
COS 301 — Programming Languages UMAINE CIS

Support for Object-Oriented
Programming

COS 301 — Programming Languages

COS 301 — Programming Languages UMAINE CIS

• Chapter 12

• Slides draw heavily on Sebesta’s slides

COS 301 — Programming Languages UMAINE CIS

OOP
• Object-oriented programming, according to the person who

invented the term (Alan Kay), needs: (from http://community.schemewiki.org/?
object-oriented-programming)

• Actors model — basically, “actors” (objects) respond to
messages as they locally see fit; not a function call situation

• Encapsulation

• Protection

• Ad hoc polymorphism

• NO inheritance

•

COS 301 — Programming Languages UMAINE CIS

OOP
• According to Kay,

OOP to me means only messaging, local retention
and protection and hiding of state-process, and
extreme late-binding of all things. It can be done in
Smalltalk and in LISP. There are possibly other
systems in which this is possible, but I'm not aware
of them.

• Maybe a bit extreme for modern tastes

COS 301 — Programming Languages UMAINE CIS

OOP
• Objects — special kind of abstract data type

• Encapsulate both data and process

• Some OOP languages support imperative
programming: e.g., Ada, C++, Swift

• Some support functional programming — e.g., Lisp/
CLOS, Lisp/Flavors, Scheme’s various object-
system add-ons, Racket

• Some languages don’t support other paradigms, but
use imperative structures — e.g., Java, C#

• Some are pure OOP — e.g., Smalltalk, Ruby

COS 301 — Programming Languages UMAINE CIS

Object-oriented programming
• Three major language features:

• Abstract data types

• Inheritance — central theme in OOP and OOP
languages (contra Kay)

• Polymorphism

COS 301 — Programming Languages UMAINE CIS

Inheritance
• Inheritance — new classes defined in terms of

existing ones → inherit common parts

• Allows reuse of ADTs with changes — may be
difficult without, since ADTs often need changes
to be made to work for particular application

• Defines classes in a hierarchy — ADTs are all
independent and at same level

• Reuse ⟹ productivity increases

COS 301 — Programming Languages UMAINE CIS

Object-oriented concepts
• ADTs are usually called classes

• Class instances are called objects

• Subclass or derived class — inherits from parent
(superclass)

• Subprograms that operate on (belong to) objects
= methods

• Variables encapsulated by objects = instance
variables

COS 301 — Programming Languages UMAINE CIS

Object-oriented concepts

• Method calls — sometimes called messages

• Collection of methods of an object — its
message protocol or message interface

• Messages have method name, destination object

COS 301 — Programming Languages UMAINE CIS

Inheritance
• Generally default = inherit all from parent

• Inheritance can be complicated by access controls

• Class can hide entities from subclasses

• Class can hide entities from its “clients”

• Some languages, can hide entities from clients, but let
subclasses see them

• Subclass can modify inherited method

• Can override default (inherited) — overrides the parent’s method

• Can execute local methods before/after/around the default
method

Copyright © 2012 Addison-Wesley. All rights reserved. 1-8

COS 301 — Programming Languages UMAINE CIS

Subclass differences from parent
• Parent can define some variables with private access —

not visible in subclass

• Subclass can add instance variables, method to those
inherited

• Subclass can modify behavior of inherited methods.

COS 301 — Programming Languages UMAINE CIS

OOP
• Most OO languages allow both class- and instance-level entities:

• Variables — class variables, instance variables

• Methods — class methods, instance methods

• Inheritance:

• Single inheritance — all OO languages

• Multiple inheritance

• Most OO languages

• Sometimes problematic — what to inherit when there is a conflict?

