+ for Obiect-Orienta
O LoEeCi=UnEniE

SUPPO

rogramming

J

COS 301 — Programming Languages

Chapter 12

Slides draw heavily on Sebesta’s slides

OOP

Object-oriented programming, according to the person who
invented the term (Alan Kay), needs: (om htp:/community schemewici.orgr?
¥ o)

Actors model — basically, “actors” (objects) respond to
messages as they locally see fit; not a function call situation

Encapsulation
Protection
Ad hoc polymorphism

NO inheritance

OOP

According to Kay,

OOP to me means only messaging, local retention
and protection and hiding of state-process, and
extreme late-binding of all things. It can be done in
Smalltalk and in LISP. There are possibly other
systems in which this is possible, but I'm not aware
of them.

Maybe a bit extreme for modern tastes




OOP

Objects — special kind of abstract data type
Encapsulate both data and process

Some OOP languages support imperative
programming: e.g., Ada, C++, Swift

Some support functional programming — e.g., Lisp/
CLOS, Lisp/Flavors, Scheme’s various object-
system add-ons, Racket

Some languages don’t support other paradigms, but
use imperative structures — e.g., Java, C#

Some are pure OOP — e.g., Smalltalk, Ruby

Object-oriented programming

Three major language features:
Abstract data types

Inheritance — central theme in OOP and OOP
languages (contra Kay)

Polymorphism

Inheritance

Inheritance — new classes defined in terms of
existing ones — inherit common parts

Allows reuse of ADTs with changes — may be
difficult without, since ADTs often need changes
to be made to work for particular application

Defines classes in a hierarchy — ADTs are all
independent and at same level

Reuse = productivity increases

Object-oriented concepts

ADTs are usually called classes

Class instances are called objects

Subclass or derived class — inherits from parent

(superclass)

Subprograms that operate on (belong to) objects
= methods

Variables encapsulated by objects = instance
variables




Object-oriented concepts

Method calls — sometimes called messages

Collection of methods of an object — its
message protocol or message interface

Messages have method name, destination object

Inheritance

Generally default = inherit all from parent
Inheritance can be complicated by access controls
Class can hide entities from subclasses
Class can hide entities from its “clients”

Some languages, can hide entities from clients, but let
subclasses see them

Subclass can modify inherited method
Can override default (inherited) — overrides the parent’s method

Can execute local methods before/after/around the default
method

Subclass differences from parent

Parent can define some variables with private access —
not visible in subclass

Subclass can add instance variables, method to those
inherited

Subclass can modify behavior of inherited methods.

OOP

Most OO languages allow both class- and instance-level entities:

Variables — class variables, instance variables
Methods — class methods, instance methods
Inheritance:
Single inheritance — all OO languages
Multiple inheritance
Most OO languages
Sometimes problematic — what to inherit when there is a conflict?
Disadvantages for reuse

Creates interdependencies among classes = complicates
maintenance

May be functionally useful, but not logical, for a class to inherit from
another (= odd ontological relationships)




Dynamic binding in OOP

Since a hierarchy of classes exist, can exploit for polymorphism

Polymorphic variable: can hold objects of a class or any of its
descendants

Can even point to top of object hierarchy — any object
Dynamic binding:

Some methods of some subclasses may override a parent’s

Which method of which class is called is decided at run-time
Benefits:

The usual ones for polymorphism

Also: easy to extend software system during development and
maintenance

Dynamic binding

Abstract (virtual) method: only defines a
protocol, not a definition

Abstract class:
Includes at least one abstract method
Cannot be instantiated

Ex: Vehicle

virt. method: move

variables: color, ...

l

Aircraft Automobile
s method: move method: move
method: move

OQOP design issues

Is everything an object?
Subclasses = subtypes?

Single or multiple inheritance?
Allocating and deallocating objects
Dynamic and static binding
Nested classes?

Object initialization

Exclusivity of objects

Some languages: everything is an object — e.g., Ruby, Smalltalk
Advantage: elegance, purity, homogeneity of all data structures
Disadvantage: can be slow for simple objects

Other languages: objects are added to a complete typing system — Lisp,

Python,...
Advantage - fast operations on simple objects
Disadvantage - results in a confusing type system (two kinds of entities)

Other languages: use imperative-style typing system for primitives, but
everything else is an object — Java, Swift, ...

Advantage - fast operations on simple objects and a relatively small
typing system

Disadvantage - still some confusion because of the two type systems




Are (sub)classes (sub)types”?

Most OO languages: yes

Basically: does an “isa” relationship hold between parent class and subclass?

If so, then instances of subclass must behave the same (more or less) as
instances of the parent

Subclass can only:
Add variables and methods
Override methods in “compatible” ways
Also has some implication for ontology the programmer has in mind

Subclasses are made for ontological reasons, not just for functionality and
reuse

E.g., make airplane subclass of vehicle, not bird — even though “fly”
method could be inherited in the latter

Single or multiple inheritance?

