their applicable characters
•htmlentities — Convert all applicable characters to HTML entities
•htmlspecialchars_decode — Convert special HTML entities back to characters
•htmlspecialchars — Convert special characters to HTML entities
•implode — Join array elements with a string
•join — Alias of implode
•lcfirst — Make a string's first character lowercase
•levenshtein — Calculate Levenshtein distance between two strings
•localeconv — Get numeric formatting information
•ltrim — Strip whitespace (or other characters) from the beginning of a string
•md5 — Calculate the md5 hash of a string
•metaphone — Calculate the metaphone key of a string
•money_format — Formats a number as a currency string
•nl_langinfo — Query language and locale information
•nl2br — Inserts HTML line breaks before all newlines in a string
•number_format — Format a number with grouped thousands
•ord — Return ASCII value of character
•parse_str — Parses the string into variables

COS 301 — Programming Languages UMAINE CIS

Example: PHP string
•print — Output a string
•printf — Output a formatted string
•quoted_printable_decode — Convert a quoted-printable string to an 8 bit string
•quoted_printable_encode — Convert a 8 bit string to a quoted-printable string
•quotemeta — Quote meta characters
•rtrim — Strip whitespace (or other characters) from the end of a string
•setlocale — Set locale information
•sha1 — Calculate the sha1 hash of a string
•similar_text — Calculate the similarity between two strings
•soundex — Calculate the soundex key of a string
•sprintf — Return a formatted string
•sscanf — Parses input from a string according to a format
•str_getcsv — Parse a CSV string into an array
•str_ireplace — Case-insensitive version of str_replace.
•str_pad — Pad a string to a certain length with another string
•str_repeat — Repeat a string
•str_replace — Replace all occurrences of the search string with the replacement
•str_rot13 — Perform the rot13 transform on a string
•str_shuffle — Randomly shuffles a string

COS 301 — Programming Languages UMAINE CIS

Example: PHP string
•str_split — Convert a string to an array
•str_word_count — Return information about words used in a string
•strcasecmp — Binary safe case-insensitive string comparison
•strchr — Alias of strstr
•strcmp — Binary safe string comparison
•strcoll — Locale based string comparison
•strcspn — Find length of initial segment not matching mask
•strip_tags — Strip HTML and PHP tags from a string
•stripcslashes — Un-quote string quoted with addcslashes
•stripos — Find position of first occurrence of a case-insensitive string
•stripslashes — Un-quotes a quoted string
•stristr — Case-insensitive strstr
•strlen — Get string length
•strnatcasecmp — Case insensitive string comparisons using a "natural order" algorithm
•strnatcmp — String comparisons using a "natural order" algorithm
•strncasecmp — Binary safe case-insensitive string comparison of the first n characters
•strncmp — Binary safe string comparison of the first n characters

COS 301 — Programming Languages UMAINE CIS

Example: PHP string
•strpbrk — Search a string for any of a set of characters

•strpos — Find position of first occurrence of a string

•strrchr — Find the last occurrence of a character in a string

•strrev — Reverse a string

•strripos — Find position of last occurrence of a case-insensitive string in a string

•strrpos — Find position of last occurrence of a char in a string

•strspn — Finds the length of the first segment of a string consisting entirely of characters contained within a given mask.

•strstr — Find first occurrence of a string

•strtok — Tokenize string

•strtolower — Make a string lowercase

•strtoupper — Make a string uppercase

•strtr — Translate certain characters

•substr_compare — Binary safe comparison of 2 strings from an offset, up to length characters

•substr_count — Count the number of substring occurrences

•substr_replace — Replace text within a portion of a string

•substr — Return part of a string

•trim — Strip whitespace (or other characters) from the beginning and end of a stringstrncmp — Binary safe string comparison of
the first n characters * ucfirst — Make a string's first character uppercase

•ucwords — Uppercase the first character of each word in a string

•vfprintf — Write a formatted string to a stream

•vprintf — Output a formatted string

•vsprintf — Return a formatted string

•wordwrap — Wraps a string to a given number of characters

COS 301 — Programming Languages UMAINE CIS

Strings in C & C++
• Strings are not primitive: arrays of char

• No simple variable assignment
char line[MAXLINE];
char *p, q;
p = &line[0];

• Have to use a library routine, strcpy()

 if(argc==2) strcpy(filename, argv[1]);

• strcpy() no bounds checking ⟹ possible
overflow attack

• C++ provides a more sophisticated string class

COS 301 — Programming Languages UMAINE CIS

Strings in other languages
• SNOBOL4 is a string manipulation language

• Strings: primitive data type

• Includes many basic operations

• Includes built-in pattern-matching operations

• Fortran and Python

• Primitive type with assignment and several
operations

COS 301 — Programming Languages UMAINE CIS

Strings in other languages
• Java: Primitive via the String class

• Perl, JavaScript, Ruby, and PHP

• Provide built-in pattern matching, using regular
expressions

• Extensive libraries

• Lisp:

• A type of sequence

• Unlimited length, mutable

COS 301 — Programming Languages UMAINE CIS

String implementation
• Strings seldom supported directly by hardware

• Software ⇒ implement strings

• Choices for length:

• Static: set at creation time, then unchanged (FORTRAN,
COBOL, Java's/.NET's String class)

• Limited dynamic: max length set at creation, actual length
varies up to that (C, C++)

• Dynamic: no maximum, varies at runtime (SNOBOL4, Perl,
JavaScript, Lisp)

• Some languages provide all three types - Ada, DBMS (Char,
Varchar(n), Text/Blob)

COS 301 — Programming Languages UMAINE CIS

String implementation
• Static length: compile-time descriptor

• Limited dynamic length:

• may need a run-time descriptor

• C/C++: null (0) terminates string

• Dynamic length:

• need run-time descriptor

• computationally inefficient - allocation/de-
allocation problem

COS 301 — Programming Languages UMAINE CIS

Compile-time
descriptor for
static strings

Run-time
descriptor for

limited dynamic
strings

What about dynamic
strings?

Compile- and run-time descriptors

COS 301 — Programming Languages UMAINE CIS

Immutable strings
• Many languages allow strings to be changed

• Character replacement

• Insertion of slices

• Changes of length

• C, Lisp, many others

• Others have immutable strings

• Cannot change them

• To make a “change”, have to create new string

• Python, Java, .NET languages, C++ (except C-like
strings)

COS 301 — Programming Languages UMAINE CIS

Immutable strings
• Advantages of immutable strings:

• “Copying” is fast — just copy pointer/reference

• Sharing of strings is safe — even across processes

• No inadvertent changes (via, e.g., aliases or
pointers)

• Disadvantages:

• For minor changes, still have to copy the entire
string

• Memory management (manual or GC)

COS 301 — Programming Languages UMAINE CIS

User-Defined Ordinal Types

COS 301 — Programming Languages UMAINE CIS

User-defined ordinal types
• Ordinal type: range of possible values mapped

to set of (usually positive) integers

• Primitive ordinal types - e.g., integer, char,
Boolean...

