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Syntax & semantics
Syntax: 

Defines correctly-formed components of language
Structure of expressions, statements

Semantics: meaning of components
Together: define the programming language
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Simplicity:

A language that is simple to parse for the compiler is also 
simple to parse for the human programmer. 

N. Wirth

Simple to parse? 

sub b{$n=99-@_-$_||No;"$n 
bottle"."s"x!!--$n." of beer"};$w=" 
on the wall"; die map{b."$w,\n".b.",
\nTake one down, pass it around,
\n”.b(0)."$w.\n\n"}0..98; 
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Describing syntax
Not sufficient for PL to have syntax
Have to be able to describe it to

programmers
implementers (e.g., compiler designers)
automated compiler generators, verification tools

Specification:
Humans: some ambiguity okay
Automated tools: must be unambiguous
For programmers: unambiguous >> ambiguous!
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Terminology
• Alphabet: 

• a set of characters
• small (e.g., {0,1}, {A-Z}) to large (e.g., Kanji)

• Sentence:  
• string of characters drawn from alphabet 
• conforms to syntax rules of language

• Language:  set of sentences
• Lexeme (token):  

• smallest syntactic unit of language 
• e.g., English: words
• e.g., PL: 1.0, *, sum, begin, …
• Token type:  category of lexeme (e.g., identifier)
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Tokens & lexemes
“Lexeme” often use interchangeably with “token”
Example:

index = 2 * count + x

Lexeme Token type Value
index identifier “index”

= assignment
2 int literal 2

count identifier “count”
+ addition
17 int literal 17
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Lexical rules
Lexical rules: define set of legal lexemes
Lexical, syntactical rules specified separately

Different types of grammars
Recognized differently

different kinds of automata
different parts of compiler/interpreter

Lexical rules: regular expressions
⇒ their grammar = regular grammars
Parsed by finite automata (finite state machines)
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Formal Languages
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Formal languages
Defined by recognizers and generators
Recognizers:

reads input strings over alphabet of language
decides: is string sentence in the language?
Ex.:  syntax analyzer of compiler

Generators:
Generates sentences in the language
Determine if string ∈ of {sentences}: compare to 
generator’s structure
Ex: a grammar
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Recognizers & generators
Recognizers and generators: closely related
Given grammar (generator), we can ⇒ recognizer 
(parser)
Oldest system to do this: 

yacc (Yet Another Compiler Compiler)
still widespread use
GNU bison
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Chomsky Hierarchy
Formal language hierarchy – Chomsky, late 50s
Four levels:

Regular languages
Context-free languages
Context-sensitive languages
Recursively-enumerable languages (unrestricted)

Only regular and context-free grammars in PL
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Context-free grammars
Regular grammars: not powerful enough to express 
PLs
Context-free grammars (CFGs):

sufficient
relatively easy to parse

Need way to specify context-free grammars
Most common way: Backus-Naur Form 
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BNF
John Backus [1959]; extended by Peter Naur
Created to describe Algol 60
Any context-free grammar can be written in BNF
Apparently similar to 2000 year-old notation for 
describing Sanskrit!
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BNF
BNF is a metalanguage
Symbols represent syntactic structures: <assign>, 
<ident>, etc.
Non-terminals & terminal symbols
Productions:

Rewrite rules: show how one pattern ⇒ another
Context-free languages: production shows how 
non-terminal ⇒ sequence of non-terminals, 
terminals

LHS/antecedent, RHS/consequent
<assign> → <var> = <expression>
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BNF formalism
A grammar for a PL is a set: {P,T,N,S}

T = set of terminal symbols
N = set of non-terminal symbols (T ∩ N ={})

S = start symbol (S ∈ N)

P = set of productions:
A →ω 

where A ∈ N and ω ∈ (N ∪ T)*

set of all strings of terminals and non-terminals
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BNF
Sentential form: string of symbols
 Productions: 

S → S’
S, S’ are sentential forms

Nonterminal symbols N: 
grammatical categories
E.g., identifier, expression, program

Designated start symbol S: often <program>
Terminal symbols T: lexemes/tokens 
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BNF symbols
Nonterminals:  written in angle brackets or in special 
font: <expression> 
Can have ≥ 1 rule/nonterminal — write as one rule
Alternatives: specified by | - e.g., 

or

<stmt> → <single_stmt> | 
                 begin <stmt_list> end

<stmt> ::= <single_stmt> | 
                 begin <stmt_list> end
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Recursion in BNF
Recursion: lets finite grammar ⇒ infinite language
Direct recursion:

LHS appears on the RHS
E.g., specify a list:

