
COS 301 — Programming Languages UMAINE CIS

Implementing Subprograms
COS 301: Programming Languages

COS 301 — Programming Languages UMAINE CIS

• Chapter 10

• Attribution: Slides are based on Sebesta’s slides

COS 301 — Programming Languages UMAINE CIS

Overview
• Calls and returns

• Implementing subprograms

• Nested subprograms

• Blocks

• Dynamic scoping

1-2

COS 301 — Programming Languages UMAINE CIS

General semantics of calls/returns

• Subprogram linkage: call & return operations of a
language

• Semantics of calls

• Deal with parameter passing methods

• Stack-dynamic allocation of locals

• If subprogram nesting supported, arrange access
to nonlocal variables

• Save caller’s execution status

• Arrange for return from call

• Transfer control

1-3

COS 301 — Programming Languages UMAINE CIS

General semantics of calls/returns

• Semantics of returns:

• Out mode and in-out mode parameters →
return their values

• Arrange for return value (if any)

• Deallocate stack-dynamic locals

• Restore execution status of caller

• Return control to caller

1-4

COS 301 — Programming Languages UMAINE CIS

Storage required by subprograms

• Return value, status information
• Parameters

• Return address
• Locals

• Any temporary storage needed (e.g., by code
inserted by the compiler to hold CPU registers of
caller, etc.)

1-6

COS 301 — Programming Languages UMAINE CIS

Implementing subprograms
• Two parts of a subprogram:

• code
• non-code: local variables, anything that can change

• Non-code ⟹ activation record
• For languages with no stack-dynamic variables:

• No recursion, so ⟹ only one activation record active at
once

• Can allocate a single activation record per subprogram
• With dynamic variables:

• Multiple invocations ⟹ multiple activation record
instances (stack frames)

• Typically stored on the runtime stack
• ⟹ compiler has to add code to allocate/deallocate AR

1-7

COS 301 — Programming Languages UMAINE CIS

Activation records

• Format of AR is static

• For some languages, size is static

• For others size may be dynamic — for example,
if variably-sized arrays are allowed

• E.g.: in Ada, size of local array can vary based
on parameter

• AR instance: created when a subprogram is called

1-12

COS 301 — Programming Languages UMAINE CIS

Activation records

• Dynamic link: points to base of caller’s
activation record

• Statically-scoped languages — used for
debugging

• Dynamically-scoped languages — also
used to find variables in scope

• “Temporaries” — e.g., CPU registers saved by
compiler-inserted code in called function —
may not be needed (if called doesn’t use
registers)

• Local variables
• Scalars allocated on stack

• Some language: structures, arrays may be
allocated elsewhere and pointed to by stack

1-12

TOS

Return
Dynamic link
Parameters
Temporaries
Local variables

heap

stack

COS 301 — Programming Languages UMAINE CIS

Activation records and environment pointer

• Environment pointer (EP) — points → current activation record
base

• Not stored on stack; used for addressing of locals, etc.

• Initially → main program’s AR’s base

• When subprogram called:

• EP value saved to new activation record as dynamic link…

• …then set to base of new activation record

• When subprogram returns:

• EP ← dynamic link

• TOS is reset to what hardware expects prior to return

• Effectively pops AR from stack

COS 301 — Programming Languages UMAINE CIS

An Example: C Function
void sub(float total, int part)
{

 int list[5];
 float sum;
	…

}

1-13

Return address

Dynamic link
Parameter (total)

Parameter (part)

Local (list[4])
Local (list [3])

Local (list[2])

Local (list[1])
Local (list[0])

Local (sum)

TOS

COS 301 — Programming Languages UMAINE CIS

Semantic call/return actions

• Caller actions:

• Create an activation record instance on stack

• Compute and put parameters on stack

• Pass the return address to the called via stack

• Transfer control to the called (via jump or jump sub)

• Prolog actions of the called:

• Save the old EP in the stack as the dynamic link and create the
new value

• Save any registers needed to stack (“temporaries”)

• Allocate local variables

1-14

COS 301 — Programming Languages UMAINE CIS

Semantic call/return actions
• Epilog actions of the called:

• Pass-by-value-result, out-mode, in-out mode parks: move
values → corresponding args

• Function: move return value somewhere accessible (e.g.,
register, stack in some languages, etc.)