• Disadvantages for reuse

• Creates interdependencies among classes → complicates
maintenance

• May be functionally useful, but not logical, for a class to inherit from
another (⇒ odd ontological relationships)

COS 301 — Programming Languages UMAINE CIS

Dynamic binding in OOP
• Since a hierarchy of classes exist, can exploit for polymorphism

• Polymorphic variable: can hold objects of a class or any of its
descendants

• Can even point to top of object hierarchy → any object

• Dynamic binding:

• Some methods of some subclasses may override a parent’s

• Which method of which class is called is decided at run-time

• Benefits:

• The usual ones for polymorphism

• Also: easy to extend software system during development and
maintenance

Copyright © 2012 Addison-Wesley. All rights reserved. 1-11

COS 301 — Programming Languages UMAINE CIS

Dynamic binding
• Abstract (virtual) method: only defines a

protocol, not a definition

• Abstract class:

• Includes at least one abstract method

• Cannot be instantiated

• Ex: Vehicle
virt. method: move
variables: color, …

Boat
method: move

Automobile
method: move

Aircraft
method: move

COS 301 — Programming Languages UMAINE CIS

OOP design issues
• Is everything an object?

• Subclasses = subtypes?

• Single or multiple inheritance?

• Allocating and deallocating objects

• Dynamic and static binding

• Nested classes?

• Object initialization

COS 301 — Programming Languages UMAINE CIS

Exclusivity of objects
• Some languages: everything is an object — e.g., Ruby, Smalltalk

• Advantage: elegance, purity, homogeneity of all data structures

• Disadvantage: can be slow for simple objects

• Other languages: objects are added to a complete typing system — Lisp,
Python,…

• Advantage - fast operations on simple objects

• Disadvantage - results in a confusing type system (two kinds of entities)

• Other languages: use imperative-style typing system for primitives, but
everything else is an object — Java, Swift, …

• Advantage - fast operations on simple objects and a relatively small
typing system

• Disadvantage - still some confusion because of the two type systems

COS 301 — Programming Languages UMAINE CIS

Are (sub)classes (sub)types?
• Most OO languages: yes

• Basically: does an “isa” relationship hold between parent class and subclass?

• If so, then instances of subclass must behave the same (more or less) as
instances of the parent

• Subclass can only:

• Add variables and methods

• Override methods in “compatible” ways

• Also has some implication for ontology the programmer has in mind

• Subclasses are made for ontological reasons, not just for functionality and
reuse

• E.g., make airplane subclass of vehicle, not bird — even though “fly”
method could be inherited in the latter

COS 301 — Programming Languages UMAINE CIS

Single or multiple inheritance?
• Advantages of multiple inheritance:

• convenient — methods, variables from multiple
sources

• ontologically-useful — aircraft isa vehicle, flying-
object, bird isa animal, flying-object

• Disadvantages:

• Complexity of language, implementation (e.g.,
handling name collisions)

• Potential inefficiency — increased cost of dynamic
binding (search problem)

Copyright © 2012 Addison-Wesley. All rights reserved. 1-16

COS 301 — Programming Languages UMAINE CIS

Object allocation & deallocation
• Where do objects live?

• If treated as other ADTs, can be allocated anywhere: run-time stack, heap
(via new, e.g.)

• If heap-dynamic only (e.g., Java, Lisp, Python,…)
• References can be uniform via pointer/reference variable
• Simplifies assignment; dereferencing can be implicit

• If stack-dynamic only: can ⇒ object slicing

• Object of subclass A may be larger than one of its parent class B
• Suppose subroutine expects instance of B…
• …pass instance of A…
• …not enough room allocated, some instance variables not copied —

or worse
• Kind of unavoidable with call-by-value and polymorphism by classes

• Deallocation: automatic (GC) or explicit?

COS 301 — Programming Languages UMAINE CIS

Dynamic and static binding
• Static binding — can’t do polymorphism using

classes

• Dynamic binding — can be inefficient

• Maybe: allow user to specify

COS 301 — Programming Languages UMAINE CIS

Nested classes
• Some languages allow it (e.g., Java, Python, Ruby), others don’t

(Lisp)

• Why?

• Sometimes only one class (e.g., Tree) needs a particular new
class (e.g., Node)

• Defining Node outside the Tree class → clutters the object
system, may cause name clashes, etc.

• Avoid this if we nest Node inside Tree class

• Sometimes nesting is inside a subprogram rather than directly in
class

• Issue: which parts of the nested class should be visible to
parent and vice versa?

COS 301 — Programming Languages UMAINE CIS

Object initialization
• Initialize objects when created — e.g., implicit vs

explicit initialization?

• Parent class variables — how are they initialized
when subclass object created?