Indirect recursion:

<ident_list> ::= ident | 
                 ident, <ident_list>

<expr> ::= <expr> + <term> | ... 
<term> ::= <factor> | ... 
<factor> ::= (<expr>) | ...
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Derivations
Let s be a sentence produced by a grammar G
A language L defined by grammar G:

L = {s | G produces s from S}
Recall: Sentence composed only of terminal symbols
Produced in 0 or more steps from G’s start symbol S

Derivation of sentence s = list of rules

i.e., 
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An Example Grammar

<program> ! <stmts>
   <stmts> ! <stmt> | <stmt> ; <stmts>
   <stmt> ! <var> = <expr>
   <var> ! a | b | c | d
   <expr> ! <term> + <term> | <term> - <term>
   <term> ! <var> | const
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An Example Derivation

<program> ⟹ <stmts>  

⟹ <stmt>  

⟹ <var> = <expr>  

⟹ a = <expr>  

⟹ a = <term> + <term> 

⟹ a = <var> + <term>  

⟹ a = b + <term> 

⟹ a = b + const

<program> ! <stmts>

   <stmts> ! <stmt> | <stmt> ; <stmts>

   <stmt> ! <var> = <expr>

   <var> ! a | b | c | d

   <expr> ! <term> + <term> | <term> - <term>

   <term> ! <var> | const
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Derivations
Every string in a derivation:  sentential form
Derivations can be leftmost or rightmost
Leftmost derivation: leftmost nonterminal in each 
sentential form is expanded first
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Example
Given G = { T, N, P, S }

T = { a, b, c }
N = { A, B, C, W }

S = { W }
Is string cbab ∈ L(G)?   I.e.,  ∃ derivation D from start S to cbab?

P =
1. W !AB or <W> ::= <A><B>

2. A ! Ca <A> ::= <C>a
3. B ! Ba <B> ::= <B>a
4. B ! Cb <B> ::= <C>b

5. B ! b <B> ::= b
6. C ! cb <C> ::= cb
7. C ! b <C> ::= b
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Leftmost derivation
Begin with the start symbol W and apply production 
rules expanding the leftmost non-terminal.

W  ⟹ AB Rule 1. W !AB

AB ⟹ CaB Rule 2. A ! Ca 

CaB  ⟹ cbaB         Rule 6. C ! cb

cbaB ⟹ cbab      Rule 5. B ! b

   ∴cbab ∈ L(G)

1.W !AB
2.A ! Ca
3.B ! Ba

4.B ! Cb
5.B ! b
6.C ! cb
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Rightmost derivation
Begin with the start symbol W and apply production 
rules expanding the rightmost non-terminal.

W ! AB Rule 1. W !AB
AB! Ab      Rule 5. B ! b
Ab ! Cab Rule 2. A ! Ca
Cab!cbab Rule 6. C ! cb

∴cbab ∈ L(G)
Rightmost derivation: 1→ 5→ 2→ 6

1.W !AB

2.A ! Ca
3.B ! Ba
4.B ! Cb
5.B ! b

6.C ! cb
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Shorter version of G
Using selection (options) in the RHS

G = { T, N, P, S }
T = { a, b, c }
N = { A, B, C, W }
S = { W }

1. W !AB or <W> ::= <A><B>
2. A ! Ca        <A> ::= <C>a
3. B ! Ba | Cb | b <B> ::= <B>a | <C>b | b

4. C ! cb | b       <C> ::= cb | b

1.W !AB
2.A ! Ca
3.B ! Ba
4.B ! Cb

5.B ! b
6.C ! cb
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Your Turn!
G = {T,N,P,S}

T = { a, b, c }
N = { A, B, C, W }
S = { W }
P = 

1. W !AB <W> ::= <A><B>
2. A ! Ca <A> ::= <C>a
3. B ! Ba | Cb | b <B> ::= <B>a | <C>b | b
4. C ! cb | b <C> ::= cb | b

1. Is cbbacbb in L?
2. Is baba in L?
3. Show a leftmost derivation for cbabb
4. Show a rightmost derivation for cbabb
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Derivations as parse trees
Parse tree: graphical representation of a derivation
Root: the start symbol
Each node + children = rule application

LHS = node
RHS = children

Leaves: terminal symbols in derived sentence 
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Parse tree
a = b + 3

<program>

<stmts>

<stmt>

<var> = <expr>

<term>

<var>

a

b

+

<term>

<const>

3

<program> ::= <stmts> 
<stmts>   ::= <stmt> <stmts>  
              | nil 
<stmt>    ::= <var> = <expr> 
<var>     ::= a | b | … 
<const>   ::= number 
<expr>    ::= <term> + <term> <stmts>

nil
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Example grammar: Assignment

