
PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Syntax & Semantics

COS 301
Programming Languages

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Syntax & semantics
Syntax:

Defines correctly-formed components of language
Structure of expressions, statements

Semantics: meaning of components
Together: define the programming language

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Simplicity:

A language that is simple to parse for the compiler is also
simple to parse for the human programmer.

N. Wirth

Simple to parse?

sub b{$n=99-@_-$_||No;"$n
bottle"."s"x!!--$n." of beer"};$w="
on the wall"; die map{b."$w,\n".b.",
\nTake one down, pass it around,
\n”.b(0)."$w.\n\n"}0..98;

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Describing syntax
Not sufficient for PL to have syntax
Have to be able to describe it to

programmers
implementers (e.g., compiler designers)
automated compiler generators, verification tools

Specification:
Humans: some ambiguity okay
Automated tools: must be unambiguous
For programmers: unambiguous >> ambiguous!

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Terminology
• Alphabet:

• a set of characters
• small (e.g., {0,1}, {A-Z}) to large (e.g., Kanji)

• Sentence:
• string of characters drawn from alphabet
• conforms to syntax rules of language

• Language: set of sentences
• Lexeme (token):

• smallest syntactic unit of language
• e.g., English: words
• e.g., PL: 1.0, *, sum, begin, …
• Token type: category of lexeme (e.g., identifier)

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Tokens & lexemes
“Lexeme” often use interchangeably with “token”
Example:

index = 2 * count + x

Lexeme Token type Value
index identifier “index”

= assignment
2 int literal 2

count identifier “count”
+ addition
17 int literal 17

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Lexical rules
Lexical rules: define set of legal lexemes
Lexical, syntactical rules specified separately

Different types of grammars
Recognized differently

different kinds of automata
different parts of compiler/interpreter

Lexical rules: regular expressions
⇒ their grammar = regular grammars
Parsed by finite automata (finite state machines)

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Formal Languages

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Formal languages
Defined by recognizers and generators
Recognizers:

reads input strings over alphabet of language
decides: is string sentence in the language?
Ex.: syntax analyzer of compiler

Generators:
Generates sentences in the language
Determine if string ∈ of {sentences}: compare to
generator’s structure
Ex: a grammar

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Recognizers & generators
Recognizers and generators: closely related
Given grammar (generator), we can ⇒ recognizer
(parser)
Oldest system to do this:

yacc (Yet Another Compiler Compiler)
still widespread use
GNU bison

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Chomsky Hierarchy
Formal language hierarchy – Chomsky, late 50s
Four levels:

Regular languages
Context-free languages
Context-sensitive languages
Recursively-enumerable languages (unrestricted)

Only regular and context-free grammars in PL

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Context-free grammars
Regular grammars: not powerful enough to express
PLs
Context-free grammars (CFGs):

sufficient
relatively easy to parse

Need way to specify context-free grammars
Most common way: Backus-Naur Form

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

BNF
John Backus [1959]; extended by Peter Naur
Created to describe Algol 60
Any context-free grammar can be written in BNF
Apparently similar to 2000 year-old notation for
describing Sanskrit!

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

BNF
BNF is a metalanguage
Symbols represent syntactic structures: <assign>,
<ident>, etc.
Non-terminals & terminal symbols
Productions:

Rewrite rules: show how one pattern ⇒ another
Context-free languages: production shows how
non-terminal ⇒ sequence of non-terminals,
terminals

LHS/antecedent, RHS/consequent
<assign> → <var> = <expression>

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

BNF formalism
A grammar for a PL is a set: {P,T,N,S}

T = set of terminal symbols
N = set of non-terminal symbols (T ∩ N ={})

S = start symbol (S ∈ N)

P = set of productions:
A →ω

where A ∈ N and ω ∈ (N ∪ T)*

set of all strings of terminals and non-terminals

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

BNF
Sentential form: string of symbols
 Productions:

S → S’
S, S’ are sentential forms

Nonterminal symbols N:
grammatical categories
E.g., identifier, expression, program

Designated start symbol S: often <program>
Terminal symbols T: lexemes/tokens

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

BNF symbols
Nonterminals: written in angle brackets or in special
font: <expression>
Can have ≥ 1 rule/nonterminal — write as one rule
Alternatives: specified by | - e.g.,

or

<stmt> → <single_stmt> |
 begin <stmt_list> end

<stmt> ::= <single_stmt> |
 begin <stmt_list> end

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Recursion in BNF
Recursion: lets finite grammar ⇒ infinite language
Direct recursion:

LHS appears on the RHS
E.g., specify a list:

Indirect recursion:

<ident_list> ::= ident |
 ident, <ident_list>

<expr> ::= <expr> + <term> | ...
<term> ::= <factor> | ...
<factor> ::= (<expr>) | ...