• User-defined ordinal types:

• Enumerations

• Subranges

COS 301 — Programming Languages UMAINE CIS

Enumerations
• Define all possible values in definition

• Values are essentially named constants

• C#:
enum days {mon, tue, wed, thu, fri, sat, sun};

• Pascal example (with subranges)
Type  
 Days = (monday,tuesday,wednesday,thursday,

 friday, saturday,sunday);  
 WorkDays = monday .. friday;  
 WeekEnd = Saturday .. Sunday;

COS 301 — Programming Languages UMAINE CIS

Enumerations
• First appeared in Pascal and C

• Pascal-like languages: can subscript arrays using
enumerations

 var schedule : array[Monday..Saturday] of string;
var beerPrice : array[Budweiser..Guinness] of real;

• Primary purpose of enumerations: enhance
readability

• Some languages treat enums as integers and
perform implicit conversions

• Others (e.g., Java, Ada): strict type-checking, require
explicit conversions (casting)

COS 301 — Programming Languages UMAINE CIS

Enumerations
• Languages not supporting enumerations:

• Major scripting languages - Perl, JavaScript, PHP, Python,
Ruby, Lua

• Java, for first 10 years (until version 5.0)

• Design issues

• Can an enumeration value appear in more than one type?

• If so, how is this handled?

• Are enumeration values coerced to integers?

for (day = Sunday; day <= Saturday; day++)

• Any other type coerced to an enumeration type?

day = monday * 2;

COS 301 — Programming Languages UMAINE CIS

Why use enumerated types?
• Readability - e.g., no need to code a color as a

number

• Reliability - compiler can check:

• operations (don’t allow colors to be added)

• range checking

• Some languages better than others at this

• E.g., Java, Ada, C# - can't coerce to integers

• Ada, C#, and Java 5.0 provide better support

COS 301 — Programming Languages UMAINE CIS

Subranges
• Subrange: ordered, contiguous subsequence of an ordinal

type

• E.g., 12 ..18 — subrange of integer type

• E.g. - Ada:
type Days is (mon, tue, wed, thu, fri, sat, sun);

subtype Weekdays is Days range mon..fri;

subtype Index is Integer range 1..100;

Day1: Days;

Day2: Weekday;

Day2 := wed;

Day1 := Day2;

COS 301 — Programming Languages UMAINE CIS
COS 301 - 2013

Why use subranges?
• Readability - way to explicitly state that variable

can only store one of a range of values

• Reliability - compile-time, run-time type checking

COS 301 — Programming Languages UMAINE CIS

User-defined ordinal types:
• Enumeration types: usually implemented as

integers

• Issue: how well does the compiler hide
implementation?

• Subrange types: implemented like parent types

• Run-time checking via code inserted by the
compiler

COS 301 — Programming Languages UMAINE CIS

Arrays

COS 301 — Programming Languages UMAINE CIS

Array Type
• Array:

• collection of homogeneous data elements

• each element: identified by position relative to
the first element

• Except for strings, arrays are the most widely-use
non-scalar data type

COS 301 — Programming Languages UMAINE CIS

Array Design Issues
• What types are legal for subscripts?

• Are subscripting expressions in element references
range checked?

• When are subscript ranges bound?

• When does allocation take place?

• What is the maximum number of subscripts?

• Can array objects be initialized?

• Are any kind of slices supported?

COS 301 — Programming Languages UMAINE CIS

Array Indexing
• Indexing (subscripting): mapping from indices to elements

 array_name (index_value_list) → an element

• Index syntax

• FORTRAN, PL/I, Ada, Basic, Pascal: foo(3)

• Ada: uses bar(4)

• to explicitly show uniformity between array references and
function calls

• why? both are mappings

• Most other languages use brackets

• Some are odd: e.g., Lisp:

(aref baz 7)

COS 301 — Programming Languages UMAINE CIS

Array index type
• FORTRAN, C: integer only

• Ada, Pascal : any ordinal type, e.g., integer,
integer subranges, enumerations, Boolean and
characters

• Java: integer types only

COS 301 — Programming Languages UMAINE CIS

Array index range checking
• Tradeoff between safety, efficiency

• No bounds checking ⇒ buffer overflow attacks

• C, C++, Perl, and Fortran — no range checking

• Java, ML, C# specify range checking

• Ada: default is range checking, but can be turned
off

COS 301 — Programming Languages UMAINE CIS

Arrays in Perl
• Array names in Perl start with @

• Elements, however, are scalars ⟹ array element
references start with $

• Negative indices: from end
@friends = ("Rachel", "Monica", "Phoebe",
 "Chandler", "Joey", “Ross");
prints "Phoebe"

print $friends[2];

prints "Joey"

print $friends[-2];

COS 301 — Programming Languages UMAINE CIS

Lower bounds
• Some are implicit

• C-like languages: lower bound is always 0

• Fortran: implicit lower bound is 1

• Other languages allow user-specified lower
bounds

• Pascal-like languages, some Basic variants:
arbitrary lower bounds

• Some Basic variants: Option Base statement
sets implicit lower bound

COS 301 — Programming Languages UMAINE CIS

Subscript binding and array
• Static:

• subscript ranges statically bound

• storage allocation static (compile time)

• efficient with respect to time — no dynamic
allocation

• Fixed stack-dynamic:

• subscript ranges: statically bound

• allocation at runtime function invocation

• efficient with respect to space (but slower)

COS 301 — Programming Languages UMAINE CIS

Subscript Binding and Array
• Stack-dynamic:

• subscript ranges are dynamically bound

• storage allocation is dynamic (at run-time)

• flexible — array size isn’t needed to be known until
array is used

• Fixed heap-dynamic:

• similar to fixed stack-dynamic

• storage binding is dynamic — but fixed after allocation

• i.e., binding done when requested, storage from heap

COS 301 — Programming Languages UMAINE CIS

Subscript Binding and Array
• Heap-dynamic:

• binding of subscript ranges, storage allocation
is dynamic

• can change any number of times

• flexible —arrays can grow or shrink during
program execution

COS 301 — Programming Languages UMAINE CIS

Sparse Arrays
• Sparse array: some elements are missing values

• Some languages support sparse arrays:
JavaScript, e.g.