 <assign> ::= <id> = <expr> 
    <id> ::= A | B | C 
  <expr> ::= <id> + <expr> | 

              <id> * <expr> | 
              ( <expr> )    | 
              <id>
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Example derivation
A = B * ( A  +  C )  

<assign>  ⟹ <id> = <expr> 

   ⟹ A = <expr> 

    ⟹ A = <id> * <expr> 

   ⟹ A = B * <expr> 

   ⟹ A = B * ( <expr> ) 

   ⟹ A = B * ( <id> + <expr> ) 

   ⟹ A = B * ( A + <expr> ) 

   ⟹ A = B * ( A + <id> ) 

   ⟹ A = B * ( A + C )

 <assign> ::= <id> = <expr> 

    <id> ::= A | B | C 

  <expr> ::= <id> + <expr> | 

              <id> * <expr> | 

              ( <expr> )    | 

              <id>
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Ambiguity
Ambiguous grammar if sentential form ⇒ ≥ 1 parse tree

<assign> ::= <id> = <expr> 
    <id> ::= A | B | C 
  <expr> ::= <expr> + <expr> 
             | <expr> * <expr> 

             | ( <expr> ) 
             | <id>
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<assign>

<id> = <expr>

<expr> +

*

<expr>

<id>

b

a

<expr> <expr>

<id>

c

<id>

a

a = b + c * a

a = b + (c * a) a = (b + c) * a

<assign>

<id> = <expr>

<expr>

+

*
<expr>

<id>

b

a

<expr>

<expr>

<id>

c

<id>

a

<assign> ::= <id> = <expr> 

    <id> ::= A | B | C 
  <expr> ::= <expr> + <expr> 

             | <expr> * <expr> 

             | ( <expr> ) 

             | <id>
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What causes ambiguity?

Example unambiguous 
grammar:

 <expr> allowed to 
grow only on right

 <assign> ::= <id> = <expr> 
    <id> ::= A | B | C 
  <expr> ::= <id> + <expr> 
               |  <id> * <expr> 
               | ( <expr> ) 
               | <id>

Example ambiguous 
grammar: 

<expr> can be expanded 
right or left

General case: Undecidable whether grammar is ambiguous 
Parsers: use “extra-grammatical” information to disambiguate

<assign> ::= <id> = <expr> 
    <id> ::= A | B | C 
  <expr> ::= <expr> + <expr> 
             | <expr> * <expr> 
             | ( <expr> ) 
             | <id>
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Ambiguity
How do we avoid ambiguity when evaluating (say) 
arithmetic expressions?
E.g.:  5 + 7 * 3 + 8 ** 2 ** 3
Precedence
Associativity
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Precedence
Want grammar to enforce precedence
Code generation follows parse tree structure
For a parse tree: 

To evaluate node, all children must be evaluated
⇒ things lower in tree evaluated first
⇒ things lower in tree have higher precedence

So: write grammar to generate this kind of parse tree
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Precedence in grammars
Example: grammar with no precedence

 generates tree where rightmost operator is lower:

In A + B * C: multiplication will be first
In A * B + C: addition will be first

<assign> ::= <id> = <expr>
    <id> ::= A | B | C
  <expr> ::= <id> + <expr>
             | <id> * <expr>
             | (<expr>)
             | <id>
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Enforcing precedence
Higher-precedence operators → lower in tree 

ensure derivation →  higher-precedence operators is 
longer than → lower-precedence
⇒ create new category for each precedence level
Make higher-order categories/levels appear deeper

E.g.: instead of just <expr> and <id>, have:
<expr> – entire (sub)expressions; precedence level 
of plus/minus
<term> – multiplication/division precedence
<factor> – parentheses/single <id> precedence
<id> – represent identifiers
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A grammar with precedence

<expr>   ::=  <term> + <expr> 
             | <term> - <expr> | <term> 
<term>   ::=  <term> * <factor> 
             | <term> / <factor> | <factor> 
<factor> ::= ( <expr> ) 
             | <id> 
<id>     ::= A | B | C | D
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<assign>

<id> = <expr>

<expr> +

*

<expr>

<id>

b

a

<expr> <expr>

<id>

c

<id>

a

a = b + c * a

a = b + (c * a) a = (b + c) * a

<assign>

<id> = <expr>

<expr>

+

*
<expr>

<id>

b

a

<expr>

<expr>

<id>

c

<id>

a

<expr>

<term>

<factor>

<id>

A

B

C

D

*

+

A+B*(C+D)