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Derivations
Let s be a sentence produced by a grammar G
A language L defined by grammar G:

L = {s | G produces s from S}
Recall: Sentence composed only of terminal symbols
Produced in 0 or more steps from G’s start symbol S

Derivation of sentence s = list of rules

i.e.,

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

An Example Grammar

<program> ! <stmts>
 <stmts> ! <stmt> | <stmt> ; <stmts>
 <stmt> ! <var> = <expr>
 <var> ! a | b | c | d
 <expr> ! <term> + <term> | <term> - <term>
 <term> ! <var> | const

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

An Example Derivation

<program> ⟹ <stmts>

⟹ <stmt>

⟹ <var> = <expr>

⟹ a = <expr>

⟹ a = <term> + <term>

⟹ a = <var> + <term>

⟹ a = b + <term>

⟹ a = b + const

<program> ! <stmts>

 <stmts> ! <stmt> | <stmt> ; <stmts>

 <stmt> ! <var> = <expr>

 <var> ! a | b | c | d

 <expr> ! <term> + <term> | <term> - <term>

 <term> ! <var> | const

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Derivations
Every string in a derivation: sentential form
Derivations can be leftmost or rightmost
Leftmost derivation: leftmost nonterminal in each
sentential form is expanded first

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Example
Given G = { T, N, P, S }

T = { a, b, c }
N = { A, B, C, W }

S = { W }
Is string cbab ∈ L(G)? I.e., ∃ derivation D from start S to cbab?

P =
1. W !AB or <W> ::= <A>

2. A ! Ca <A> ::= <C>a
3. B ! Ba ::= a
4. B ! Cb ::= <C>b

5. B ! b ::= b
6. C ! cb <C> ::= cb
7. C ! b <C> ::= b

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Leftmost derivation
Begin with the start symbol W and apply production
rules expanding the leftmost non-terminal.

W ⟹ AB Rule 1. W !AB

AB ⟹ CaB Rule 2. A ! Ca

CaB ⟹ cbaB Rule 6. C ! cb

cbaB ⟹ cbab Rule 5. B ! b

 ∴cbab ∈ L(G)

1.W !AB
2.A ! Ca
3.B ! Ba

4.B ! Cb
5.B ! b
6.C ! cb

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Rightmost derivation
Begin with the start symbol W and apply production
rules expanding the rightmost non-terminal.

W ! AB Rule 1. W !AB
AB! Ab Rule 5. B ! b
Ab ! Cab Rule 2. A ! Ca
Cab!cbab Rule 6. C ! cb

∴cbab ∈ L(G)
Rightmost derivation: 1→ 5→ 2→ 6

1.W !AB

2.A ! Ca
3.B ! Ba
4.B ! Cb
5.B ! b

6.C ! cb

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Shorter version of G
Using selection (options) in the RHS

G = { T, N, P, S }
T = { a, b, c }
N = { A, B, C, W }
S = { W }

1. W !AB or <W> ::= <A>
2. A ! Ca <A> ::= <C>a
3. B ! Ba | Cb | b ::= a | <C>b | b

4. C ! cb | b <C> ::= cb | b

1.W !AB
2.A ! Ca
3.B ! Ba
4.B ! Cb

5.B ! b
6.C ! cb

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Your Turn!
G = {T,N,P,S}

T = { a, b, c }
N = { A, B, C, W }
S = { W }
P =

1. W !AB <W> ::= <A>
2. A ! Ca <A> ::= <C>a
3. B ! Ba | Cb | b ::= a | <C>b | b
4. C ! cb | b <C> ::= cb | b

1. Is cbbacbb in L?
2. Is baba in L?
3. Show a leftmost derivation for cbabb
4. Show a rightmost derivation for cbabb

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Derivations as parse trees
Parse tree: graphical representation of a derivation
Root: the start symbol
Each node + children = rule application