Advantages of multiple inheritance:

convenient — methods, variables from multiple
sources

ontologically-useful — aircraft isa vehicle, flying-
object, bird isa animal, flying-object

Disadvantages:

Complexity of language, implementation (e.g.,
handling name collisions)

Potential inefficiency — increased cost of dynamic
binding (search problem)

Object allocation & deallocation

Where do objects live?

If treated as other ADTs, can be allocated anywhere: run-time stack, heap
(via new, e.g.)

If heap-dynamic only (e.g., Java, Lisp, Python,...)
References can be uniform via pointer/reference variable
Simplifies assignment; dereferencing can be implicit

If stack-dynamic only: can = object slicing

Object of subclass A may be larger than one of its parent class B
Suppose subroutine expects instance of B...
...pass instance of A...

...not enough room allocated, some instance variables not copied —
or worse

Kind of unavoidable with call-by-value and polymorphism by classes
Deallocation: automatic (GC) or explicit?

Dynamic and static binding

Static binding — can’t do polymorphism using
classes

Dynamic binding — can be inefficient

Maybe: allow user to specify




Nested classes

Some languages allow it (e.g., Java, Python, Ruby), others don’t
(Lisp)

Why?

Sometimes only one class (e.g., Tree) needs a particular new
class (e.g., Node)

Defining Node outside the Tree class — clutters the object
system, may cause name clashes, etc.

Avoid this if we nest Node inside Tree class

Sometimes nesting is inside a subprogram rather than directly in
class

Issue: which parts of the nested class should be visible to
parent and vice versa?

Object initialization

Initialize objects when created — e.g., implicit vs
explicit initialization?

Parent class variables — how are they initialized
when subclass object created?

Example: Smalltalk

Pure OO language = everything is an object

All objects have local memory

All computation: messages — objects
No imperative structure

Heap-dynamic objects

Implicit deallocation

Inheritance

Subclass inherits all instance variables, methods (class
and instance) of superclass

Subclasses are subtypes
Inheritance is implementation-dependent
No multiple inheritance

Smalltalk

All messages: method binding is dynamic
Type checking: only dynamic type checking
Only error is when object cannot handle a message (duck typing)
Evaluation
Simple, regular syntax
Powerful, small language
Slow compared to compiled languages
Errors can’t be caught till runtime
Introduced the idea of a GUI
Greatest legacy — advanced/established OOP




Support for OOP in C++

General Characteristics:
Evolved from C and SIMULA 67
Among the most widely used OOP languages
Mixed typing system
Constructors and destructors

Elaborate access controls to class entities

Support for OOP in C++ (continued)

Inheritance

A class need not be the subclass of any class

Access controls for members are

Private (visible only in the class and friends) (disallows
subclasses from being subtypes)

Public (visible in subclasses and clients)

Protected (visible in the class and in subclasses, but not
clients)

Support for OOP in C++

Subclassing process can be declared with
access controls (private or public) — which
define potential changes in access by subclasses

Private derivation - inherited public and
protected members are private in the subclasses

Public derivation public and protected members
are also public and protected in subclasses

Inheritance Example in C++

class base_class {
private:
int a;
float x;
protected:
int b;
float y;
public:
int c;
float z;
b

class subclass_1 : public base_class { ... };
// Inthis one, b and y are protected and
// cand z are public

class subclass_2 : private base_class { ... };
// " Inthis one, b, y, ¢, and z are private,

// and no derived class has access to any

/I member of base_class




Re-exportation in C++

Member not accessible in a subclass (because of
private derivation) = can be declared to be
visible there using the scope resolution operator

(:2), e.9.,

class subclass_3 : private base_class {

base_class :: ¢;

Re-exportation

One motivation for using private derivation

Class provides members that must be visible —
public members

Derived class adds some new members, but
does not want its clients to see parent’s
members

Support for OOP in C++ (continued)

Multiple inheritance

Two inherited members with the same name:
both can be referenced using the scope
resolution operator (::)

class Thread { ... }
class Drawing { ... }

class DrawThread : public Thread, public Drawing {
o}

Support for OOP in C++ (continued)

Dynamic Binding

Virtual method: can be called through
polymorphic variables and dynamically bound to
messages

Pure virtual function has no definition at all

Class that has at least one pure virtual function
is an abstract class




Support for OOP in C++ (continued)

Evaluation
C++ provides extensive access controls (unlike Smalltalk)
C++ provides multiple inheritance

In C++, the programmer must decide at design time
which methods will be statically bound and which must
be dynamically bound

Static binding is faster!