<term>

<expr>

<factor> <term>

<id> <factor>

( )<expr>

<term> + <expr>

<factor>

<id>

<term>

<factor>

<id>

<expr>   ::=  <term> + <expr> 
             | <term> - <expr> | <term> 
<term>   ::=  <term> * <factor> 
             | <term> / <factor> | <factor> 
<factor> ::= ( <expr> ) 
             | <id> 
<id>     ::= A | B | C | D
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Associativity
Associativity: order to evaluate operators at same level
E.g.:

Left-to-right:  
5 - 4 - 3 = (5 - 4) - 3 = 1 - 3 = -2 

What if it were R→L?
Right-to-left: 

 2**3**2 = 2**(3**2)= 2**9 = 512 
What if it were L→R?
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Associativity
Previous example grammar:  left-associative

Right associativity: 
reverse where recursion occurs
may need to introduce new category

<term> ::= <term> * <factor> | …

 <factor> ::= <primary> ** <factor> 
              | <primary> 
<primary> ::= <id> | ( <expr> ) 
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Precedence/associativity (summary)
Precedence: 

determined by length of shortest derivation from 
start → operator
shorter derivations ⇒ lower precedence

Associativity: determined using left or right 
recursion
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Your turn
Given

Factorial has higher priority than exponentiation
Assignment is right-associative

How would you change this grammar to handle 
both?

<expr>    ::=  <term> + <expr> 
              | <term> - <expr> | <term> 
<term>    ::=  <term> * <factor> 
              | <term> / <factor> | <factor> 
<factor>  ::= <primary> ** <factor> 
              | <primary> 
<primary> ::= <id> | ( <expr> )  
<id>      ::= A | B | C | D

PL
rogramming
anguages

UMaine School of Computing and Information Science 

Fall 2018

Problems
Some languages have too many precedence levels
E.g., C++:
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Problems

PL
rogramming
anguages

UMaine School of Computing and Information Science 

Fall 2018

Problems
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Design choices
Lots of precedence levels → complicated

Readability decreased
E.g.,

C++ has 17 precedence levels
Java has 16
C has 15

In all three: some operators left-, some right-
associative

Avoid too few or odd choices
E.g., Pascal (5 levels)

A <= 0 or 100 <= 0                   Error: “or” > “<=”

Should be:
(A <= 0) or (100 <= 0)
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Design choices
Avoid too few or odd choices (cont’d):

APL: 
No precedence at all!
All operators are right-associative

Smalltalk:
Technically no “operators” per se
Operators are binary messages 
E.g.,  3 + 20 / 5: 

First: “+” message to object “3”, arg. “20” ⇒ object “23”
Then “/” message to “23”, arg. “5” ⇒ object “4.6”

⇒ As if no precedence, everything left-associative
Meaning depends on receiving class’ implementation

…Or, make sure it’s completely clear: 
Lisp:  (+ 3 (/ 20 5))      Forth: 3 20 5 / +
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Complexity of grammars
C++: large number of operators, precedence levels
Each precedence level ⇒ new non-terminal (category)
Grammar ⇒ large, difficult to read
Instead of large grammar:

Write small, ambiguous grammar
Specify precedences, associativity outside the 
grammar
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A small, C-like language

Expression → Conjunction { || Conjunction } 
Conjunction → Equality { && Equality } 
Equality → Relation [ EquOp Relation ] 

EquOp → == | !=  
Relation → Addition [ RelOp Addition ] 
RelOp →   < | <= | > | >=  
Addition → Term { AddOp Term } 
AddOp → + | - 
Term → Factor { MulOp Factor } 

MulOp →  * | / | % 
Factor → [ UnaryOp ] Primary 
UnaryOp →  - | ! 
Primary → Identifier [  [ Expression ] ] | Literal  
         |  ( Expression )  | Type ( Expression )
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Syntax and semantics
Parse trees embody the syntax of a sentence
Should also correspond to semantics of sentence

precedence
associativity

Extends beyond expressions
e.g., the “dangling else” problem
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Dangling else
<IfStatement> ::=   if ( <Expression> ) <Statement> 
                  | if ( <Expression> ) <Statement>                 

                    else <Statement> 

<Statement> ::= <Assignment> 
               | <IfStatement> 

               | <Block> 

<Block> ::= { <Statements> } 

<Statements> ::= <Statements> <Statement> 

                | <Statement>
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Dangling else
Problem: which “if” does the “else” belong to 
(associate with)?