LHS = node
RHS = children

Leaves: terminal symbols in derived sentence

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Parse tree
a = b + 3

<program>

<stmts>

<stmt>

<var> = <expr>

<term>

<var>

a

b

+

<term>

<const>

3

<program> ::= <stmts>
<stmts> ::= <stmt> <stmts>
 | nil
<stmt> ::= <var> = <expr>
<var> ::= a | b | …
<const> ::= number
<expr> ::= <term> + <term> <stmts>

nil

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Example grammar: Assignment

 <assign> ::= <id> = <expr>
 <id> ::= A | B | C
 <expr> ::= <id> + <expr> |

 <id> * <expr> |
 (<expr>) |
 <id>

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Example derivation
A = B * (A + C)

<assign> ⟹ <id> = <expr>

 ⟹ A = <expr>

 ⟹ A = <id> * <expr>

 ⟹ A = B * <expr>

 ⟹ A = B * (<expr>)

 ⟹ A = B * (<id> + <expr>)

 ⟹ A = B * (A + <expr>)

 ⟹ A = B * (A + <id>)

 ⟹ A = B * (A + C)

 <assign> ::= <id> = <expr>

 <id> ::= A | B | C

 <expr> ::= <id> + <expr> |

 <id> * <expr> |

 (<expr>) |

 <id>

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Ambiguity
Ambiguous grammar if sentential form ⇒ ≥ 1 parse tree

<assign> ::= <id> = <expr>
 <id> ::= A | B | C
 <expr> ::= <expr> + <expr>
 | <expr> * <expr>

 | (<expr>)
 | <id>

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018Ambiguity

<assign>

<id> = <expr>

<expr> +

*

<expr>

<id>

b

a

<expr> <expr>

<id>

c

<id>

a

a = b + c * a

a = b + (c * a) a = (b + c) * a

<assign>

<id> = <expr>

<expr>

+

*
<expr>

<id>

b

a

<expr>

<expr>

<id>

c

<id>

a

<assign> ::= <id> = <expr>

 <id> ::= A | B | C
 <expr> ::= <expr> + <expr>

 | <expr> * <expr>

 | (<expr>)

 | <id>

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

What causes ambiguity?

Example unambiguous
grammar:

 <expr> allowed to
grow only on right

 <assign> ::= <id> = <expr>
 <id> ::= A | B | C
 <expr> ::= <id> + <expr>
 | <id> * <expr>
 | (<expr>)
 | <id>

Example ambiguous
grammar:

<expr> can be expanded
right or left

General case: Undecidable whether grammar is ambiguous
Parsers: use “extra-grammatical” information to disambiguate

<assign> ::= <id> = <expr>
 <id> ::= A | B | C
 <expr> ::= <expr> + <expr>
 | <expr> * <expr>
 | (<expr>)
 | <id>

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Ambiguity
How do we avoid ambiguity when evaluating (say)
arithmetic expressions?
E.g.: 5 + 7 * 3 + 8 ** 2 ** 3
Precedence
Associativity

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Precedence
Want grammar to enforce precedence
Code generation follows parse tree structure
For a parse tree:

To evaluate node, all children must be evaluated
⇒ things lower in tree evaluated first
⇒ things lower in tree have higher precedence

So: write grammar to generate this kind of parse tree

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Precedence in grammars
Example: grammar with no precedence

 generates tree where rightmost operator is lower:

In A + B * C: multiplication will be first
In A * B + C: addition will be first

<assign> ::= <id> = <expr>
 <id> ::= A | B | C
 <expr> ::= <id> + <expr>
 | <id> * <expr>
 | (<expr>)
 | <id>

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Enforcing precedence
Higher-precedence operators → lower in tree

ensure derivation → higher-precedence operators is
longer than → lower-precedence
⇒ create new category for each precedence level
Make higher-order categories/levels appear deeper

E.g.: instead of just <expr> and <id>, have:
<expr> – entire (sub)expressions; precedence level
of plus/minus
<term> – multiplication/division precedence
<factor> – parentheses/single <id> precedence
<id> – represent identifiers

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

A grammar with precedence

<expr> ::= <term> + <expr>
 | <term> - <expr> | <term>
<term> ::= <term> * <factor>
 | <term> / <factor> | <factor>
<factor> ::= (<expr>)
 | <id>
<id> ::= A | B | C | D