• Restore stack pointer — EP → SP, old dynamic link → EP

• Restore any registers

• Transfer control to caller (jump, return sub)

1-15

COS 301 — Programming Languages UMAINE CIS

An Example Without Recursion
void fun1(float r) {
		 int s, t;
		 ...
		 fun2(s);
		 ...
}

Copyright © 2012 Addison-Wesley. All rights reserved. 1-16

main calls fun1

fun1 calls fun2

fun2 calls fun3

void fun2(int x) {

	 	 int y;

	 	 ...

	 	 fun3(y);

	 	 ...

}

void fun3(int q) {…}}
void main() {

	 	 float p;

	 	 ...

	 	 fun1(p);

	 	 ...

}

(1)
(2)
(3)

COS 301 — Programming Languages UMAINE CIS

Dynamic chain and local offset
• Dynamic (call) chain: collection of dynamic

links in the stack at any point

• Access local variables by offset from beginning of
activation record (EP) — offset = local offset

• Compiler can determine local offset of variable

COS 301 — Programming Languages UMAINE CIS

Recursion example
int factorial (int n) {

if (n <= 1) return 1;
else return (n * factorial(n - 1));

}
void main() {

int value;
value = factorial(3);

}

COS 301 — Programming Languages UMAINE CIS

Activation record for factorial

COS 301 — Programming Languages UMAINE CIS

Stacks for calls to factorial

COS 301 — Programming Languages UMAINE CIS

Returning from factorial

COS 301 — Programming Languages

Implementing dynamic scoping
1. How would you find non-local variables: be

precise!

2. Cool. Now think of another way.

COS 301 — Programming Languages

2. Shallow access:

• Put all locals in central place

• Create a separate stack for each variable name

• Central table maps variable names to stacks
UMAINE CIS

Implementing dynamic scoping
1. Deep access:

• Nonlocal references found by searching ARIs in
dynamic chain

• Length of chain not known ahead of time

• Every ARI has to have variable names (unlike
static scoping)

COS 301 — Programming Languages UMAINE CIS

Implementing dynamic scoping with
shallow access

Copyright © 2012 Addison-Wesley. All rights reserved. 1-35

void sub3() {
int x, z;

 x = u + v;
 …
}

void sub2() {
 int w, x;

 …
}

void sub1() {
 int v, w;

 …
}

void main() {
 int v, u;

 …
}

COS 301 — Programming Languages UMAINE CIS

Static scoping
• Some non-C-based, static-scoped languages (e.g.,

Fortran 95+, Ada, Python, JavaScript, Ruby, and Lua)
use stack-dynamic local variables and allow
subprograms to be nested

• Variables in enclosing subprograms can be accessed
— in scope of enclosed subprogram

• These are local variables ⟹ reside in some AR

• How to locate?

• Find the right AR instance

• Find the correct offset in the AR instance

COS 301 — Programming Languages UMAINE CIS

Locating a non-local reference
• Finding the offset: local offset in correct AR instance

• But how to find the correct AR instance?

• Lexical scoping: only static ancestors’ variables can
be accessed

• Nested subprograms ⟹ static ancestors’ AR is
somewhere on the stack already

• Can’t just search back through the stack (as per
dynamic scoping) for a name

• Have to find the static ancestor, not any intervening ARs
that have the same variable name

COS 301 — Programming Languages UMAINE CIS

Static scoping
• Static link: a (new) entry in an activation record
→ instance of static parent’s AR — also: static
scope pointer

• Static chain — static links connecting static
ancestors of an AR instance

• To find non-local reference → traverse static
chain

• Compiler can determine how far back to search
based on a scope’s static_depth — how deeply
it’s nested in the outermost scope

start here, 12/9/14

COS 301 — Programming Languages UMAINE CIS

Static scoping
• Compiler/interpreter can determine the

chain_offset (nesting_depth)
• How far back in the chain to find the nonlocal

reference
• chain_offset = static_depth - (static_depth of

scope in which it was declared)
• References to variables can be represented by:

(chain_offset, local_offset)
 where local_offset = offset of var in AR instance at

chain_offset

COS 301 — Programming Languages UMAINE CIS

Example Ada Program
procedure Main_2 is
 X : Integer;

 procedure Bigsub is

 A, B, C : Integer;
 procedure Sub1 is

 A, D : Integer;

 begin -- of Sub1
 A := B + C; <-----------------------1

 end; -- of Sub1
 procedure Sub2(X : Integer) is

 B, E : Integer;

 procedure Sub3 is
 C, E : Integer;

 begin -- of Sub3
 Sub1;

 E := B + A: <--------------------2

 end; -- of Sub3
 begin -- of Sub2

 Sub3;

 A := D + E; <-----------------------3
 end; -- of Sub2 }

 begin -- of Bigsub
 Sub2(7);

 end; -- of Bigsub

 begin
 Bigsub;

end; of Main_2 }

Main_2 calls Bigsub
Bigsub calls Sub2
	 Sub2 calls Sub3
	 Sub3 calls Sub1

A = (0,3)

B= (1,4)

Note: all dynamic links in this figure are wrong!

COS 301 — Programming Languages UMAINE CIS

Static chain maintenance
• On return —

• Nothing need be done

• Static chain of remaining
stack frames is still valid

procedure Main_2 is

 X : Integer;

 procedure Bigsub is

 A, B, C : Integer;

 procedure Sub1 is

 A, D : Integer;

 begin -- of Sub1

 A := B + C;

 end; -- of Sub1

 procedure Sub2(X :
Integer) is

 B, E : Integer;

 procedure Sub3 is

 C, E : Integer;

 begin -- of Sub3

 Sub1;

 E := B + A:
2 static links back

COS 301 — Programming Languages

• But how to find it?

1. Search the dynamic chain; or

2. Treat subprogram calls like variable
references/definitions

• Compiler: determine
nesting_depth of called relative to
caller

• Store this, use it during call

• Works — unless caller is
subprogram passed as parameter

• On call —

• Dynamic link in AR instance — just old
environment pointer (EP) , TOS → EP

• Static link → most recent ARI of static
parent

procedure Main_2 is

 X : Integer;

 procedure Bigsub is

 A, B, C : Integer;

 procedure Sub1 is

 A, D : Integer;

 begin -- of Sub1

 A := B + C;

 end; -- of Sub1

 procedure Sub2(X :
Integer) is

 B, E : Integer;

 procedure Sub3 is

 C, E : Integer;

 begin -- of Sub3

 Sub1;

 E := B + A:

UMAINE CIS

Static chain maintenance

2 static links back

COS 301 — Programming Languages UMAINE CIS

Static chain problems
• Nonlocal reference can be slow if nesting depth

large —usually not too bad, since few nonlocal refs

• What to do with subprograms as parameters?

• Difficult to determine timing

• Cost of nonlocal references difficult to determine

• Nesting depth can change when code is
changed ⟹ different timing

• May need to know timing for realtime or time-
critical applications

COS 301 — Programming Languages UMAINE CIS

Blocks
• Blocks: user-defined local scopes

• Example (C):
{int temp;
 temp = list [upper];
 list [upper] = list [lower];
 list [lower] = temp
}

• Temp’s storage is created on block entry, goes away on exit

• Advantage of blocks:

• variables declared within won’t clash with other names
elsewhere in program

• only use storage as needed

COS 301 — Programming Languages UMAINE CIS

Implementing blocks
• One way:

• Treat blocks as parameterless subprograms — always
“called” from same location

• Each block has activation record (stack frame)

• Instance is created each time block is executed

• But costly to create activation records!

• Another way:

• Compiler knows max storage required for block

• Allocate that amount of space after local vars in
activation record

COS 301 — Programming Languages UMAINE CIS

Summary
• Subprogram linkage ⟹ additional work by implementation (compiler or interpreter) ⟹ costly

• Simple subprograms with no stack-dynamic variables — simple

• Stack-dynamic languages — more complex

• Stack-dynamic subprograms require activation record in addition to code

• Activation record instance contains:

• formal parameters

• return address

• temporaries
• dynamic link
• static link (if lexical scoping)
• local variables
• possibly block-local variables

• Static chains — primary method of accessing nonlocal variables in static-scoped languages
with nested subprograms

• Dynamic-scoped language: dynamic chain or some central variable table nonlocal access