Answer: either one!

if (x < 0) 
   if (y < 0) y = y - 1; 
   else y = 0;
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Parse trees for the statement
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• Conventions (maybe extra-grammatical): 

• Associate each else with closest if
• Use {} or begin/end to override
• E.g., Algol 60, C, C++, Pascal

• Explicit delimiters:
• Begin, end every conditional: {}, if…fi, begin…end, 

indentation level
• Algol 68, Modula, Ada, VB, Python 

• Rewrite grammar to limit what can appear in conditional:

    
<IfThenStatement> ::= if ( <Expression> ) <statement> 
<IfThenElseStatement> ::= if ( <Expression> ) <StatementNoShortIf> 
                          else <Statement>

where <StatementNoShortIf> – everything except
                <IfThenStatement>
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Extended BNF
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Audiences
Grammar specification language: means of 
communicating to audience

Programmers: What do legal programs look like?
Implementers: need exact, detailed definition
Tools (e.g., parsers/scanner generators):  need 
exact, detailed definition in machine-readable 
form

Maybe use more readable specification for humans
Needs to be unambiguous
Must be able to ⇒ machine-readable form (e.g., 
BNF)
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Extended BNF
BNF developed in late 1950s — still widely used 
Original BNF — a few minor inconveniences — e.g.:

recursion instead of iteration
verbose selection syntax

Extended BNF (EBNF): increases readability, writability
Expressive power unchanged: still CFGs
Several variations
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EBNF: Optional parts
• Brackets [] delimit optional parts
<proc_call> → ident ([<expr_list>]) 

• Instead of:
<proc_call> → ident() 

         | ident (<expr_list>)
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EBNF: Alternatives
• Specify alternatives in (), separated by “|”

<term> → <term> (+|-) factor

• Replaces 
<term> →  <term>  + factor 

         | <term>  - factor 

• So what about replacing:
<term> → <term> + <factor> | <term> - <factor>  

                  | <factor>

⟹ 
   <term> → (<term> (+|-) <factor> | <factor>) 
or
      <term> → [<term> (+|-) ] <factor>  
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EBNF: Recursion
• Repetitions (0 or more) are placed inside braces { }

<ident> → letter {letter|digit} 
• Replaces

<ident> → letter  
            | <ident> letter 

            | <ident> digit 
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BNF and EBNF
• BNF
   <expr> →   <expr> + <term> 
             | <expr> - <term> 
             | <term> 
    <term> →   <term> * <factor> 
             | <term> / <factor> 
              | <factor>

• EBNF
    <expr> → <term> {(+ | -) <term>} 
    <term> → <factor> {(* | /) <factor>}
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EBNF: Associativity
Note that the production:
 <expr> → <term> { ( + | - ) <term> } 

 does not seem to specify the left associativity that 
we have in 
<expr> → <expr> + <term>  

        | <expr> + <term> | <term>  

In EBNF left associativity is usually assumed
Enforced by EBNF-based parsers
Explicit recursion used for right associative 
operators
Some EBNF grammars may specify associativity 
outside of the grammar
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EBNF variants
• Alternative RHSs are put on separate lines
• Use of a colon instead of “→” 

• Use of opt for optional parts

• Use of oneof for choices
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EBNF to BNF
Can always rewrite EBNF grammar as BNF grammar — e.g.: 

   <A> → x { y } z 
can be rewritten:

     <A>  → x <A1> z 
    <A1> → ε | y <A1> 

 where ε is a standard symbol empty string (sometimes λ)
 Rewriting EBNF rules with ( ), [ ]  — done similarly
EBNF is no more powerful than BNF…
…but rules often simpler and clearer for human readers
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Syntax Diagrams
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Syntax Diagrams
Similar goals as EBNF — aimed at humans, not machines
Introduced by Jensen and Wirth with Pascal in 1975 
Pictorial rather than textual 

PL
rogramming
anguages

UMaine School of Computing and Information Science 

Fall 2018

Ex: Expressions with addition

Term
Factor
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A More Complex Example
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An Expression Grammar

From http://en.wikipedia.org/wiki/Syntax_diagram
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Static Semantics



PL
rogramming
anguages

UMaine School of Computing and Information Science 

Fall 2018

Problem with CF grammar for PLs
Some aspects of PL — not easily express in CFG
E.g.:

Assignment statement LHS’ type must be 
compatible with RHS’

type of LHS has to match type of RHS
could be done in CFG…
…but cumbersome

All variables have to be declared before used
 cannot be expressed in BNF
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Static semantics
These kinds of constraints:  static semantics

Only indirectly related to meaning
Helps define program’s legal form (syntax)
Most rules: typing
Can be done at compile time (⇒ static)