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018Example

<assign>

<id> = <expr>

<expr> +

*

<expr>

<id>

b

a

<expr> <expr>

<id>

c

<id>

a

a = b + c * a

a = b + (c * a) a = (b + c) * a

<assign>

<id> = <expr>

<expr>

+

*
<expr>

<id>

b

a

<expr>

<expr>

<id>

c

<id>

a

<expr>

<term>

<factor>

<id>

A

B

C

D

*

+

A+B*(C+D)

<term>

<expr>

<factor> <term>

<id> <factor>

()<expr>

<term> + <expr>

<factor>

<id>

<term>

<factor>

<id>

<expr> ::= <term> + <expr>
 | <term> - <expr> | <term>
<term> ::= <term> * <factor>
 | <term> / <factor> | <factor>
<factor> ::= (<expr>)
 | <id>
<id> ::= A | B | C | D

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Associativity
Associativity: order to evaluate operators at same level
E.g.:

Left-to-right:
5 - 4 - 3 = (5 - 4) - 3 = 1 - 3 = -2

What if it were R→L?
Right-to-left:

 2**3**2 = 2**(3**2)= 2**9 = 512
What if it were L→R?

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Associativity
Previous example grammar: left-associative

Right associativity:
reverse where recursion occurs
may need to introduce new category

<term> ::= <term> * <factor> | …

 <factor> ::= <primary> ** <factor>
 | <primary>
<primary> ::= <id> | (<expr>)

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Precedence/associativity (summary)
Precedence:

determined by length of shortest derivation from
start → operator
shorter derivations ⇒ lower precedence

Associativity: determined using left or right
recursion

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Your turn
Given

Factorial has higher priority than exponentiation
Assignment is right-associative

How would you change this grammar to handle
both?

<expr> ::= <term> + <expr>
 | <term> - <expr> | <term>
<term> ::= <term> * <factor>
 | <term> / <factor> | <factor>
<factor> ::= <primary> ** <factor>
 | <primary>
<primary> ::= <id> | (<expr>)
<id> ::= A | B | C | D

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Problems
Some languages have too many precedence levels
E.g., C++:

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Problems

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Problems

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Design choices
Lots of precedence levels → complicated

Readability decreased
E.g.,

C++ has 17 precedence levels
Java has 16
C has 15

In all three: some operators left-, some right-
associative

Avoid too few or odd choices
E.g., Pascal (5 levels)

A <= 0 or 100 <= 0 Error: “or” > “<=”

Should be:
(A <= 0) or (100 <= 0)

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Design choices
Avoid too few or odd choices (cont’d):

APL:
No precedence at all!
All operators are right-associative

Smalltalk:
Technically no “operators” per se
Operators are binary messages
E.g., 3 + 20 / 5:

First: “+” message to object “3”, arg. “20” ⇒ object “23”
Then “/” message to “23”, arg. “5” ⇒ object “4.6”

⇒ As if no precedence, everything left-associative
Meaning depends on receiving class’ implementation

…Or, make sure it’s completely clear:
Lisp: (+ 3 (/ 20 5)) Forth: 3 20 5 / +

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Complexity of grammars
C++: large number of operators, precedence levels
Each precedence level ⇒ new non-terminal (category)
Grammar ⇒ large, difficult to read
Instead of large grammar:

Write small, ambiguous grammar
Specify precedences, associativity outside the
grammar

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018Example grammar:
A small, C-like language

Expression → Conjunction { || Conjunction }
Conjunction → Equality { && Equality }
Equality → Relation [EquOp Relation]

EquOp → == | !=
Relation → Addition [RelOp Addition]
RelOp → < | <= | > | >=
Addition → Term { AddOp Term }
AddOp → + | -
Term → Factor { MulOp Factor }

MulOp → * | / | %
Factor → [UnaryOp] Primary
UnaryOp → - | !
Primary → Identifier [[Expression]] | Literal
 | (Expression) | Type (Expression)

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Syntax and semantics
Parse trees embody the syntax of a sentence
Should also correspond to semantics of sentence

precedence
associativity

Extends beyond expressions
e.g., the “dangling else” problem

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Dangling else
<IfStatement> ::= if (<Expression>) <Statement>
 | if (<Expression>) <Statement>

 else <Statement>

<Statement> ::= <Assignment>
 | <IfStatement>

 | <Block>

<Block> ::= { <Statements> }

<Statements> ::= <Statements> <Statement>

 | <Statement>

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Dangling else
Problem: which “if” does the “else” belong to
(associate with)?