• subscripts needn’t be contiguous

• e.g.,
var myColors = new Array ("Red, “Green",
 "Blue", "Indigo",
 "Violet");
myColors[15] = “Orange“;

COS 301 — Programming Languages UMAINE CIS

Subscript binding and array
• C and C++

• Declare array outside function body or using static
modifier ⟹ static array

• Arrays declared in function bodies: fixed stack-
dynamic

• Can allocate fixed heap-dynamic arrays

• C# — ArrayList class provides heap-dynamic

• Perl, JavaScript, PHP, Python, and Ruby: heap-dynamic

• Lisp: fixed heap-dynamic or heap-dynamic (although
adjusting size requires function call)

COS 301 — Programming Languages UMAINE CIS

Array initialization
• C, C++, Java, C#

int list [] = {4, 5, 7, 83}

• Character strings in C and C++
char name [] = “freddie";

char name [] = {‘f’, ‘r’, ‘e’, ‘d’, ‘d’, ‘i’, ‘e’};

• Arrays of strings in C and C++
char *names [] = {"Bob", "Jake", “Joe”};

• Java initialization of String objects

String[] names = {"Bob", "Jake", "Joe"};

COS 301 — Programming Languages UMAINE CIS

Array initialization
• Ada
Primary : array(Red .. Violet) of Boolean =
 (True, False, False, True, False);

COS 301 — Programming Languages UMAINE CIS

Heterogeneous arrays
• Heterogeneous array: elements need not be the

same type

• Supported by Perl, Python, JavaScript, Ruby, PHP,
Lisp

• PHP:
$fruits = array ("fruits" => array("a" => "orange",

 "b" => "banana",

 "c" => "apple"),

 "numbers" => array(1, 2, 3, 4, 5, 6),

 "holes" => array("first",

 5 => “second",

 "third"));

COS 301 — Programming Languages UMAINE CIS

Initialization with comprehensions
• Intensional rather than extensional definition of list

• First appeared in Haskell, now in Python

• Function is applied to each element of an array or thing in
iterator to construct a new array:

list = [x ** 2 for x in range(12) if x % 3 == 0]

⟹ puts [0, 9, 36, 81] in list

• Smalltalk: block of code could be passed to any iterator

• Lisp/Scheme: mapping functions do similar thing:

(remove-if 'null (mapcar '(lambda (a)

 (if (= 0 (mod a 3))

 (expt a 2)))

 '(0 1 2 3 4 5 6 7 8 9 10 11)))

COS 301 — Programming Languages UMAINE CIS

Automatic array initialization
• Some languages — pre-initialize arrays

• E.g., Java, most BASICs

• Numeric values set to 0

• Characters to \0 or \u0000

• Booleans to false

• Objects to null pointers

• Relying on automatic initialization: dangerous
programming practice

COS 301 — Programming Languages UMAINE CIS

Array operations
• Array operations work on the array as a single

object

• Assignment

• Concatenation

• Equality / Inequality

• Array slicing

COS 301 — Programming Languages UMAINE CIS

Array operations
• C/C++/C# : none	

• Java: assignment

• Ada: assignment, concatenation

• Python: numerous operations, but assignment is
reference only

• Deep vs shallow copy

• Deep copy: a separate copy where all
elements are copied as well

• Shallow copy: copy reference only

COS 301 — Programming Languages UMAINE CIS

Array operations – implied
• Fortran 95 — “elemental” array operations

• Operations on the elements of the arrays

• Ex: C = A + B ⟹ C[i] = A[i] + B[i]

• Provides assignment, arithmetic, relational and logical
operators

• APL has the most powerful array processing facilities of
any language

• operations for vectors and matrixes

• unary operators (e.g., to reverse column elements,
transpose matrices, etc.)

COS 301 — Programming Languages UMAINE CIS

Jagged arrays
• Most arrays: rectangular

• multidimensional array

• all rows have same number of elements (equivalently, all
columns have the same number of elements)

• Jagged arrays:

• rows have varying number of elements

• possible in languages where multidimensional arrays are really
arrays of arrays

• C, C++, Java, C#: both rectangular and jagged arrays

• Subscripting expressions vary:

arr[3][7] arr[3,7]

COS 301 — Programming Languages UMAINE CIS

Jagged arrays — C#
int[][] jaggedArray = new int[3][];

jaggedArray[0] = new int[5];

jaggedArray[1] = new int[4];

jaggedArray[2] = new int[2];

• Or
int[][] jaggedArray2 = new int[][] {

 new int[] {1,3,5,7,9},

 new int[] {0,2,4,6},

 new int[] {11,22}

};

COS 301 — Programming Languages UMAINE CIS

Type signatures
•A type signature — usually used to denote the types of a

functions’ parameters and output

•E.g., int foo(int a, float b) {…}

has the signature (int) (int, float)

•Can also think of type signature applying to data, variables

E.g., float x[3][5]

•Type of x: float[][]

•Type of x[1]: float[]

•Type of x[1][2]: float

•

COS 301 — Programming Languages UMAINE CIS

Arrays in dynamically typed languages
• Most languages with dynamic typing: arrays elements can be of different types

• Implemented as array of pointers

• Many such languages: dynamic array sizing

• Many have built-in support for lists

• one-dimensional arrays

• not (quite) same as Lisp’s lists

• Some languages: recursive arrays — array can have itself as an element

• E.g., from Lisp:

(setf a ’(1 2 3))

(setf (cdr (last a)) a)

a ! #1=(1 2 3 . #1#) ! (1 2 3 1 2 3 1 2 3 …)

COS 301 — Programming Languages UMAINE CIS

Slices
• A slice is a substructure of an array

• Just a referencing mechanism

COS 301 — Programming Languages UMAINE CIS

Quick quiz!
1. What are the most common hardware-

supported numeric types?

2. What is the primary advantage of using the
internal machine representation of integers for
arithmetic?

3. What is a significant disadvantage?

4. Why are Booleans rarely represented as single
bits even though this is the most space-efficient
representation?

COS 301 — Programming Languages UMAINE CIS

Slice Examples
• Fortran 95

• E.g., Vector(3:6) →
four-element array

• Also allows
strides:
Vector(3:100:2) →
slice composed of
Vector(3),
Vector(5),…,
Vector(99)

COS 301 — Programming Languages UMAINE CIS

Slice Examples
• Ruby: slice method:

foo.slice(b,l) → slice starting at b, length
list.slice(2, 2) → third and fourth elements

• Perl: slices with ranges, specific subscripts:

@foo[3..7] @bar[1, 5, 20, 22]

COS 301 — Programming Languages UMAINE CIS

Python lists and slices
• Example from Python:

B = [33, 55, ‘hello’,’R2D2’]

• Elements accessed with subscripts: B[0] = 33

• Slice is a contiguous series of entries:

Ex: B[1:2] B[1:] B[:2] B[-2:]

• Strings are character arrays ⟹ slicing very useful
for strings

COS 301 — Programming Languages UMAINE CIS

Array implementation
• Requires more compile-time effort than scalars

• Need access function to map subscript
expression to address

• Function must support as many dimensions as
allowed by language

COS 301 — Programming Languages UMAINE CIS

Vectors
• Access function for single-dimensioned arrays:

• let:

• b = starting address of array

• i = index of desired element

• l = lower bound (0 for C-like languages)

• s = element size

• Then address A of desired element:

A = b + (i − l)s

COS 301 — Programming Languages UMAINE CIS

Vectors
• Operations performed at runtime

• For static arrays, can rearrange:

• (b - ls) can be done at compile time → A’

• Access function: A’ + is

• Can use indirect addressing modes of computer

A = b + is − ls = (b − ls) + is

COS 301 — Programming Languages UMAINE CIS

Array storage order
• Order of storing the columns and rows (2D array):

• Row-major order: each row stored
contiguously, then the next, etc.

• Column-major order: columns are stored
contiguously, then the next, etc.

• Most languages: row-major order

• Exceptions: Fortran, Matlab

COS 301 — Programming Languages UMAINE CIS

Array addresses
• Given:

int A[20][30]

an int is 4 bytes, and A[0][0]’s address is 10096,

• what is the address of A[10][12]?