Dynamic semantics – runtime behavior/meaning of 
program
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Attribute grammars
AG [Knuth, 1968] used in addition to CFG
Let’s parse tree nodes carry some semantic info
AG is CFG + : 

attributes:
associated with terminals & non-terminals
similar to variables – values can be assigned

attribute computation (semantic) functions
assoc. with grammar rules 
say how attribute values are computed

predicate functions
state semantic rules
assoc. with grammar rules
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Attribute grammar G  = context-free grammar &:

Each grammar symbol x in N has a set A(x) of 
attribute values

A(x) consists of two disjoint sets:
 S(x) and I(x), the 
Synthesized attributes S(x) 
Inherited attributes I(x)

Each rule r ∈ P has
set of functions ⇒ each defines certain 
attributes of rule’s nonterminals
set of predicates ⇒ check for attribute 
consistency
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Intrinsic attributes
Intrinsic attributes – values determined outside the 
parse tree
Attributes of leaf nodes
Ex: Type of a variable

Obtained from symbol table
Value from declaration statements

Initially: the only attributes are intrinsic 
Semantic functions compute the rest
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Synthesized attributes
“Synthesized” = “computed”
Means of passing semantic information up parse tree
Synthesized attributes for grammar rule:

X0 → X1 … Xn

for S(X0 ) = f(A(X1)...A(Xn)) ⇐ attribute function
Value of synthesized attributes depends only on value of 
children attributes
E.g.: an “actual type” attribute of a node

For variable: declared type
For constant: defined
For expression:  computed from type of parts



PL
rogramming
anguages

UMaine School of Computing and Information Science 

Fall 2018

Inherited attributes
Pass semantic information down, across parse tree
Attributes of child ⇐ parent
For a grammar rule

X0 → X1...Xj...Xn

inherited attributes S(Xj) = f(A(X0),…,A(Xj-1))
Value depends only on attributes of parent, siblings 
(usually left siblings)
E.g.: “expected type” of expression on RHS of 
assignment statement ⇐ type of  variable on LHS 
E.g.: “type” in a type declaration ⇒ identifiers
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Predicate functions
Predicates = Boolean expressions on

∪i A(Xi)

and a set of literal values (e.g., int, float,…)
Valid derivation iff every nonterminal’s predicate true
Predicate false ⇒ rule violation ⇒ ungrammatical
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Attributed/decorated parse trees
Each node in parse tree has (possibly empty) set of 
attributes
When all attributes computed, tree is fully attributed 
(decorated)
Conceptually, parse tree could be produced, then 
decorated
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Example
In Ada, the end of a procedure has specify the 
procedure’s name:

procedure simpleProc … 

… 

end simpleProc; 

Can’t do this in BNF!
Syntax rule:

<proc_def> → procedure <proc_name>[1] 

              <proc_body> end <proc_name>[2]

Predicate:
<proc_name>[1].string == <proc_name>[2].string
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Example 2 (from book)

An attribute grammar for simple assignment statements
1. Syntax rule:  <assign> ! <var> = <expr>
   Semantic rule: 
       <expr>.expected_type ← <var>.actual_type 
2. Syntax rule: <expr> ! <var>[2] + <var>[3]
   Semantic rule:
    <expr>.actual_type ← 
           if (<var>[2].actual_type = int) &
              (<var>[3].actual_type = int)
           then int
           else real
 Predicate: <expr>.actual_type == <expr>.expected_type
3. Syntax rule: <expr> ! <var>
   Semantic rule:  <expr>.actual_type ← 
<var>.actual_type
   Predicate: <expr>.actual_type == <expr>.expected_type
4. Syntax rule: <var> ! A | B | C
   Semantic rule: <var>.actual_type ← 
                                   look-up(<var>.string)

where “look-up(n)” looks up a name in the symbol table and returns its type
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Example 2
actual_type – synthesized attribute

computed sometimes
also intrinsic for <var>

expected_type - inherited attribute
computed in this example
but associated with nonterminal



PL
rogramming
anguages

UMaine School of Computing and Information Science 

Fall 2018

Example – parse tree
A = A + B

Computing attribute values
Could be top-down, if all 
inherited
Could be bottom-up, if all 
synthesized
Mostly mixed

General case: need dependency 
graph to determine evaluation 
order
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Decorating the tree
1. <var>.actual_type ← lookup(A) (Rule 4)
2. <expr>.expected_type ← <var>.actual_type (Rule 1)
3. <var>[2].actual_type ← lookup(A) (Rule 4)
4. <var>[3].actual_type ← lookup(B) (Rule 4)
5. <expr>.actual_type ← (int | real) (Rule 2)
6. <expr>.expected_type == <expr>.actual_type – either true or 

false (Rule 2)
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Decorated tree
Assume A is real, B is int
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Example 3: inherited
<typedef> ::= <type> <id_list> 

