aYa) ‘,x
(ND IR

Implementin

g Sul

COS 301: Programming Languages

Chapter 10

Attribution: Slides are based on Sebesta’s slides

Overview

Calls and returns
Implementing subprograms
Nested subprograms
Blocks

Dynamic scoping

General semantics of calls/retums

Subprogram linkage: call & return operations of a
language

Semantics of calls
Deal with parameter passing methods
Stack-dynamic allocation of locals

If subprogram nesting supported, arrange access
to nonlocal variables

Save caller’s execution status
Arrange for return from call
Transfer control

General semantics of calls/retums

Semantics of returns:

QOut mode and in-out mode parameters —
return their values

Arrange for return value (if any)
Deallocate stack-dynamic locals
Restore execution status of caller

Return control to caller

Storage required by subprograms

Return value, status information
Parameters

Return address

Locals

Any temporary storage needed (e.g., by code
inserted by the compiler to hold CPU registers of
caller, etcj/

Implementing subprograms

Two parts of a subprogram:

code

non-code: local variables, anything that can change
Non-code = activation record
For languages with no stack-dynamic variables:

No recursion, so = only one activation record active at
once

Can allocate a single activation record per subprogram
With dynamic variables:

Multiple invocations = multiple activation record
instances (stack frames)

Typically stored on the runtime stack
= compiler has to add code to allocate/deallocate AR

Activation records

Format of AR is static
For some languages, size is static

For others size may be dynamic — for example,
if variably-sized arrays are allowed

E.g.: in Ada, size of local array can vary based
on parameter

AR instance: created when a subprogram is called

Activation records

Return
Dynamic link: points to base of caller's stack /... Dynamic link
activation record i
Statically-scoped languages — used for =
femporaries
debugging TO! =
ocal variables
Dynamically-scoped languages — also heap
used to find variables in scope

“Temporaries” — e.g., CPU registers saved by
compiler-inserted code in called function —
may not be needed (f called doesn't use

registers)
Local variables
Scalars allocated on stack

Some language: structures, arrays may be
allocated elsewhere and pointed to by stack

Activation records and environment pointer

Environment pointer (EP) — points = current activation record
base

Not stored on stack; used for addressing of locals, etc.
Initially = main program’s AR's base
When subprogram called:
EP value saved to new activation record as dynamic link..
...then set to base of new activation record
When subprogram returns:
EP « dynamic link
TOS is reset to what hardware expects prior to return

Effectively pops AR from stack

An Example: C Function

void sub(float total, int part)

Return address
{ Dynamic link
Parameter (total)
int list{S]; Parameter (part)
float sum; Local (list[4])
Local (list [3])
Local (list[2])
) Local (list[1])
Local (list[0])
Local (sum)

EaiiOS

Semantic call/return actions

Caller actions:
Create an activation record instance on stack
Compute and put parameters on stack
Pass the return address to the called via stack
Transfer control to the called (via jump or jump sub)
Prolog actions of the called:

Save the old EP in the stack as the dynamic link and create the
new value

Save any registers needed to stack (‘temporaries”)

Allocate local variables

Semantic call/return actions

Epilog actions of the called:

Pass-by-value-result, out-mode, in-out mode parks: move
values = corresponding args

Function: move return value somewhere accessible (e.g.,
register, stack in some languages, etc.)

Restore stack pointer — EP = SP, old dynamic link = EP
Restore any registers

Transfer control to caller (jJump, return sub)

An Example Without Recursion

[void main({ | | void funi(fioat) { | |void fun2(int) { | |void fun3(int g) {...}}
float p; ints, t; inty;
fun1(e); 28 fun3yy); -
= } . ([parameter |
i w4 [Comamicinket—
{ [Return o 20
main calls fun1 (1) AP P al |,
funt calls fun2 () v P
ARl Parameter |« «
fun2 calls fun3 (3) ¢,/ | v
. Oynamic like— for pur, | |22namic in
ol | bl |k { ol ¢
Local
0 ol |, ol |, s
for funt Parameter |+ for s { | Porameter | | g tama | |—Premeter |2
Dynamic linke- Dynamic nker Oynamic nke |
| | Return (to mai: || Return (to mas.)-] Kelum{lcmam)j
L TESTIN) » R S =TI [| - I
acpoint 1 atpant2 AP

AR = activation record iastar:-e

Dynamic chain and local offset

Dynamic (call) chain: collection of dynamic
links in the stack at any point

Access local variables by offset from beginning of
activation record (EP) — offset = local offset

Compiler can determine local offset of variable

Recursion example

int factorial (int n) {

if (n <= 1) return 1;

else return (n * factorial(n - 1));
}
void main() {

int value;

value = factorial(3);

Activation record for factorial

Functional value

Parameter n

Dynamic link

Return address

e ks |

[[Fonctomsiae T2 "
AR Paameter | 3| =
tor faccorsal
Oynamiclink_| o
Retu (1o 7a1 (=T
o et ‘>, 1_“ Fonctonatvave [7|
iy - T |l
Finteall torfaceoziei | [oynamicink | o1
el
Fonctorataue [77 o | [pomter | 2n
Parameter | 2| 1 foracxorial | [oyamiciink | o]
et o o | o |
I Seerea
Functional vlue | 7 Faahs Pameter | 3 |n
First AR Parameter |3 | n for Eactorisl Oyramicink | o]
for faczoriat |
e 1 il
o i EA o o] Jeee

ik (2] Jwanem .
ot m

o
o 1] : ;
st | [rwameer [0 Returning frgm factorial
ottt [:
Funcionalvave | 7 [[Foncoonatvaiee T2] 70
sconn | | pumer scoron | [peomeie [2]
toraceorsar] [omemci | o] ynamicior_| o}
Functionalvave | 7 Functionalvalve | 7
AR Parameter Paameter |3
wasoiat] [e | o] Oyamic k| o]
G e G ||
S I D ST T 1)
oz
s
L
| .
Functionalvaive | 6|7 TR
| [o |3
A 7 } A Ttz
o