Answer: either one!

if (x < 0)
 if (y < 0) y = y - 1;
 else y = 0;

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Parse trees for the statement

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018Solution?
• Conventions (maybe extra-grammatical):

• Associate each else with closest if
• Use {} or begin/end to override
• E.g., Algol 60, C, C++, Pascal

• Explicit delimiters:
• Begin, end every conditional: {}, if…fi, begin…end,

indentation level
• Algol 68, Modula, Ada, VB, Python

• Rewrite grammar to limit what can appear in conditional:

<IfThenStatement> ::= if (<Expression>) <statement>
<IfThenElseStatement> ::= if (<Expression>) <StatementNoShortIf>
 else <Statement>

where <StatementNoShortIf> – everything except
 <IfThenStatement>

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Extended BNF

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Audiences
Grammar specification language: means of
communicating to audience

Programmers: What do legal programs look like?
Implementers: need exact, detailed definition
Tools (e.g., parsers/scanner generators): need
exact, detailed definition in machine-readable
form

Maybe use more readable specification for humans
Needs to be unambiguous
Must be able to ⇒ machine-readable form (e.g.,
BNF)

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Extended BNF
BNF developed in late 1950s — still widely used
Original BNF — a few minor inconveniences — e.g.:

recursion instead of iteration
verbose selection syntax

Extended BNF (EBNF): increases readability, writability
Expressive power unchanged: still CFGs
Several variations

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

EBNF: Optional parts
• Brackets [] delimit optional parts
<proc_call> → ident ([<expr_list>])

• Instead of:
<proc_call> → ident()

 | ident (<expr_list>)

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

EBNF: Alternatives
• Specify alternatives in (), separated by “|”

<term> → <term> (+|-) factor

• Replaces
<term> → <term> + factor

 | <term> - factor

• So what about replacing:
<term> → <term> + <factor> | <term> - <factor>

 | <factor>

⟹
 <term> → (<term> (+|-) <factor> | <factor>)
or
 <term> → [<term> (+|-)] <factor>

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

EBNF: Recursion
• Repetitions (0 or more) are placed inside braces { }

<ident> → letter {letter|digit}
• Replaces

<ident> → letter
 | <ident> letter

 | <ident> digit

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

BNF and EBNF
• BNF
 <expr> → <expr> + <term>
 | <expr> - <term>
 | <term>
 <term> → <term> * <factor>
 | <term> / <factor>
 | <factor>

• EBNF
 <expr> → <term> {(+ | -) <term>}
 <term> → <factor> {(* | /) <factor>}

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

EBNF: Associativity
Note that the production:
 <expr> → <term> { (+ | -) <term> }

 does not seem to specify the left associativity that
we have in
<expr> → <expr> + <term>

 | <expr> + <term> | <term>

In EBNF left associativity is usually assumed
Enforced by EBNF-based parsers
Explicit recursion used for right associative
operators
Some EBNF grammars may specify associativity
outside of the grammar

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

EBNF variants
• Alternative RHSs are put on separate lines
• Use of a colon instead of “→”

• Use of opt for optional parts

• Use of oneof for choices

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

EBNF to BNF
Can always rewrite EBNF grammar as BNF grammar — e.g.:

 <A> → x { y } z
can be rewritten:

 <A> → x <A1> z
 <A1> → ε | y <A1>

 where ε is a standard symbol empty string (sometimes λ)
 Rewriting EBNF rules with (), [] — done similarly
EBNF is no more powerful than BNF…
…but rules often simpler and clearer for human readers

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Syntax Diagrams

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Syntax Diagrams
Similar goals as EBNF — aimed at humans, not machines
Introduced by Jensen and Wirth with Pascal in 1975
Pictorial rather than textual

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Ex: Expressions with addition

Term
Factor

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

A More Complex Example

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

An Expression Grammar

From http://en.wikipedia.org/wiki/Syntax_diagram

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Static Semantics

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Problem with CF grammar for PLs
Some aspects of PL — not easily express in CFG
E.g.:

Assignment statement LHS’ type must be
compatible with RHS’

type of LHS has to match type of RHS
could be done in CFG…
…but cumbersome

All variables have to be declared before used
 cannot be expressed in BNF

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Static semantics
These kinds of constraints: static semantics

Only indirectly related to meaning
Helps define program’s legal form (syntax)
Most rules: typing
Can be done at compile time (⇒ static)