COS 301 — Programming Languages UMAINE CIS

Array addresses
• Given:

int A[20][30]

an int is 4 bytes, and A[0][0]’s address is 10096,

• what is the address of A[10][12]?

COS 301 — Programming Languages UMAINE CIS

Array storage order
• For higher dimensions: store indices first → last

• E.g., 3D matrix A:

• store A[0], then A[0]…

• within A[1]: store A[1,0], then A[1,1], …

• within A[1,1]: store A[1,1,0], A[1,1,1],…

COS 301 — Programming Languages UMAINE CIS

Array storage order
• Why does this matter?

• Inefficient to access elements in wrong order

• E.g., initialize A[128,128] array of 4-byte ints, 4 KB
pages using nested loops:

for(i=0;i<128;i++)
for(j=0;j<128;j++)
 A[i,j] = 0;

• Row-major order: 8 rows/page, so 16 pages: A[0,0]
→ A[7,127] on page 1, A[8,0] → A[15,127] on page 2,
…

 ⇒ 16 page faults max

COS 301 — Programming Languages UMAINE CIS

Array storage order
• Column-major order: 8 columns/page, 16 pages:

A[0,0] , A[1,0], A[2,0], … , A[127,7]

on page 1,

A[0,8]→ A[127,15]

on page 2

• Accessing: A[0,0] … A[0,7] on first page, then A[0,8] …
A[0,15] on second, etc.

• 8 page faults max iteration of i ⇒ 8 * 128 = 1024 page faults
possible

• Essential to know for mixed-language programming

• Need to know when accessing 2D+ array via pointer arithmetic

COS 301 — Programming Languages UMAINE CIS

Array storage order
• Calculation of element addresses for 2D array A

• s: element size

• n: number of elements/row (= number of columns)

• m: number of elements/column (= number of rows)

• b: base address of A

• Then:

• Row-major order:

• addr(A[i][j]) = b + s(ni + j)

• Column-major order

• address(A[i][j]) = b + s(mj + i)

COS 301 — Programming Languages

• General format: addr(a[i,j] = b + ((i - lbr)n + (j - lbc))s

• For each additional dimension: one more addition and one more
multiplication

UMAINE CIS

Locating an Element in an n-dimensioned Array

*

COS 301 — Programming Languages UMAINE CIS

Single-dimensioned array Multi-dimensional array

Compile-time descriptors (Dope Vectors)

COS 301 — Programming Languages UMAINE CIS

Associative Arrays

to here, 11/4/14

COS 301 — Programming Languages UMAINE CIS

Associative arrays
• Unordered data elements

• Indexed by keys, not numeric indices

• Unlike arrays, keys have to be stored

• Called associative arrays, hashes, dictionaries

• Built-in types in Perl (hashes), Python
(dictionaries), PHP, Ruby, Lua (sort of), Lisp (hash
tables, association lists)

• Other languages: via classes — .NET’s collection
class, Smalltalk’s dictionaries

COS 301 — Programming Languages UMAINE CIS

Associative arrays: Perl
• Hashes — elements are stored in hash tables

• Names begin with %, initialized via an array:

	 	 %hi_temp = (“Monday”, 60, “Tuesday”, 55,…);

or

	 	 %hi_temp = (“Monday” => 60, “Tuesday” => 55,…);

• Elements accessed via key — elements are scalars, so:

	 	 print $hi_temp{“Tuesday”}; → 55

$hi_temp{“Wednesday”} = 50;

• Dynamic size

	 	 $hi_temp{“Tuesday”} = 100;

delete($hi_temp{“Tuesday});

%hi_temp = {};

COS 301 — Programming Languages UMAINE CIS

Associative arrays: PHP
• Both indexed numerically and associative — i.e.,

ordered collections

• No special naming conventions
	 $hi_temps = array("Mon"=>77,"Tue"=>79,“Wed”=>65, …);

$hi_temps["Wed"] = 83;

$hi_temps[2] = 83;

• Dynamic size — e.g., add via $hi_temps[] = 99

• Rich set of array functions

• Web form processing: query string is in an array
($_GET[]) as are post values ($_POST[])

COS 301 — Programming Languages UMAINE CIS

Associative arrays: Python
• Python: dictionaries

• No special naming conventions
 hi_temps = {‘Mon’: 77, ‘Tue’: 79, ‘Wed’: 65}
hi_temps[‘Wed’] = 83

• Dynamic size: can insert, append, shorten

• Only restriction on keys: immutable

COS 301 — Programming Languages UMAINE CIS

Implementing associative arrays
• Perl

• hash function → fast lookup

• optimized for fast reorganization

• 32-bit hash value — but use fewer bits for small arrays

• need more → add bit (doubling array size), move elements

• PHP

• hash function

• stores arrays as linked lists for traversal

• can have both keys and numeric indices ⟹ can have gaps in
numeric sequence

• Python: hash, linked lists as well

COS 301 — Programming Languages UMAINE CIS

Implementing associative arrays
• Lisp

• hash tables

• built-in data type

• optimized for size: small table uses list, at some point → true
hash table

• association lists (“a-lists”, “assocs”)

• format: ((key1 . val1) (key2 . val2)…)

(setq hi-temp ’((monday . 60) (tuesday . 55)…))

• access with assoc:

(assoc ’tuesday hi-temp) ! (TUESDAY . 55)
 (cdr (assoc ’tuesday hi-temp)) ! 55

• implemented as list

COS 301 — Programming Languages UMAINE CIS

Records

COS 301 — Programming Languages UMAINE CIS

Record type
• Record composite data type

• can be heterogeneous

• identified by name

• Often also called structs, defstructs, structures, etc.

• Record type related to relational/hierarchical databases

• Design issues:

• How to reference?

• How to implement (e.g., find element)?

COS 301 — Programming Languages UMAINE CIS

Record type
• First used: COBOL, then PL/I — not in

FORTRAN, ALGOL 60

• Common in Pascal-like (“record”) and C-like
languages (“struct”)

• Part of all major imperative and OO languages
except pre-1990 Fortran

• Similar to classes in OO languages: but no
methods

• Not in Java, since classes subsume functionality

COS 301 — Programming Languages UMAINE CIS

Records in COBOL
• Level numbers (rather than recursion) to show nested records:

01 EMP-REC.
 02 EMP-NAME.
 05 FIRST PIC X(20).
 05 MID PIC X(10).
 05 LAST PIC X(20).
 02 HOURLY-RATE PIC 99V99.

• Layouts have levels, from level 01 to level 49.