Atpaszon 2 [
i Facsoriab neain,
st call compered “oalresis

Implementing dynamic scoping

1. Deep access:

Nonlocal references found by searching ARlIs in
dynamic chain

Length of chain not known ahead of time

Every ARI has to have variable names (unlike
static scoping)
2. Shallow access:

Put all locals in central place
Create a separate stack for each variable name

Central table maps variable names to stacks

Implementing dynamic scoping with
shallow access

void sub3() {
int x, zj

X=u+v;

}'" subl sub2

void sub2() { subl | sub3 subl
Int w, x;

main main sub2 sub3 subl

B "

void subl() { " v * z N
int v, w;

- (The names in the stack cells indicate the

void main() { program units of the variable declaration.)
int v, u;

B

Static scoping

Some non-C-based, static-scoped languages (e.g.,
Fortran 95+, Ada, Python, JavaScript, Ruby, and Lua)
use stack-dynamic local variables and allow
subprograms to be nested

Variables in enclosing subprograms can be accessed
— in scope of enclosed subprogram

These are local variables = reside in some AR
How to locate?

Find the right AR instance

Find the correct offset in the AR instance

Locating a non-local reference

Finding the offset: local offset in correct AR instance
But how to find the correct AR instance?

Lexical scoping: only static ancestors’ variables can
be accessed

Nested subprograms = static ancestors’ AR is
somewhere on the stack already

Can't just search back through the stack (as per
dynamic scoping) for a name

Have to find the static ancestor, not any intervening ARs
that have the same variable name

Static scoping

Static link: a (new) entry in an activation record
— instance of static parent’s AR — also: static
scope pointer

Static chain — static links connecting static
ancestors of an AR instance

To find non-local reference — traverse static
chain

Compiler can determine how far back to search
based on a scope’s static_depth — how deeply
it’s nested in the outermost scope

Static scoping

e Compiler/interpreter can determine the
chain_offset (nesting_depth)

e How far back in the chain to find the nonlocal
reference

e chain_offset = static_depth - (static_depth of
scope in which it was declared)

® References to variables can be represented by:
(chain_offset, local_offset)

where local_offset = offset of var in AR instance at
chain_offset

Example Ada Program

Not: all dynaie links in this figure are wrong

Intager; A-03) e

A L anr
procoduro subl is R

o or

Main_2 calls Bigsub

oo Bigsub calls Sub2 s
i Sub2 calls Sub3
enss ot vain.2) Sub3callsSubl

s

Static chain maintenance

On return — procedure Main_2 is
Nothing need be done procedure Bigsub is N {

Static chain of remaining ~ srocessee s 1+
stack frames is still valid e o

B, E : Integer;

procedure Sub3 is

C, & : Integer;

DS PR

Static chain maintenance

On call —

procedure Hain 2 is

Dynamic link in AR instance — just old :c;‘_””b . |
environment pointer (EP), TOS — EP *7*"***
Static link — most recent AR of static
parent

But how to find it?

procedure Subl is

1. Search the dynamic chain; or

2. Treat subprogram calls like variable

references/definitions 1RGSR Sub2(x ¢ sm
Compiler: determine 2 2 neever)
nesting_depth of called relative to proceduze subs is
caller

C, B+ Integer;,.

Store this, use it during call Ceale ga ot o

subl;

Works — unless caller is o
subprogram passed as parameter B O

Static chain problems

Nonlocal reference can be slow if nesting depth
large —usually not too bad, since few nonlocal refs

What to do with subprograms as parameters?
Difficult to determine timing
Cost of nonlocal references difficult to determine

Nesting depth can change when code is
changed = different timing

May need to know timing for realtime or time-
critical applications

Blocks

Blocks: user-defined local scopes
Example (C):
{int temp;
temp = list [upper];
list [upper] = list [lower];
list [lower] = temp

Temp’s storage is created on block entry, goes away on exit
Advantage of blocks:

variables declared within won't clash with other names
elsewhere in program

only use storage as needed

Implementing blocks

One way:

Treat blocks as parameterless subprograms — always
“called” from same location

Each block has activation record (stack frame)
Instance is created each time block is executed
But costly to create activation records!

Another way:
Compiler knows max storage required for block

Allocate that amount of space after local vars in
activation record

Summary

Subprogram linkage = addtional work by implementation (compiler or interpreter) = costly
Simple subprograms with no stack-dynamic variables — simple
Stack-dynamic languages — more complex

Stack-dynamic subprograms require activation record in adition to code
Activation record instance contains:
formal parameters.

retun address

temporaries

dynamic link

static link (f lexical scoping)

local variables

possibly block-local variables

Static chains — primary method of accessing nonlocal variables in static-scoped languages
with nested subprograms

Dynamic-scoped language: dynamic chain or some central variable table nonlocal access