COS 301 — Programming Languages UMAINE CIS

Example: Smalltalk
• Pure OO language ⇒ everything is an object

• All objects have local memory
• All computation: messages → objects
• No imperative structure
• Heap-dynamic objects
• Implicit deallocation
• Inheritance

• Subclass inherits all instance variables, methods (class
and instance) of superclass

• Subclasses are subtypes
• Inheritance is implementation-dependent
• No multiple inheritance

COS 301 — Programming Languages UMAINE CIS

Smalltalk
• All messages: method binding is dynamic

• Type checking: only dynamic type checking

• Only error is when object cannot handle a message (duck typing)

• Evaluation

• Simple, regular syntax

• Powerful, small language

• Slow compared to compiled languages

• Errors can’t be caught till runtime

• Introduced the idea of a GUI

• Greatest legacy — advanced/established OOP

COS 301 — Programming Languages UMAINE CIS

Support for OOP in C++
• General Characteristics:

• Evolved from C and SIMULA 67

• Among the most widely used OOP languages

• Mixed typing system

• Constructors and destructors

• Elaborate access controls to class entities

Copyright © 2012 Addison-Wesley. All rights reserved. 1-25

COS 301 — Programming Languages UMAINE CIS

Support for OOP in C++ (continued)

• Inheritance

– A class need not be the subclass of any class

– Access controls for members are

– Private (visible only in the class and friends) (disallows
subclasses from being subtypes)

– Public (visible in subclasses and clients)

– Protected (visible in the class and in subclasses, but not
clients)

Copyright © 2012 Addison-Wesley. All rights reserved. 1-26

COS 301 — Programming Languages UMAINE CIS

Support for OOP in C++

• Subclassing process can be declared with
access controls (private or public) — which
define potential changes in access by subclasses

• Private derivation - inherited public and
protected members are private in the subclasses

• Public derivation public and protected members
are also public and protected in subclasses

Copyright © 2012 Addison-Wesley. All rights reserved. 1-27

COS 301 — Programming Languages UMAINE CIS

Inheritance Example in C++
class base_class {
 private:
 int a;
 float x;
 protected:
 int b;
 float y;
 public:
 int c;
 float z;
};

class subclass_1 : public base_class { … };
// In this one, b and y are protected and
// c and z are public

class subclass_2 : private base_class { … };
// In this one, b, y, c, and z are private,
// and no derived class has access to any
// member of base_class

Copyright © 2012 Addison-Wesley. All rights reserved. 1-28

COS 301 — Programming Languages UMAINE CIS

Re-exportation in C++
• Member not accessible in a subclass (because of

private derivation) → can be declared to be
visible there using the scope resolution operator
(::), e.g.,

class subclass_3 : private base_class {
 base_class :: c;

 	 …
}

Copyright © 2012 Addison-Wesley. All rights reserved. 1-29

COS 301 — Programming Languages UMAINE CIS

Re-exportation
• One motivation for using private derivation

• Class provides members that must be visible →
public members

• Derived class adds some new members, but
does not want its clients to see parent’s
members

Copyright © 2012 Addison-Wesley. All rights reserved. 1-30

COS 301 — Programming Languages UMAINE CIS

Support for OOP in C++ (continued)

• Multiple inheritance

• Two inherited members with the same name:
both can be referenced using the scope
resolution operator (::)

class Thread { ... }

class Drawing { ... }

class DrawThread : public Thread, public Drawing {
… }

Copyright © 2012 Addison-Wesley. All rights reserved. 1-31

COS 301 — Programming Languages UMAINE CIS

Support for OOP in C++ (continued)

• Dynamic Binding

• Virtual method: can be called through
polymorphic variables and dynamically bound to
messages

• Pure virtual function has no definition at all

• Class that has at least one pure virtual function
is an abstract class

Copyright © 2012 Addison-Wesley. All rights reserved. 1-32

COS 301 — Programming Languages UMAINE CIS

Support for OOP in C++ (continued)

• Evaluation

• C++ provides extensive access controls (unlike Smalltalk)

• C++ provides multiple inheritance

• In C++, the programmer must decide at design time
which methods will be statically bound and which must
be dynamically bound

• Static binding is faster!