• Level 01 is a special case → reserved for the record level: its
name

• Levels from 02 to 49 are all "equal"

COS 301 — Programming Languages UMAINE CIS

Definition of Records: Ada
type Emp_Name is record

		 First: String (1..20);

		 Mid: String (1..10);

		 Last: String (1..20);

 end record;

	type Emp_Rec is record

		 name: Emp_Name;

		 Hourly_Rate: Float;

 end record;

COS 301 — Programming Languages UMAINE CIS

 C example
struct employeeType {

 int id;

 char name[25];

 int age;

 float salary;

 char dept;

};

struct employeeType employee;

...

employee.age = 45;

• Fields usually allocated in contiguous block of memory

• But actual memory layout is compiler dependent

• Minimum memory allocation not guaranteed

COS 301 — Programming Languages UMAINE CIS

References to record fields
• COBOL

field_name OF record_name_1 OF ... OF record_name_n

e.g., FIRST OF EMP-NAME OF EMP-RECORD

• Other languages: usually “dot notation”

recname1.recname2. … .fieldname

emp_record.emp_name.first;

• Fully-qualified references: include all record names

• COBOL allowed elliptical reference: as long as reference is
unambiguous:

• E.g.: SALARY OF EMPLOYEE OF DEPARTMENT

• could refer to as: SALARY, SALARY OF EMPLOYEE, or fully-qualified

COS 301 — Programming Languages UMAINE CIS

Operations on records
• Assignment : most languages → memory copy

• Usually types have to be identical

• Sometimes can have same structure, even if
different names — Ada, e.g.

• COBOL — MOVE CORRESPONDING

• Moves according to name

• Structure doesn’t have to be same

COS 301 — Programming Languages UMAINE CIS

Operations on records
• Comparison of records:

• Ada: equality/inequality

• C, etc.:

• usually not

• have to compare field-by-field or…

• …use memcmp(), etc.

COS 301 — Programming Languages UMAINE CIS

Implementation of Record
• Implemented as contiguous

memory

• Descriptors →

• Compiled languages: need
descriptors at compile time only

• Interpreted: need runtime
descriptors

COS 301 — Programming Languages UMAINE CIS

Unions

COS 301 — Programming Languages UMAINE CIS

Unions
• Union: data type that can store different types at different times/situations

• E.g.: tree nodes

• if internal → left/right pointers

• if leaf → data

• E.g.: vehicle representation

• if truck, maybe have size of bed, etc.

• if car, maybe have seating capacity, etc.

• Often in records — subsumed (somewhat) by objects & inheritance

• Design issues

• Should type checking be required?

• Should unions be (only) embedded in records?

COS 301 — Programming Languages UMAINE CIS

Unions
• Memory shared between members ⇒ not particularly safe

• C: free unions

• type can be changed on the fly

• lousy type-checking — even for C:
int main() {

 int c;

 union {char a; unsigned char b;} u;

 u.b = 128;

 c = u.b;

 printf("u.b=%d, u.a=%d, c=%d\n", u.b, u.a, c);
}

• called: u.b=128, u.a=-128, c=128

COS 301 — Programming Languages UMAINE CIS

Discriminated vs. Free Unions
• Free unions: no type checking—FORTRAN, C, C++

• Discriminated unions: Pascal, Ada

• At time of declaration, have to set discriminant

• Type of union is then static → type checking

COS 301 — Programming Languages UMAINE CIS

Ada Unions
type Shape is (Circle, Triangle, Rectangle);
type Colors is (Red, Green, Blue);
type Figure (Form: Shape) is record

Filled: Boolean;
Color: Colors;
case Form is

when Circle => Diameter: Float;
when Triangle =>

Leftside, Rightside: Integer;
Angle: Float;

when Rectangle => Side1, Side2: Integer;
end case;

end record;

COS 301 — Programming Languages UMAINE CIS

Ada Union Type
A discriminated union of three shape variables

COS 301 — Programming Languages UMAINE CIS

Unions
• Free unions are unsafe — major hole in static typing

• Designed when memory was very expensive

• Little or no reason to use these structures today

• Physical memory: much cheaper today

• Virtual memory → memory space many
times the size of actual physical memory

• Java and C# do not support unions

• Ada’s discriminated unions are safe — but why use
them?

• What to use instead?

COS 301 — Programming Languages UMAINE CIS

Pointers and References

COS 301 — Programming Languages UMAINE CIS

Pointer & reference types
Pointer holds address or special value (nil or null)

Null → invalid address

Usually address 0 ⟹ invalid on most modern hardware

Two uses:

Simulate indirect addressing

Provide access to anonymous variables (e.g., from heap)

References:

Like pointers — contain memory addresses

But operations on them restricted — no pointer arithmetic

COS 301 — Programming Languages UMAINE CIS

Design issues
• Scope & lifetime?

• Lifetime of heap-dynamic variable pointed to?

• Restricted as to what they point to or not?

• For dynamic storage management, indirection, or
both?

• Pointers, reference types, or both?

COS 301 — Programming Languages UMAINE CIS

Pointer operations
• Assignment — pointer’s value ← address

	 int data; int* ptr1, ptr2;
 ptr1 = &data;
 ptr2 = malloc(sizeof(int));

• Dereferencing: finding value at
location pointed to

• explicit or implicit (depends on
language)

• C/C++: explicit via *:

val = *ptr1;

COS 301 — Programming Languages UMAINE CIS

Pointer operations
• Some languages (C, C++): pointer arithmetic

	 	 ptr1 = ptr2++;

• Incrementing a pointer: increment depends on
type!
int a[3];
int* p = &a; //p ! &a[0]
p++ //p ! &a[0] + 4 = a[1]

COS 301 — Programming Languages UMAINE CIS

Problems with pointers
• Pointers can ⇒ aliases

• Readability

• Non-local effects

• Dangling pointers

• Pointer p points to heap-dynamic variable

• Free the variable, but don’t zero p

• What does it point to?

• Lost heap-dynamic variables (“garbage”)

• Pointer p points to heap-dynamic variable

• Pointer p set to zero or another address

• Lost variable ⇒ memory leak

COS 301 — Programming Languages UMAINE CIS

Pointers & arrays: C
• Pass an array variable to function ⟹ behaves

like a pointer
float sum(float a[], int n) {

int i;

float s = 0.0;

for (i=0; i<n; i++)

s += a[i];

return s;

}

float sum(float *a, int n) {

int i;

float s = 0.0;

for (i=0; i<n; i++)

s += *a++;

return s;

}

COS 301 — Programming Languages

• Common misconception: pointers and arrays are equivalent in C:
int x[3] = {1, 2, 3};
int *p = &x[0]; //p points to first element of x
if (p[1] == x[1])

return 1;
else

return 0;

• Returns 1

• But:

• x & p have different storage — maybe different scopes, lifetimes

• p doesn’t always have to point to x’s storage

• p can be indexed, but x cannot be assigned a new address
UMAINE CIS

Pointers & arrays: C

p x

COS 301 — Programming Languages UMAINE CIS

C pointer arithmetic
float stuff[100];
float *p;
p = stuff;

*(p+5) ≣ stuff[5]
*(p+i) ≣ stuff[i]

COS 301 — Programming Languages UMAINE CIS

C pointer arithmetic
String copy:

void strcopy (char *s, char *t) {
// Kernighan & Ritchie classic:
while (*s++ = *t++) ;

}

Push, pop (where p → next element — initially base of array):

*p++ = value; //push
val = *--p; //pop

COS 301 — Programming Languages UMAINE CIS

Void pointers
• C/C++: pointers of type void* allowed

• These are generic pointers — can be used to get
around type system

• But cannot be explicitly dereferenced

void* p;
float a;
float num = 123.456;
p = #
a = *(float*)p;