Smalltalk type checking is dynamic (flexible, but
somewhat unsafe)

Because of interpretation and dynamic binding, Smalltalk
is ~10 times slower than C++

Support for OOP in Objective-C

Like C++, Objective-C adds support for OOP to C
Design was at about the same time as that of C++

Largest syntactic difference: method calls are
messages

Interface section of a class declares the instance
variables and the methods

Implementation section of a class defines the
methods

Classes cannot be nested

Support for OOP in Objective-C

Inheritance
Single inheritance only
Every class must have a parent

NSObject is the base class

@interface myNewClass: NSObject { ... }

éénd

Because base class data members can be declared to be private, subclasses are
not necessarily subtypes

Any method that has the same name, same return type, and same number and
types of parameters as an inherited method overrides the inherited method

An overriden method can be called through super

All inheritance is public (unlike C++)

Support for OOP in Objective-C

Inheritance (continued)
Objective-C has two approaches besides subclassing to extend a class

A category is a secondary interface of a class that contains
declarations of methods (no instance variables)

#import “Stack.h”
@interface Stack (StackExtend)
-(int) secondFromTop;
-(void) full;
@end
A category is a mixin - its methods are added to the parent class

The implementation of a category is in a separate implementation:
@implementation Stack (StackExtend)




Support for OOP in

Inheritance (continued)

The other way to extend a class: protocols

A protocol is a list of method declarations (like Java’s interfaces)

@protocol MatrixOps

-(Matrix *) add: (Matrix *) mat;

- (Matrix *) subtract: (Matrix *) mat;
Qoptional

-(Matrix *) multiply: (Matrix *) mat;
Qend

MatrixOps is the name of the protocol

The add and subtract methods must be implemented by class that uses
the protocol

A class that adopts a protocol must specify it
@interface MyClass: NSObject <YourProtocol>

Support for OOP in Objective-C

Dynamic Binding

Different from other OOP languages — a
polymorphic variable is of type id

An id type variable can reference any object

The run-time system keeps track of the type of
the object that an id type variable references

If a call to a method is made through an id type
variable, the binding to the method is dynamic

Support for OOP in Objective-C

Evaluation

Support is adequate, with the following
deficiencies:

There is no way to prevent overriding an
inherited method

The use of id type variables for dynamic binding
is overkill — these variables could be misused

Categories and protocols are useful additions

Support for OOP in Java

Because of its close relationship to C++, focus is on the
differences from that language

General characteristics
All data are objects except the primitive types

All primitive types have wrapper classes that store
one data value

All objects are heap-dynamic, are referenced through
reference variables, and most are allocated with new

A finalize method is implicitly called when the garbage
collector is about to reclaim the storage occupied by
the object




Support for OOP in Java

Inheritance

Single inheritance supported only, but there is an
abstract class category that provides some of the
benefits of multiple inheritance (interface)

An interface can include only method declarations
and named constants, e.g.,

public interface Comparable <T> {
public int comparedTo (T b);
}
Methods can be final (cannot be overriden)

Support for OOP in Java

Dynamic binding

In Java, all messages are dynamically bound to
methods, unless the method is final (i.e., it
cannot be overriden, therefore dynamic binding
Serves No purpose)

Static binding is also used if the method is static
or private both of which disallow overriding

Support for OOP in Java

Nested Classes

All are hidden from all classes in their package, except for
the nesting class

Nonstatic classes nested directly are called inner classes
An innerclass can access members of its nesting class

A static nested class cannot access members of its
nesting class

Nested classes can be anonymous

A local nested class is defined in a method of its nesting
class

No access specifier is used

Support for OOP in Java

Evaluation

Design decisions to support OOP are similar to
C++

No support for procedural programming
No parentless classes

Dynamic binding is used as “normal” way to
bind method calls to method definitions

Uses interfaces to provide a simple form of
support for multiple inheritance




Support for OOP in C#

General characteristics
Support for OOP similar to Java
Includes both classes and structs
Classes are similar to Java’s classes

structs are less powerful stack-dynamic
constructs (e.g., no inheritance)

Support for OOP in C#

Inheritance
Uses the syntax of C++ for defining classes

A method inherited from parent class can be
replaced in the derived class by marking its
definition with new

The parent class version can still be called
explicitly with the prefix base:

base.Draw()

Support for OOP in C#

Dynamic binding
To allow dynamic binding of method calls to
methods:
The base class method is marked virtual

The corresponding methods in derived classes are
marked override

Abstract methods are marked abstract and
must be implemented in all subclasses

All C# classes are ultimately derived from a
single root class, Object

Support for OOP in C#

Nested classes

A C# class that is directly nested in a nesting
class behaves like a Java static nested class

C# does not support nested classes that behave
like the non-static classes of Java