• Smalltalk type checking is dynamic (flexible, but
somewhat unsafe)

• Because of interpretation and dynamic binding, Smalltalk
is ~10 times slower than C++

Copyright © 2012 Addison-Wesley. All rights reserved. 1-35

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Objective-C
• Like C++, Objective-C adds support for OOP to C

• Design was at about the same time as that of C++

• Largest syntactic difference: method calls are
messages

• Interface section of a class declares the instance
variables and the methods

• Implementation section of a class defines the
methods

• Classes cannot be nested

Copyright © 2012 Addison-Wesley. All rights reserved. 1-36

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Objective-C
• Inheritance

• Single inheritance only

• Every class must have a parent

• NSObject is the base class

 @interface myNewClass: NSObject { … }
 … 

@end

• Because base class data members can be declared to be private, subclasses are
not necessarily subtypes

• Any method that has the same name, same return type, and same number and
types of parameters as an inherited method overrides the inherited method

• An overriden method can be called through super
• All inheritance is public (unlike C++)

Copyright © 2012 Addison-Wesley. All rights reserved. 1-37

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Objective-C
• Inheritance (continued)

• Objective-C has two approaches besides subclassing to extend a class

• A category is a secondary interface of a class that contains
declarations of methods (no instance variables)

 #import ″Stack.h″

 @interface Stack (StackExtend)

 -(int) secondFromTop;

 -(void) full;

 @end

• A category is a mixin – its methods are added to the parent class

• The implementation of a category is in a separate implementation:
@implementation Stack (StackExtend)

Copyright © 2012 Addison-Wesley. All rights reserved. 1-38

COS 301 — Programming Languages UMAINE CIS

Support for OOP in
• Inheritance (continued)

• The other way to extend a class: protocols

• A protocol is a list of method declarations (like Java’s interfaces)
 @protocol MatrixOps
 -(Matrix *) add: (Matrix *) mat;

 -(Matrix *) subtract: (Matrix *) mat;

 @optional

 -(Matrix *) multiply: (Matrix *) mat;

 @end

• MatrixOps is the name of the protocol

• The add and subtract methods must be implemented by class that uses
the protocol

• A class that adopts a protocol must specify it
 @interface MyClass: NSObject <YourProtocol>

Copyright © 2012 Addison-Wesley. All rights reserved. 1-39

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Objective-C
• Dynamic Binding

• Different from other OOP languages – a
polymorphic variable is of type id

• An id type variable can reference any object

• The run-time system keeps track of the type of
the object that an id type variable references

• If a call to a method is made through an id type
variable, the binding to the method is dynamic

Copyright © 2012 Addison-Wesley. All rights reserved. 1-40

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Objective-C
• Evaluation

• Support is adequate, with the following
deficiencies:

• There is no way to prevent overriding an
inherited method

• The use of id type variables for dynamic binding
is overkill – these variables could be misused

• Categories and protocols are useful additions

Copyright © 2012 Addison-Wesley. All rights reserved. 1-41

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Java
• Because of its close relationship to C++, focus is on the

differences from that language

• General characteristics

• All data are objects except the primitive types

• All primitive types have wrapper classes that store
one data value

• All objects are heap-dynamic, are referenced through
reference variables, and most are allocated with new

• A finalize method is implicitly called when the garbage
collector is about to reclaim the storage occupied by
the object

Copyright © 2012 Addison-Wesley. All rights reserved. 1-42

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Java
• Inheritance

• Single inheritance supported only, but there is an
abstract class category that provides some of the
benefits of multiple inheritance (interface)

• An interface can include only method declarations
and named constants, e.g.,

	 public interface Comparable <T> {

	 	 public int comparedTo (T b);
	 }

• Methods can be final (cannot be overriden)

Copyright © 2012 Addison-Wesley. All rights reserved. 1-43

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Java
• Dynamic binding

• In Java, all messages are dynamically bound to
methods, unless the method is final (i.e., it
cannot be overriden, therefore dynamic binding
serves no purpose)

• Static binding is also used if the method is static
or private both of which disallow overriding