Rule: <id_list>.type ← <type>.type 

<type> ::= int     

Rule: <type>.type ← int 

<type> ::= float     

Rule: <type>.type ← float 

<id_list> ::= <id_list>_1 , <id> 

Rules: <id_list>_1.type ← <id_list>.type 

<id>.type ← <id_list>.type 

<id_list> ::= <id> 

Rule: <id>.type ← <id_list>.type
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Parse tree

<typedef>

<type> <id_list>[1]

<id_list>[2] <id>[1]

<id>[2]

int A, B

int

,

A

B

<typedef> ::= <type> <id_list> 
Rule: <id_list>.type ← <type>.type 

<type> ::= int    Rule: <type>.type ← int 
<type> ::= float    Rule: <type>.type ← float 
<id_list> ::= <id_list>_1 , <id> 

Rules: <id_list>_1.type ← <id_list>.type 
<id>.type ← <id_list>.type 

<id_list> ::= <id> 
Rule: <id>.type ← <id_list>.type
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Evaluation order

<typedef>

<type> <id_list>[1]

<id_list>[2] <id>[1]

<id>[2]

int A, B

int

,

A

B

type type

type type

type

<typedef> ::= <type> <id_list> 
Rule: <id_list>.type ← <type>.type 

<type> ::= int    Rule: <type>.type ← int 
<type> ::= float    Rule: <type>.type ← float 
<id_list> ::= <id_list>_1 , <id> 

Rules: <id_list>_1.type ← <id_list>.type 
<id>.type ← <id_list>.type 

<id_list> ::= <id> 
Rule: <id>.type ← <id_list>.type
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Decorated tree

<typedef>

<type> <id_list>[1]

<id_list>[2] <id>[1]

<id>[2]

int A, B

int

,

A

B

type=int type=int

type=int

type=int

type=int

<typedef> ::= <type> <id_list> 
Rule: <id_list>.type ← <type>.type 

<type> ::= int    Rule: <type>.type ← int 
<type> ::= float    Rule: <type>.type ← float 
<id_list> ::= <id_list>_1 , <id> 

Rules: <id_list>_1.type ← <id_list>.type 
<id>.type ← <id_list>.type 

<id_list> ::= <id> 
Rule: <id>.type ← <id_list>.type
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Dynamic Semantics
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Dynamic semantics
Static semantics – still about syntax
Dynamic semantics: describes the meaning of statements, 
program
Why is it needed?

Programmers: need to know what statements mean
Compiler writers:

compiler has to produce semantically-correct code
also for compiler generators (yacc, bison)

Automated verification tools: correctness proofs
Designers: find ambiguities, inconsistencies

Ways of reasoning about semantics: Operational, 
denotation, axiomatic
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Operational Semantics
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Operational semantics
Operational semantics: 

meaning = statement’s effects on a machine
Machine:  real or mathematical
Machine state: contents of memory, registers, PC, etc.
Effects = changes in state
You’ve probably used this informally:

write down variables, values
walk through code, tracking changes

Problems:
Changes in real machine state too small, too numerous
Storage too large & complex

PL
rogramming
anguages

UMaine School of Computing and Information Science 

Fall 2018

Operational semantics
Need: 

intermediate language — coarser state

virtual machine: interpreter for idealized computer
Ex: programming texts

Define a construct in terms of simpler operations
E.g., C loop as conditionals + goto

Your book:

This can describe semantics of most loop constructs

ident = var bin_op var 
ident = unary_op var 
goto label 
if var relop var goto label
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E.g., C’s for loop: 

for (e1;e2;e3) stmt; 

      e1 
loop: if e3 == 0 goto end 
      stmt 
      e2 
      goto loop 
end:  … 

E.g., a while loop:

  ident = var 
head if var relop var goto end 
     <statements> 
     goto head 
end  … 
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Operational semantics
Good for textbooks and manuals, etc.
Used to describe semantics of PL/I
Works for simple semantics – not usually the case 
(certainly not for PL/I)
Relies on reformulating in terms of simpler PL, not 
math…
…can ⟹ imprecise semantics, circularities, 
interpretation differences
Better: use mathematics to describe semantics
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Denotational Semantics
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Denotational semantics
Scott & Strachey (1970)
Based on recursive function theory
Define mathematical object for each language entity
Mapping function: 