• Must cast to a float* type first, then dereference

COS 301 — Programming Languages UMAINE CIS

Pointer representation
• Prior to ANSI C — pointers and integers were

often treated as being the same

• Intel x86 — pointers somewhat more complex:
e.g., segment and offset

• Since ANSI C — programmers don’t worry too
much about the implementation

COS 301 — Programming Languages UMAINE CIS

References
• References: similar to pointers … but whereas:

int a = 1;
int* p;
printf("size of int = %i\n”,(int)sizeof(int));
p = &a;
printf("p=%lu, *p=%i\n", (unsigned long)p, *p);

⇒ call it: size of int = 4
p=140732783793308, *p=1

• …a reference can’t:

• be printed

• participate in “reference arithmetic”

• be dereferenced manually (usually)

COS 301 — Programming Languages UMAINE CIS

References
• C++ includes reference — special type of pointer

• Primarily used for formal parameters

• Constant pointer, always implicitly dereferenced

• Used to pass parameters by reference (rather than value)

void square(int x, int& result) {

result = x * x;
}

int myint = 12;
int z;

square(myint, &z);
⇒ z == 144 afterward

COS 301 — Programming Languages UMAINE CIS

References
• Java — extends C++ references ⟹ replace

pointers completely

• References aren’t treated as addresses — they
just refer to objects

• C# — both Java-like references and C++ -like
pointers

COS 301 — Programming Languages UMAINE CIS

Reference implementation
• Implementation depends on compiler/interpreter

• Not usually part of specification of language

• E.g., early Java VM:

• Pointers to pointers ← handles

• Can store constant pointers in table, always point to
same pointer

• That pointer can change as GC moves object around

• Disadvantage: speed (2-level indirection)

• Modern Java VMs: addresses (depends, though)

COS 301 — Programming Languages UMAINE CIS

Miscellaneous Types

COS 301 — Programming Languages UMAINE CIS

Symbols
• Primitive type in Lisp, Scheme

• Access to symbol table itself

• No need to code a symbol as an int or string →
use primitive data type

COS 301 — Programming Languages UMAINE CIS

Symbols
cl-user> ’a

A
cl-user> (push ’The (quick brown fox))
(THE QUICK BROWN FOX)
cl-user> (set ’a 23)
23

cl-user> a
23
cl-user> (set ‘a ’b)
B

cl-user> a
B
cl-user> (set a 4)
4
cl-user> b

4

CL-USER> (setf exp '(+ (* b b) 10))
(+ (* B B) 10)
CL-USER> (eval exp)
26

COS 301 — Programming Languages UMAINE CIS

Lists
• Ordered datatypes

• Imply sequential access (but cf. PHP, Python)

• Most: heterogeneous elements

• Nested lists

• Usually implicit linked-lists

COS 301 — Programming Languages UMAINE CIS

Lists: Lisp
• Basic data type in Lisp language family

• Linked list — not indexed

• Cons cells: two pointers (references):

• car: points to first element

• cdr: points to the rest of the list

• Basic element of list (also its own type)

• car, cdr can point to any Lisp object:

• ⇒ heterogenous lists

• cdr = null pointer (nil) ⇒ end of list

• car → cons cell: embedded list

• either can point to list itself ⇒ circular lists

COS 301 — Programming Languages UMAINE CIS

Type Checking

COS 301 — Programming Languages UMAINE CIS

Type checking
• Ensures that operands, operator are compatible

• Operators/operands: also subprograms, assignment

• Compatible types:

• either explicitly allowed for context

• can be implicitly converted (coercion)

• following language rules

• & by code inserted by compiler

• Mismatched types → type error

COS 301 — Programming Languages UMAINE CIS

Type conversion
• Can’t just treat same bit string differently!

• Ex., 2 stored in variable “foo” in C

• char foo → 0011 0010 — as ASCII

• char foo → 0000 0010 — as integer

• short foo → 0000 0000 0000 0010

• int foo → 0000 0000 0000 0000 0000 0000 0000 0010

• float foo → 0100 0000 0000 0000 0000 0000 0000 0000

sign exponent +127 fractional part
(without leading 1)

COS 301 — Programming Languages UMAINE CIS

Type conversions
• Narrowing conversion:

• result has fewer bits

• ⟹ potential lost info

• E.g., double → int

• Widening conversion:

• E.g., int → double

• 32-bit int → 64 bit int — no loss of precision

• 32-bit int → 32- or 64-bit float — but may lose
precision

COS 301 — Programming Languages UMAINE CIS

Type casting & coercion
• Type cast: explicit type conversion

float z;
int i = 42;
z = (float) i;

• Coercion: implicit type conversion

• Rules are language-dependent — can be
complex, source of error

• With signed/unsigned types (e.g., C) — even
more complex

COS 301 — Programming Languages UMAINE CIS

C coercion rules
IF Then Convert
either operand is long double the other to long double
either operand is double the other to double
either operand is float the other to float
either operand is unisgned long int the other to unsigned long int
the operands are long int and
unsigned int and long int can
represent unsigned int the unsigned int to long int
the operands are long int and
unsigned int and long int cannot
represent unsigned int both operands to unsigned long int
one operand is long int the other to long int
one operand is unsigned int the other to unsigned int

From K&R; also “Unexpected results may occur when an unsigned
expression is compared to a signed expression of same size.”

COS 301 — Programming Languages UMAINE CIS

Type checking
• Static type bindings → almost all type checking

can be static (at compile time)

• Dynamic type binding → runtime type checking

• Strongly-typed language:

• if type errors are almost always detected

• advantage: type errors caught that otherwise
might ⇒ difficult-to-detect runtime errors

COS 301 — Programming Languages UMAINE CIS

Strong/weak typing
• Weakly-typed:

• Fortran 95 — equivalence statements map
memory to memory, e.g.

• C/C++: parameter type checking can be
avoided, void pointers, unions not type checked,
etc.

• Scripting languages — free use of coercions ⟹
type errors

• Lisp — though runtime system catches most type
errors from coercion, casting, programming errors

COS 301 — Programming Languages UMAINE CIS

Strong/weak typing
• Strongly-typed:

• Ada — unless generic function
Unchecked_Conversion used

• Java, C# — but casts, coercions can still
introduce errors

COS 301 — Programming Languages UMAINE CIS

Strong typing
• Coercion rules affect strength of typing

• Java has half the assignment coercions of C++

• no narrowing conversions

• can still have loss of precision

• strength of typing still less than (e.g.) Ada

COS 301 — Programming Languages UMAINE CIS

Type Equivalence

COS 301 — Programming Languages UMAINE CIS

Type equivalence
• When are types considered equivalent?

• Depends on purpose

• Depends on language

• Pascal report [Jensen & Wirth] on assignment
statements:

“The variable […] and the expression must be of
identical type.”

• Problem: didn’t say what “identical” meant

• E.g.: can integer be assigned to an enum var?