Dynamic semantics – runtime behavior/meaning of
program

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Attribute grammars
AG [Knuth, 1968] used in addition to CFG
Let’s parse tree nodes carry some semantic info
AG is CFG + :

attributes:
associated with terminals & non-terminals
similar to variables – values can be assigned

attribute computation (semantic) functions
assoc. with grammar rules
say how attribute values are computed

predicate functions
state semantic rules
assoc. with grammar rules

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018Definition
Attribute grammar G = context-free grammar &:

Each grammar symbol x in N has a set A(x) of
attribute values

A(x) consists of two disjoint sets:
 S(x) and I(x), the
Synthesized attributes S(x)
Inherited attributes I(x)

Each rule r ∈ P has
set of functions ⇒ each defines certain
attributes of rule’s nonterminals
set of predicates ⇒ check for attribute
consistency

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Intrinsic attributes
Intrinsic attributes – values determined outside the
parse tree
Attributes of leaf nodes
Ex: Type of a variable

Obtained from symbol table
Value from declaration statements

Initially: the only attributes are intrinsic
Semantic functions compute the rest

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Synthesized attributes
“Synthesized” = “computed”
Means of passing semantic information up parse tree
Synthesized attributes for grammar rule:

X0 → X1 … Xn

for S(X0) = f(A(X1)...A(Xn)) ⇐ attribute function
Value of synthesized attributes depends only on value of
children attributes
E.g.: an “actual type” attribute of a node

For variable: declared type
For constant: defined
For expression: computed from type of parts

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Inherited attributes
Pass semantic information down, across parse tree
Attributes of child ⇐ parent
For a grammar rule

X0 → X1...Xj...Xn

inherited attributes S(Xj) = f(A(X0),…,A(Xj-1))
Value depends only on attributes of parent, siblings
(usually left siblings)
E.g.: “expected type” of expression on RHS of
assignment statement ⇐ type of variable on LHS
E.g.: “type” in a type declaration ⇒ identifiers

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Predicate functions
Predicates = Boolean expressions on

∪i A(Xi)

and a set of literal values (e.g., int, float,…)
Valid derivation iff every nonterminal’s predicate true
Predicate false ⇒ rule violation ⇒ ungrammatical

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Attributed/decorated parse trees
Each node in parse tree has (possibly empty) set of
attributes
When all attributes computed, tree is fully attributed
(decorated)
Conceptually, parse tree could be produced, then
decorated

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Example
In Ada, the end of a procedure has specify the
procedure’s name:

procedure simpleProc …

…

end simpleProc;

Can’t do this in BNF!
Syntax rule:

<proc_def> → procedure <proc_name>[1]

 <proc_body> end <proc_name>[2]

Predicate:
<proc_name>[1].string == <proc_name>[2].string

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Example 2 (from book)

An attribute grammar for simple assignment statements
1. Syntax rule: <assign> ! <var> = <expr>
 Semantic rule:
 <expr>.expected_type ← <var>.actual_type
2. Syntax rule: <expr> ! <var>[2] + <var>[3]
 Semantic rule:
 <expr>.actual_type ←
 if (<var>[2].actual_type = int) &
 (<var>[3].actual_type = int)
 then int
 else real
 Predicate: <expr>.actual_type == <expr>.expected_type
3. Syntax rule: <expr> ! <var>
 Semantic rule: <expr>.actual_type ←
<var>.actual_type
 Predicate: <expr>.actual_type == <expr>.expected_type
4. Syntax rule: <var> ! A | B | C
 Semantic rule: <var>.actual_type ←
 look-up(<var>.string)

where “look-up(n)” looks up a name in the symbol table and returns its type

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Example 2
actual_type – synthesized attribute

computed sometimes
also intrinsic for <var>

expected_type - inherited attribute
computed in this example
but associated with nonterminal

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Example – parse tree
A = A + B

Computing attribute values
Could be top-down, if all
inherited
Could be bottom-up, if all
synthesized
Mostly mixed

General case: need dependency
graph to determine evaluation
order

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Decorating the tree
1. <var>.actual_type ← lookup(A) (Rule 4)
2. <expr>.expected_type ← <var>.actual_type (Rule 1)
3. <var>[2].actual_type ← lookup(A) (Rule 4)
4. <var>[3].actual_type ← lookup(B) (Rule 4)
5. <expr>.actual_type ← (int | real) (Rule 2)
6. <expr>.expected_type == <expr>.actual_type – either true or

false (Rule 2)