Copyright © 2012 Addison-Wesley. All rights reserved. 1-44

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Java
• Nested Classes

• All are hidden from all classes in their package, except for
the nesting class

• Nonstatic classes nested directly are called inner classes

• An innerclass can access members of its nesting class

• A static nested class cannot access members of its
nesting class

• Nested classes can be anonymous

• A local nested class is defined in a method of its nesting
class

• No access specifier is used

Copyright © 2012 Addison-Wesley. All rights reserved. 1-45

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Java
• Evaluation

• Design decisions to support OOP are similar to
C++

• No support for procedural programming

• No parentless classes

• Dynamic binding is used as “normal” way to
bind method calls to method definitions

• Uses interfaces to provide a simple form of
support for multiple inheritance

Copyright © 2012 Addison-Wesley. All rights reserved. 1-46

COS 301 — Programming Languages UMAINE CIS

Support for OOP in C#
• General characteristics

• Support for OOP similar to Java

• Includes both classes and structs

• Classes are similar to Java’s classes

• structs are less powerful stack-dynamic
constructs (e.g., no inheritance)

Copyright © 2012 Addison-Wesley. All rights reserved. 1-47

COS 301 — Programming Languages UMAINE CIS

Support for OOP in C#
• Inheritance

• Uses the syntax of C++ for defining classes

• A method inherited from parent class can be
replaced in the derived class by marking its
definition with new

• The parent class version can still be called
explicitly with the prefix base:

base.Draw()

Copyright © 2012 Addison-Wesley. All rights reserved. 1-48

COS 301 — Programming Languages UMAINE CIS

Support for OOP in C#
• Dynamic binding

• To allow dynamic binding of method calls to
methods:

• The base class method is marked virtual

• The corresponding methods in derived classes are
marked override

• Abstract methods are marked abstract and
must be implemented in all subclasses

• All C# classes are ultimately derived from a
single root class, Object

Copyright © 2012 Addison-Wesley. All rights reserved. 1-49

COS 301 — Programming Languages UMAINE CIS

Support for OOP in C#
• Nested classes

• A C# class that is directly nested in a nesting
class behaves like a Java static nested class

• C# does not support nested classes that behave
like the non-static classes of Java

Copyright © 2012 Addison-Wesley. All rights reserved. 1-50

COS 301 — Programming Languages UMAINE CIS

Support for OOP in C#
• Evaluation

• C# is a relatively recently designed C-based OO
language

• The differences between C#’s and Java’s
support for OOP are relatively minor

Copyright © 2012 Addison-Wesley. All rights reserved. 1-51

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Ada
• General Characteristics

• OOP was one of the most important extensions to
Ada 83

• Encapsulation container is a package that defines a
tagged type

• A tagged type is one in which every object includes
a tag to indicate during execution its type (the tags
are internal)

• Tagged types can be either private types or records

• No constructors or destructors are implicitly called

Copyright © 2012 Addison-Wesley. All rights reserved. 1-52

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Ada 95 (continued)

• Inheritance

• Subclasses can be derived from tagged types

• New entities are added to the inherited entities
by placing them in a record definition

• All subclasses are subtypes

• No support for multiple inheritance

• A comparable effect can be achieved using generic
classes

Copyright © 2012 Addison-Wesley. All rights reserved. 1-53

COS 301 — Programming Languages UMAINE CIS

Example of a Tagged Type
package Person_Pkg is
 type Person is tagged private;
 procedure Display(P : in out Person);
 private
 type Person is tagged
 record
 Name : String(1..30);f
 Address : String(1..30);
 Age : Integer;
 end record;
end Person_Pkg;
with Person_Pkg; use Person_Pkg;
 package Student_Pkg is
 type Student is new Person with
 record
 Grade_Point_Average : Float;
 Grade_Level : Integer;
 end record;
 procedure Display (St: in Student);
 end Student_Pkg;

// Note: Display is being overridden from Person_Pkg

Copyright © 2012 Addison-Wesley. All rights reserved. 1-54

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Ada 95 (continued)

• Dynamic binding

• Dynamic binding is done using polymorphic
variables called classwide types

• For the tagged type Person, the classwide type is
Person‘ class

• Other bindings are static

• Any method may be dynamically bound

• Purely abstract base types can be defined in
Ada 95 by including the reserved word abstract

Copyright © 2012 Addison-Wesley. All rights reserved. 1-55

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Ada 95 (continued)

procedure Display_Any_Person(P: in Person) is

 begin

 Display(p);

 end Display_Any_Person;