• Standard (ANSI/ISO) fixed this

COS 301 — Programming Languages UMAINE CIS

Type equivalence: C
struct complex {

float re, im;
};
struct polar {

float x,y;
};
struct {

float re, im;
} a, b;
struct complex c, d;
struct polar e;
int f[5], g[5]

Which are equivalent?

COS 301 — Programming Languages UMAINE CIS

Type equivalence
• Two general types of equivalence:

• Name equivalence

• Structural equivalence

COS 301 — Programming Languages UMAINE CIS

Name equivalence
• Two variables are name equivalent if:

• in the same declaration or

• in declarations using the same type name

• Easy to implement

• Restrictive, though:

• subranges of integers aren’t equivalent to
integer types

• formal parameters have to be same type as
actual parameters (arguments)

COS 301 — Programming Languages UMAINE CIS

Structural equivalence
• Two variables are structurally equivalent if both

types have identical structures

• Flexible

• Harder to implement

COS 301 — Programming Languages UMAINE CIS

Type equivalence
• Some languages are very strict: Ada uses only

name equivalence, e.g.

• C — uses both

• structural equivalence for all types except
unions and structs where member names are
significant

• name equivalence for unions & structs

COS 301 — Programming Languages UMAINE CIS

Type equivalence: C
struct complex {

float re, im;

};

struct polar {

float x,y;

};

struct {

float re, im;

} a, b;

struct complex c, d;

struct polar e;

int f[5], g[5]

a, b are (name) equivalent
c,d are name equivalent

e is not equivalent to c or d —
member names
differ
f, g are structurally equivalent

COS 301 — Programming Languages UMAINE CIS

Pointers in C
• All pointers are structurally-equivalent, but

• object pointed to determines type equivalence

• e.g., int * foo; float * baz — not equivalent

• void* pointers…?

• BTW: Array declarations: int f[5], g[10]; → not
equiv.

COS 301 — Programming Languages UMAINE CIS

Ada & Java
• Ada:

• name equivalence for all types

• forbids most anonymous types

• Java

• name equivalence for classes

• method signatures must match for
implementation of interfaces

COS 301 — Programming Languages UMAINE CIS

Functions as Types

COS 301 — Programming Languages UMAINE CIS

Functions as types
• Some languages: can’t assign a function to a

variable → not “first-class objects”

• Why would we want to, though?

• E.g., graphing routine: pass in function to be
graphed

• E.g., root solver for f(x)

• E.g., sorting routine, where pass in f(x) to
compare items (e.g., generic routine)

• “Callbacks” in many system APIs

COS 301 — Programming Languages UMAINE CIS

Functions as parameters
• So major need: pass function as a parameter

• Functional language generally have the best
support (more later)

• Fortran: function pointers, but no type checking

• Pascal-like languages — function prototype in
parameters:

 Function Newton (A,B : real; function f(x: real): real): real;

COS 301 — Programming Languages UMAINE CIS

Function pointers in C
• ANSI C (K&R, 2nd ed.):

• Functions are not variables

• Can have pointers to them

• Can call via pointer

• Can assign to functions

• Can return functions

COS 301 — Programming Languages UMAINE CIS

Function pointers in C
• Specification:

• uses type signatures

• e.g.:
int (*foo)(float, int)

int cmp_int (int a, b);

int* sort(int array[], int (*cmp) (int, int)
 {… cmp(array[i], array[j]);…}

int temp[20];
…
sort(temp, &cmp_int);

• Can be quite messy:

int *(*foo) (*int);

COS 301 — Programming Languages UMAINE CIS

Java interfaces
• Can do some of same things with interface

• Abstract type specifying methods class must
implement

• Contains method signatures only — no
implementations

• Can specify classes that can be passed by specifying
the interface
public interface RootSolvable {

double valueAt(double x);
}
public double Newton(double a, double b, RootSolvable f);

COS 301 — Programming Languages UMAINE CIS

Functions as first-class objects
• Functions considered first-class objects if can be constructed

by a function at runtime and returned

• Characteristic of functional languages — not confined to them
in modern languages

(defun fun-create (op)

 #'(lambda (a b)

 (funcall op a b)))

>> (funcall a 2 3)

5

• Even better in Scheme

• Others can do this, too, though: e.g., JavaScript, Python

COS 301 — Programming Languages

• Python example:

def make_counter(start=0):
 def counter():
 nonlocal start
 start += 1
 return start
 return counter ← return function
f = make_counter()
f ! <function make_counter.<locals>.counter at 0x1022dcd90>
f() ! 1
f() ! 2
…

UMAINE CIS

Functions as first-class objects

COS 301 — Programming Languages UMAINE CIS

Heap Management

Start, 11/10/14

COS 301 — Programming Languages UMAINE CIS

Memory & heap
• With respect to memory management and other

things:

C makes it easy to shoot yourself in the foot;
C++ makes it harder, but when you do it blows
your whole leg off.

—Bjarne Stroustrop (creator of C++)

COS 301 — Programming Languages UMAINE CIS

Heap
• Major areas of memory: text, data, stack, heap

• Text (program) area

• Data area

• Static, initialized variables

• Dynamic area (BSS)

• Stack area

• Heap: dynamically-allocated objects

COS 301 — Programming Languages UMAINE CIS

Run-time Memory

Static data
BSS

Heap

Stack

COS 301 — Programming Languages UMAINE CIS

Heap management
• Allocation of data: malloc(), new Obj

• Deallocation: free()

• Managing heap:

• How to find memory for malloc()?

• Avoiding dangling pointers

• Avoiding memory leaks — user or language?

• If language: how to collect the garbage?

COS 301 — Programming Languages UMAINE CIS

Garbage example
class node {
 int value;
 node next;
}
node p, q;
p = new node();
q = new node();
q = p;
delete p;

COS 301 — Programming Languages UMAINE CIS

A solution to dangling pointers: Tombstones

• Allocate a piece of memory from heap → get back a
tombstone

• Tombstone is a memory cell that itself points to the
allocated heap-dynamic variable

• Pointer access is only through tombstones

• When deallocate heap-dynamic variable → tombstone
remains, but has null pointer

• Prevents dangling pointers, but…

• Need extra space for tombstones

• Every reference to heap-dynamic variable requires one
more indirect memory access

COS 301 — Programming Languages UMAINE CIS

A solution to dangling pointers: Tombstones

COS 301 — Programming Languages UMAINE CIS

Another solution: Locks and keys

• Heap-dynamic variables = variable + a cell for an integer
lock value

• Pointers: have both the address and a key

• When allocating — create lock, also store in key cell

• Copying pointer: copy key as well

• When accessing: compare lock and key — don’t match ⟹
error

• Deallocate heap-dynamic variable: put invalid lock in lock
cell

• Future: can’t access the data, since lock and key don’t
match

COS 301 — Programming Languages UMAINE CIS

Another solution: Locks and keys

COS 301 — Programming Languages UMAINE CIS

Garbage collection
• Could be responsibility of programmer

• E.g., C, C++ (via malloc()), Objective C (on iOS)

• Pros:

• Gives programmer complete control of heap

• Fast: don’t have to search for garbage

• Cons:

• Makes programming more complex

• Bugs ⟹ memory leaks — difficult to detect

COS 301 — Programming Languages UMAINE CIS

Garbage collection
• Automatic garbage collection algorithms

• E.g., Lisp, Java, Python…

• Pros:

• No memory leaks

• Simpler for programmer

• Cons:

• Complex

• Costly with respect to time

COS 301 — Programming Languages UMAINE CIS

GC algorithms
• First designed, used in 1960s: Lisp

• 1990s: OOP, interpreted scripting languages ⟹
renewed interest

• Recall garbage = areas of heap no longer in use

• No longer in use = nothing in program points to it

• Functions of GC:

• Reclaim garbage → free space list

• If non-uniform allocation: compact free space as
needed to reduce fragmentation

COS 301 — Programming Languages UMAINE CIS

GC issues
• How long does it take?