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Decorated tree
Assume A is real, B is int

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Example 3: inherited
<typedef> ::= <type> <id_list>

Rule: <id_list>.type ← <type>.type

<type> ::= int

Rule: <type>.type ← int

<type> ::= float

Rule: <type>.type ← float

<id_list> ::= <id_list>_1 , <id>

Rules: <id_list>_1.type ← <id_list>.type

<id>.type ← <id_list>.type

<id_list> ::= <id>

Rule: <id>.type ← <id_list>.type

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Parse tree

<typedef>

<type> <id_list>[1]

<id_list>[2] <id>[1]

<id>[2]

int A, B

int

,

A

B

<typedef> ::= <type> <id_list>
Rule: <id_list>.type ← <type>.type

<type> ::= int Rule: <type>.type ← int
<type> ::= float Rule: <type>.type ← float
<id_list> ::= <id_list>_1 , <id>

Rules: <id_list>_1.type ← <id_list>.type
<id>.type ← <id_list>.type

<id_list> ::= <id>
Rule: <id>.type ← <id_list>.type

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Evaluation order

<typedef>

<type> <id_list>[1]

<id_list>[2] <id>[1]

<id>[2]

int A, B

int

,

A

B

type type

type type

type

<typedef> ::= <type> <id_list>
Rule: <id_list>.type ← <type>.type

<type> ::= int Rule: <type>.type ← int
<type> ::= float Rule: <type>.type ← float
<id_list> ::= <id_list>_1 , <id>

Rules: <id_list>_1.type ← <id_list>.type
<id>.type ← <id_list>.type

<id_list> ::= <id>
Rule: <id>.type ← <id_list>.type

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Decorated tree

<typedef>

<type> <id_list>[1]

<id_list>[2] <id>[1]

<id>[2]

int A, B

int

,

A

B

type=int type=int

type=int

type=int

type=int

<typedef> ::= <type> <id_list>
Rule: <id_list>.type ← <type>.type

<type> ::= int Rule: <type>.type ← int
<type> ::= float Rule: <type>.type ← float
<id_list> ::= <id_list>_1 , <id>

Rules: <id_list>_1.type ← <id_list>.type
<id>.type ← <id_list>.type

<id_list> ::= <id>
Rule: <id>.type ← <id_list>.type

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Dynamic Semantics

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Dynamic semantics
Static semantics – still about syntax
Dynamic semantics: describes the meaning of statements,
program
Why is it needed?

Programmers: need to know what statements mean
Compiler writers:

compiler has to produce semantically-correct code
also for compiler generators (yacc, bison)

Automated verification tools: correctness proofs
Designers: find ambiguities, inconsistencies

Ways of reasoning about semantics: Operational,
denotation, axiomatic

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Operational Semantics

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Operational semantics
Operational semantics:

meaning = statement’s effects on a machine
Machine: real or mathematical
Machine state: contents of memory, registers, PC, etc.
Effects = changes in state
You’ve probably used this informally:

write down variables, values
walk through code, tracking changes

Problems:
Changes in real machine state too small, too numerous
Storage too large & complex

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Operational semantics
Need:

intermediate language — coarser state

virtual machine: interpreter for idealized computer
Ex: programming texts

Define a construct in terms of simpler operations
E.g., C loop as conditionals + goto

Your book:

This can describe semantics of most loop constructs

ident = var bin_op var
ident = unary_op var
goto label
if var relop var goto label

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018Operational Semantics

E.g., C’s for loop:

for (e1;e2;e3) stmt;

 e1
loop: if e3 == 0 goto end
 stmt
 e2
 goto loop
end: …

E.g., a while loop:

 ident = var
head if var relop var goto end
 <statements>
 goto head
end …

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Operational semantics
Good for textbooks and manuals, etc.
Used to describe semantics of PL/I
Works for simple semantics – not usually the case
(certainly not for PL/I)
Relies on reformulating in terms of simpler PL, not
math…
…can ⟹ imprecise semantics, circularities,
interpretation differences
Better: use mathematics to describe semantics

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Denotational Semantics

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Denotational semantics
Scott & Strachey (1970)
Based on recursive function theory
Define mathematical object for each language entity
Mapping function:

Language entities → mathematical objects
Domain = syntactic domain
Range = semantic domain