…

with Person_Pkg; use Person_Pkg;

with Student_Pkg; use Student_Pkg;

P : Person;

S : Student;

Pcw : Person’class; -- A classwide variable

…

Pcw := P;

Display_Any_Person(Pcw); -- Calls the Display in Person

Pcw := S;

Display_Any_Person(Pcw); -- Calls the Display in Student

Copyright © 2012 Addison-Wesley. All rights reserved. 1-56

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Ada 95 (continued)

• Child Packages

• A child package is logically (possibly physically) nested
inside another package; if separate, they are called
child library packages

• Solves the problem of packages becoming physically
too large

• Even the private parts of the parent package are visible
to the child package

• A child package is an alternative to class derivation

• A child library package can be added any time to a
program

Copyright © 2012 Addison-Wesley. All rights reserved. 1-57

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Ada 95 (continued)

• Evaluation

• Ada offers complete support for OOP

• C++ offers better form of inheritance than Ada

• Ada includes no initialization of objects (e.g.,
constructors)

• Dynamic binding in C-based OOP languages is
restricted to pointers and/or references to
objects; Ada has no such restriction and is thus
more orthogonal

Copyright © 2012 Addison-Wesley. All rights reserved. 1-58

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Ruby
• General Characteristics

• Everything is an object

• All computation is through message passing

• Class definitions are executable, allowing secondary definitions to add
members to existing definitions

• Method definitions are also executable

• All variables are type-less references to objects

• Access control is different for data and methods

• It is private for all data and cannot be changed

• Methods can be either public, private, or  
 protected

• Method access is checked at runtime

• Getters and setters can be defined by shortcuts

Copyright © 2012 Addison-Wesley. All rights reserved. 1-59

COS 301 — Programming Languages UMAINE CIS

Support for OOP in Ruby
• Inheritance

• Access control to inherited methods can be different than in the
parent class

• Subclasses are not necessarily subtypes

• Mixins can be created with modules, providing a kind of multiple
inheritance

• Dynamic Binding
• All variables are typeless and polymorphic

• Evaluation
• Does not support abstract classes

• Does not fully support multiple inheritance

• Access controls are weaker than those of other languages that
support OOP

Copyright © 2012 Addison-Wesley. All rights reserved. 1-60

COS 301 — Programming Languages UMAINE CIS

Implementing OO
• Two interesting and challenging parts

• Storage structures for instance variables

• Dynamic binding of messages to methods

Copyright © 2012 Addison-Wesley. All rights reserved. 1-61

COS 301 — Programming Languages UMAINE CIS

Instance Data Storage
• Class instance records (CIRs) store the state of

an object

• Static (built at compile time)

• If a class has a parent, the subclass instance
variables are added to the parent CIR -> child’s
CIR

• Because CIR is static, access to all instance
variables is done as it is in records: Efficient

Copyright © 2012 Addison-Wesley. All rights reserved. 1-62

COS 301 — Programming Languages UMAINE CIS

Dynamic Binding of
• Methods in a class that are statically bound need

not be involved in the CIR; methods that will be
dynamically bound must have entries in the CIR

• Calls to dynamically bound methods can be
connected to the corresponding code thru a
pointer in the CIR

• The storage structure is sometimes called virtual
method tables (vtable)

• Method calls can be represented as offsets from
the beginning of the vtable

Copyright © 2012 Addison-Wesley. All rights reserved. 1-63

COS 301 — Programming Languages UMAINE CIS

Summary
• OO programming involves three fundamental concepts: ADTs,

inheritance, dynamic binding

• Major design issues: exclusivity of objects, subclasses and
subtypes, type checking and polymorphism, single and multiple
inheritance, dynamic binding, explicit and implicit de-allocation of
objects, and nested classes

• Smalltalk is a pure OOL

• C++ has two distinct type systems (hybrid)

• Java is not a hybrid language like C++; it supports only OOP

• C# is based on C++ and Java

• Ruby is a relatively recent pure OOP language; provides some
new ideas in support for OOP

• Implementing OOP involves some new data structures

Copyright © 2012 Addison-Wesley. All rights reserved. 1-64