• Time program is “paused”

• Full vs incremental

• How much memory does GC itself take?

• Some schemes may halve the size of available
heap

COS 301 — Programming Languages UMAINE CIS

GC issues
• How does it interact with VM?

• Does GC cause extra page faults?

• Does GC cause cache misses?

• Can GC be used to improve locality of reference
by reorganizing data?

• How much runtime bookkeeping?

• Does this impact speed?

• Does this impact available memory?

COS 301 — Programming Languages UMAINE CIS

GC algorithms
• Reference counting

• Mark-and-sweep

• Copy collection

COS 301 — Programming Languages UMAINE CIS

GC: Reference counting
• Occurs when heap block is allocated/deallocated

• Heap is a chain of nodes: free list

• Each node has extra field — reference count

• Nodes taken from chain, connected to each other via
pointers

• When allocated via new(), object allocated from heap,
ref count = 1

• When deallocated via delete(), ref count
decremented

• Reference count = 0 ⟹ return object to heap

COS 301 — Programming Languages UMAINE CIS

GC: Reference counting
• Assignment of pointer variable, say q = p:

• object pointed to by p → ref count++

• if q was pointing to object → ref count--

• if uniform size nodes in linked chain, do this for
all linked nodes, too

COS 301 — Programming Languages UMAINE CIS

GC: Reference counting
• Come up with an example in which reference

counting would not work — i.e., in which
garbage would remain.

COS 301 — Programming Languages UMAINE CIS

GC: Reference counting
• Pros:

• Reclaims objects as soon as possible

• No pauses for GC to inspect heap —
intrinsically incremental

• Cons:

• Requires space for ref counter

• Increased cost of assignment — bookkeeping

• Difficulty with circular references

COS 301 — Programming Languages UMAINE CIS

GC: Mark-and-sweep
• Allocate cells from heap as needed

• No explicit deallocation — just change pointer at will

• When heap is full:

• Find all non-garbage by following (e.g.) all
pointers/references in program, marking them as
good

• Return garbage to heap’s free list

• Requires two passes over heap

• Also called tracing collector

COS 301 — Programming Languages UMAINE CIS

Marking
• Start at every pointer/reference, say r, in some

known live/root set of pointers:

COS 301 — Programming Languages UMAINE CIS

Sweep
• For every node in the heap:

• If not marked as in use, then return to free list

COS 301 — Programming Languages UMAINE CIS

Allocation in mark-and-sweep
if (free_list == null)
 mark_sweep();
if (free_list != null) {
 q = free_list;
 free_list = free_list.next;
}
else abort('Heap full')

COS 301 — Programming Languages UMAINE CIS

Where to start marking?
• Root set: set of references that are active

• Pointers in global memory

• Pointers on the stack

• May be difficult — e.g., Java has six classes of reachability (see,
e.g., here):

• strongly reachable

• weakly reachable

• softly reachable

• finalizable

• phantom reachable

• unreachable

COS 301 — Programming Languages UMAINE CIS

Problems
• GC can take a long time

• Page faults when visiting old (inactive) objects ⟹
more delay

• If non-uniform allocations ⟹ fragmentation of
heap

• Requires additional space for the mark (not a
problem in tagged architectures)

• Have to maintain linked list of free blocks

COS 301 — Programming Languages UMAINE CIS

GC: Copy collection
• Trades space for time, compared to mark-and-sweep

• Partition heap into two halves — old space, new space

• Allocate from old space till full

• Then, start from the root set and copy all objects to the
new space

• New space now becomes the old space

• No need for reference counts, mark bits

• No need for a free list — just a pointer to end of the
allocated area

COS 301 — Programming Languages UMAINE CIS

Copy collection
• Advantages:

• Faster than mark-and-sweep

• Heap is always one big block → allocation is cheap, easy

• Improves locality of reference → objects allocated close
to each other, no fragmentation

• Disadvantages:

• Can only use 1/2 heap space (i.e., more space needed)

• If most objects are short-lived → good — most won’t be
copied — but if lots of long-lived objects, spend
unnecessary time always copying them back and forth

COS 301 — Programming Languages UMAINE CIS

Generational GC
• Empirical studies: most objects in OOP tend to

“die young”

• If an object survives one GC, good chance it will
become long-lived or permanent

• Most sources: 90% of GC-collected objects
created since last GC

• Pure copying collector: continues to copy the
old objects

• Generational (ephemeral) GCs: make use of this
to divide heap into generations for different objects

COS 301 — Programming Languages UMAINE CIS

Generational GC
• Heap divided into generations

• Objects start in a generation for new objects

• When object meets some promotion criteria → promote to longer-
lived generation

• Different algorithms for different generations

• GC:

• When heap manager needs more space → minor collection —
only youngest generation considered

• If this doesn’t work → older generations

• Only fail if all generations have been collected

• Some objects may be unreachable ⟹ need full GC occasionally
(mark-and-sweep or copying)

COS 301 — Programming Languages UMAINE CIS

Generational GC: Java
All figures from Oracle: https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

COS 301 — Programming Languages UMAINE CIS

Generational GC: Java

COS 301 — Programming Languages UMAINE CIS

Generational GC: Java

COS 301 — Programming Languages UMAINE CIS

Generational GC: Java

COS 301 — Programming Languages UMAINE CIS

Generational GC: Java

COS 301 — Programming Languages UMAINE CIS

Generational GC: Java

COS 301 — Programming Languages UMAINE CIS

Generational GC: Java

COS 301 — Programming Languages UMAINE CIS

Generational GC: Java

COS 301 — Programming Languages UMAINE CIS

Problem: Intergenerational references
• Generational GC: only visits objects in youngest

generation

• But what if object in older generation references
object in younger generation that isn’t otherwise
reachable?

• Solution: explicitly track intergenerational
references

• Easy to do when an object is promoted

• Harder when change a pointer reference after
promotion

COS 301 — Programming Languages UMAINE CIS

Tracking intergenerational references
• Naïve approach: check each pointer assignment for

intergenerational reference

• Most common algorithm: card table or card marking

• Card map: one bit per block of memory (where
block usually < VM page)

• Bit set ⟹ block is dirty (written to)

• When we do a GC, have to consider not just root
set, but also any dirty blocks — treat as part of root
set

• If no reference to a younger generation, clear bit