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Denotational semantics
Meaning of constructs: defined only by value of
program’s variables:

state s = {<i1,v1>, <i2,v2>,…}
VARMAP(ij,s)

Statement – defined as state-transforming function
Program – collection of functions operating on state

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Grammar:

Let be mapping function

Denotational semantics: Binary numbers

Mbin

Mbin(000) = 0
Mbin(010) = 1
Mbin(< binNum > 000) = 2⇥Mbin(< binNum >)
Mbin(< binNum > 010) = 2⇥Mbin(< binNum >) + 1

< binNum > ! 000

| 010

| < binNum >0 00

| < binNum >0 10

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Denotational semantics: Binary numbers

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Denotational semantics: Binary numbers

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Denotational semantics: Expressions

Assume only:
numbers drawn from (integers)
variables
binary expressions with two subexpressions and
an operator

Map an expression onto ∪ {error}

Z

Z

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Denotational semantics: Loops
Meaning of a loop = value of variables after the loop
has executed the correct number of times (assuming
no errors)
Loop is converted from iteration to recursion
Recursive control is mathematically defined by other
recursive state mapping functions
Recursion is easier to describe mathematically than
iteration

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Den. semantics: pretest loop

 Ml(while B do L, s) Δ=
 if Mb(B, s) == undef

 then error

 else if Mb(B, s) == false

 then s
 else if Msl(L, s) == error

 then error

 else Ml(while B do L, Msl(L, s))

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Using denotational semantics
Can prove correctness of programs
Rigorous way to think about programs
Can aid language design
But: due to complexity, of little use to most language
users

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Axiomatic Semantics

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Axiomatic semantics
Based on formal logic (predicate calculus)
Specifies what can be proven about the program — not
meaning per se
Can be used for program verification
No model of machine state, program state, or state
changes
Instead: meaning based on relationships between
variables and constants – same for every execution
Axioms (assertions) defined for each statement type

What is true before and after the statement with
respect to program variables
This defines the semantics of the statement

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Assertions
Preconditions: What is true (constraints on the
program variables) before a statement
Postconditions: What is true after the statement
executes
Postcondition of one statement becomes
precondition of next
Start with postcondition of program itself (last
statement)
Go backward to preconditions obtaining at program
start ⇒ program is correct

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Assertions
Example:

{P} x = cos(y) {x > 0}

What is precondition P?
Possibilities:

{0 ≤ y < 90}, {10 ≤ y ≤ 80}, {-90 <y < 90}...
Which to choose?
Choose weakest precondition

Sometimes can be specified by axiom
Usually only by inference rule

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Axiomatic semantics for assignment
• Given v = E with postcondition Q:

• Precondition P is computed by replacing all instances of
v with E in Q

• Ex:
y = 2x + 7, Q = {y > 3}

2x + 7 > 3

2x > -4

x > -2 = P

• Usually written as:
{Qx!E} x = E {Q}

e.g.: {x > -2} y = 2x + 7 {y > 3}

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Axiomatic semantics: if-then-else
Sometimes, need more than an axiom – need an
inference rule to specify semantics
Inference rule has form:

Inference rule for if-then-else:

⇒ Have to prove case both when B is true and when
it is false during proof process
Much harder for loops!

S1,S2,...,Sn

S

{B^P} S1 {Q},{¬B^P} S2 {Q}
{P} if B then S1 else S2 {Q}

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Axiomatic semantics: summary
Given formal specification of program P:

⇒ should be possible to prove P is correct
However: very difficult, tedious in practice

Hard to develop axioms/inference rules for all
statements in a language
Proof in predicate calculus is exponential, semi-
decidable

Good for reasoning about programs
Not too useful for users or compiler writers
Tools supporting axiomatic semantics: Java
Modeling Language (JML), Haskell, Spark

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Semantics
Given Ms, the denotational semantics mapping function
for a statement, come up with Msl, the mapping
function for a list of statements

Find an axiomatic precondition for the following, if
the postcondition Q = {y = 15}:

for (i=0,i<3,i++)

 y = y + x;

Is there only one?

PL
rogramming
anguages

UMaine School of Computing and Information Science

Fall 2018

Semantics
Each group: assigned operational, denotational, or
axiomatic semantics
You will defend your assignment as the best
approach to axiomatic semantics
Make a brief statement; then other groups will
attack/argue (you’ll have a chance to return the
favor)