Language entities → mathematical objects
Domain = syntactic domain
Range = semantic domain
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Denotational semantics
Meaning of constructs: defined only by value of 
program’s variables:

state s = {<i1,v1>, <i2,v2>,…}
VARMAP(ij,s)

Statement – defined as state-transforming function
Program – collection of functions operating on state

PL
rogramming
anguages

UMaine School of Computing and Information Science 

Fall 2018

Grammar:

Let          be mapping function

Denotational semantics: Binary numbers

Mbin

Mbin(000) = 0
Mbin(010) = 1
Mbin(< binNum > 000) = 2⇥Mbin(< binNum >)
Mbin(< binNum > 010) = 2⇥Mbin(< binNum >) + 1

< binNum > ! 000

| 010

| < binNum >0 00

| < binNum >0 10
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Denotational semantics: Binary numbers
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Denotational semantics: Binary numbers
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Denotational semantics: Expressions 

Assume only:
numbers drawn from      (integers)
variables
binary expressions with two subexpressions and 
an operator

Map an expression onto     ∪ {error}

Z

Z
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Denotational semantics: Loops
Meaning of a loop = value of variables after the loop 
has executed the correct number of times (assuming 
no errors)
Loop is converted from iteration to recursion
Recursive control is mathematically defined by other 
recursive state mapping functions
Recursion is easier to describe mathematically than 
iteration
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Den. semantics: pretest loop

 Ml(while B do L, s) Δ= 
    if Mb(B, s) == undef

        then error

        else if Mb(B, s) == false

            then s
            else if Msl(L, s) == error

                  then error

                  else Ml(while B do L, Msl(L, s))
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Using denotational semantics
Can prove correctness of programs
Rigorous way to think about programs
Can aid language design
But: due to complexity, of little use to most language 
users
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Axiomatic Semantics
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Axiomatic semantics
Based on formal logic (predicate calculus)
Specifies what can be proven about the program — not 
meaning per se
Can be used for program verification
No model of machine state, program state, or state 
changes
Instead: meaning based on relationships between 
variables and constants – same for every execution
Axioms (assertions) defined for each statement type

What is true before and after the statement with 
respect to program variables
This defines the semantics of the statement
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Assertions
Preconditions:  What is true (constraints on the 
program variables) before a statement
Postconditions:  What is true after the statement 
executes
Postcondition of one statement becomes 
precondition of next
Start with postcondition of program itself (last 
statement) 
Go backward to preconditions obtaining at program 
start ⇒ program is correct
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Assertions
Example:

{P} x = cos(y) {x > 0}

What is precondition P?
Possibilities:

{0 ≤ y < 90}, {10 ≤ y ≤ 80}, {-90 <y < 90}...
Which to choose?
Choose weakest precondition

Sometimes can be specified by axiom
Usually only by inference rule
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Axiomatic semantics for assignment
• Given v = E with postcondition Q:

• Precondition P is computed by replacing all instances of 
v with E in Q

• Ex: 
y = 2x + 7, Q = {y > 3}

2x + 7 > 3

2x > -4

x > -2 = P

• Usually written as:
{Qx!E} x = E {Q}

e.g.: {x > -2} y = 2x + 7 {y > 3}
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Axiomatic semantics: if-then-else
Sometimes, need more than an axiom – need an 
inference rule to specify semantics
Inference rule has form:

Inference rule for if-then-else:

⇒ Have to prove case both when B is true and when 
it is false during proof process
Much harder for loops!

S1,S2,...,Sn

S

{B^P} S1 {Q},{¬B^P} S2 {Q}
{P} if B then S1 else S2 {Q}
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Axiomatic semantics: summary
Given formal specification of program P:

⇒ should be possible to prove P is correct 
However: very difficult, tedious in practice

Hard to develop axioms/inference rules for all 
statements in a language
Proof in predicate calculus is exponential, semi-
decidable

Good for reasoning about programs
Not too useful for users or compiler writers
Tools supporting axiomatic semantics:  Java 
Modeling Language (JML), Haskell, Spark
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Semantics
Given  Ms, the denotational semantics mapping function 
for a statement, come up with Msl, the mapping 
function for a list of statements

Find an axiomatic precondition for the following, if 
the postcondition Q = {y = 15}: 

for (i=0,i<3,i++) 

   y = y + x; 

Is there only one?
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Semantics
Each group: assigned operational, denotational, or 
axiomatic semantics
You will defend your assignment as the best 
approach to axiomatic semantics
Make a brief statement; then other groups will 
attack/argue (you’ll have a chance to return the 
favor)