Support for OOP in C#

Evaluation

Ct is a relatively recently designed C-based OO
language

The differences between C#’s and Java’s
support for OOP are relatively minor

Support for OOP in Ada

General Characteristics

OOP was one of the most important extensions to
Ada 83

Encapsulation container is a package that defines a
tagged type

A tagged type is one in which every object includes
a tag to indicate during execution its type (the tags
are internal)

Tagged types can be either private types or records

No constructors or destructors are implicitly called

Support for OOP in Ada 95 (continued)

Inheritance
Subclasses can be derived from tagged types

New entities are added to the inherited entities
by placing them in a record definition

All subclasses are subtypes
No support for multiple inheritance

A comparable effect can be achieved using generic
classes

Example of a Tagged Type

package Person_Pkg is
type Person is tagged private;
procedure Display(P : in out Person);
private
type Person is tagged
record
Name : String(l..30);f
Address : String(1..30);
Age : Integer;
end record;
end Person_Pkg;
with Person_Pkg; use Person_Pkg;
package Student Pkg is i
type Student is new Person with
record
Grade_Point_ Average : Float;
Grade_Level : Integer;
end record;
procedure Display (St: in Student);
end Student_ Pkg;

// Note: Display is being overridden from Person_Pkg




Support for OOP in Ada 95 (continued)

Dynamic binding

Dynamic binding is done using polymorphic
variables called classwide types

For the tagged type Person, the classwide type is
Person’ class

Other bindings are static
Any method may be dynamically bound

Purely abstract base types can be defined in
Ada 95 by including the reserved word abstract

Support for OOP in Ada 95 (continued)

procedure Display Any Person(P: in Person) is
begin
Display(p);

end Display Any Person;

with Person_Pkg; use Person_Pkg;
with Student Pkg; use Student_ Pkg;
P : Person;

§ : Student;

Pcw : Person’class; -- A classwide variable

Pcw := P

Display_Any_Person(Pcw); -- Calls the Display in Person
Pcw := §;

Display Any Person(Pcw); -- Calls the Display in Student

Support for OOP in Ada 95 (continued)

Child Packages

A child package is logically (possibly physically) nested
inside another package; if separate, they are called
child library packages

Solves the problem of packages becoming physically
too large

Even the private parts of the parent package are visible
to the child package

A child package is an alternative to class derivation

A child library package can be added any time to a
program

Support for OOP in Ada 95 (continued)

Evaluation
Ada offers complete support for OOP

C++ offers better form of inheritance than Ada

Ada includes no initialization of objects (e.g.,
constructors)

Dynamic binding in C-based OOP languages is
restricted to pointers and/or references to
objects; Ada has no such restriction and is thus
more orthogonal




Support for OOP in Ruby

General Characteristics
Everything is an object
All computation is through message passing

Class definitions are executable, allowing secondary definitions to add
members to existing definitions

Method definitions are also executable

Al variables are type-less references to objects

Access control is different for data and methods
It is private for all data and cannot be changed

Methods can be either public, private, or
protected

Method access is checked at runtime
Getters and setters can be defined by shortcuts

Support for OOP in Ruby

Inheritance

Access control to inherited methods can be different than in the
parent class

Subclasses are not necessarily subtypes

Mixins can be created with modules, providing a kind of multiple
inheritance

Dynamic Binding

All variables are typeless and polymorphic
Evaluation

Does not support abstract classes

Does not fully support multiple inheritance

Access controls are weaker than those of other languages that
support OOP

Implementing OO

Two interesting and challenging parts
Storage structures for instance variables

Dynamic binding of messages to methods

Instance Data Storage

Class instance records (CIRs) store the state of
an object

Static (built at compile time)

If a class has a parent, the subclass instance
variables are added to the parent CIR -> child’s
CIR

Because CIR is static, access to all instance
variables is done as it is in records: Efficient




Dynamic Binding of

Methods in a class that are statically bound need
not be involved in the CIR; methods that will be
dynamically bound must have entries in the CIR

Calls to dynamically bound methods can be
connected to the corresponding code thru a
pointer in the CIR

The storage structure is sometimes called virtual
method tables (vtable)

Method calls can be represented as offsets from
the beginning of the vtable

Summary

OO programming involves three fundamental concepts: ADTs,
inheritance, dynamic binding

Major design issues: exclusivity of objects, subclasses and
subtypes, type checking and polymorphism, single and multiple
inheritance, dynamic binding, explicit and implicit de-allocation of
objects, and nested classes

Smalltalk is a pure OOL

C++ has two distinct type systems (hybrid)

Java is not a hybrid language like C++; it supports only OOP

Ct is based on C++ and Java

Ruby is a relatively recent pure OOP language; provides some
new ideas in support for OOP

Implementing OOP involves some new data structures




