Expressions and
Assignment

COS 301: Programming Languages

Qutline

Introduction

Introduction

Expressions: fundamental means of specifying
computations

Imperative languages: usually RHS of assignment
statements

Functional languages: just the function evaluation

Need to understand order of operator, operand
evaluation

Maybe only partially specified by associativity,
precedence

If not completely specified = maybe different results in
different implementations

INntroduction

Other issues: type mismatches, coercion, short-
circuit evaluation

For imperative languages: dominant role of
assignment to memory cells

Qutline

Arithmetic expressions

Arithmetic expressions

Arithmetic expression evaluation — primary
motivation for first programming languages

Parts:
operators
operands
parentheses (grouping)

function calls

Design issues for arithmetic

Operator precedence
Associativity

Operand evaluation order
Operand evaluation side effects?
Overloading?

Type mixing

Operator arity

Unary operators
Binary operators
Ternary operators

n-ary operators

Operator precedence rules

Define order in which adjacent operators are
evaluated

Typical precedence levels:
parentheses
unary operators
** (if present)
W
o

relational operators

Operator precendence

N C-based
FORTRAN, ADA Ruby
) ok postfix ++, --
*,1, %
unary +,- unary +, -prefix ++,--, not

+,-, unary - T T
ol % b)

I 1

Associativity

Operator associativity rules = order adjacent operators
at same precedence level are eval'd

Typical:
Left to right, except for **
Unary ops: sometimes right—left (e.g., FORTRAN)

APL: all operators have same precedence, all associate
right—left

Smalltalk: binary methods (“operators”) have same
precedence, left associativity

Parentheses: can override precedence, associativity

Operator associativity

Left-assoc relational ops: a < b < ¢ okay...

but in C = if (a<b) then (1<c) else (0<c)
not (a<b) && (b<c)

Non-assoc ops: things like a < b < ¢ are illegal

L R

C-like n/a L
Ada L
FORTRAN L R R L

VB L R L non-assoc

Operator associativity

Optimizing compilers may reorder associative +,*
E.g.: x*y*z* w can be evaluated in any order

If x, z very large, y, w very small — makes a
differencel!

Floating point: lose precision, produce infinities
Integers: overflow, wraparound

Can always override with parentheses

Expressions in Ruby, Smalltalk

No operators per se

All “operators” implemented as methods of
objects

Includes arithmetic, relational, assignment
operators

Includes array indexing, shifts, bitwise ops

Can override all within application programs

Ternary conditional operator

Conditional ternary operators: in most C-like languages
Format:

condition ? then-stmt : else-stmt
EX3

average = count == 0 ? 0 : sum/count;
Same as:

if (count == 0)

average = 0;
else

average = sum/count;

Ternary conditional operator

E.g., VB's I1f () function:
PF = IIf(grade >= 60, “Pass”, “Fail”)
Similar to FORTRAN's arithmetic IF statement
TP (I=3) 10, 20, 30
More general

Also — a value (r-value)

Ternary conditional operator

Not just r-values, but also I-values in some
languages

E.g., C, C++, Java (but not JavaScript):
(x==y)?a:b)=1;

Operand evaluation order

If a variable — fetch from memory
If a constant:
Statically-bound — already in code
Dynamic — fetch from memory
Parentheses affect order, of course
Evaluation order:
Generally irrelevant...

...except when operand is a function with side
effects

Operand evaluation order

Example:
int foo(int* wval) {
*val = *val * *val;

return (*val);

a = 10;
b = a * foo(&a);
If a eval’'d first, then b = 10 * 100 = 1000;

If foo(a) eval’d first, then b = 100 * 100 = 10,000!

Side effects

In general:
A subroutine that returns a value is a function
A subroutine that does not is a procedure
Functions should not have side-effects

One opinion: Procedures really shouldn’t have
any side-effects other than modifying one or
more arguments (not as widely-accepted)

Most languages: no way to enforce this

Possible solutions

1. Write language to disallow side-effects
No pass by reference to function
No non-local references allowed in function
Advantage: works!
Disadvantage: inflexible

2. Write language to demand that operand order be fixed
Disadvantage: eliminates some compiler optimizations
Java, Lisp: Operands eval'd from left—right

C, C++: no fixed order

Referential transparency

Expression is referentially transparent if it can
be replaced by its value without changing the
program

ans1 = (fun(a) + b) / (fun(a) + c);

temp = fun(a);

ans2 = (temp + b) / (temp + ¢);
Referentially transparent if ans2 = ans1

Absence of functional side-effects is necessary
(but not sufficient) for referential transparency

More in functional languages

Outline

Infix/prefix/postfix

Relationship of operators to operands

Most languages: infix notation
what we use in arithmetic
operators between operands
eg., 3+4

Some languages: prefix notation
operators first, then operands
eg.,+34

Some languages: postfix notation
operators last, after operands

eg.,34+

INfiX expressions

Infix — inherently ambiguous without defined
associativity and precedence

Different parse trees from different precedence,
associativity as specified in grammar

Eg.,a+b-c*d
Usually means (a + b) - (¢ * d)
Smalltalk: (a+b)-c)*d
APL:a+ (b-(c*d)

Prefix & postfix

Both prefix and postfix are unambiguous
Infix: (@ + b) - (¢ * d)
Prefix: - +ab~*cd
Postfix:ab +cd* -
Postfix
also known as Reverse Polish Notation (RPN)

introduced by Polish mathematician Jan
Lukasiewicz in early 20th century

Obtaining postfix/prefix

Consider expression tree for intended meaning:

a h c d
Prefix: preorder traversal

Postfix: postorder traversal

Infix: inorder traversal (and use depth for
precedence, associativity from language definition)

Evaluating postfix

read token;
while (not EOF) {
if token is an operand then
push token onto stack;
else // for n-ary operators
pop top n operands from stack;
perform operation;
push result onto stack;
endif
read token;
}

pop result from stack;

Postfix (RPN) example

Input: 3 4 5 * - (Infix 3 - 4 * 5)
Token Action Stack
3 Push (3)
4 Push (3 4) 3 X
5 Push (3 45) ‘///\\\\
2 e 5, e g
Push 4*5 = 20 (S2.0)) 5

= ey 20, e I
Push 3-20 = -17 (-17)
EOF Pop and return -17

Postfix example

Token Action Stack
2 Push (2)
‘ 3 Push (2 3)
|nDUt' w9, BER A
. - Push 2 * 3 =6 (6)
23*123/+53*6-+ 12 push (6 12)
3 Push (6 12 3)
/ Pop 3, Pop 12;
Push 12/3 = 4 (6 4)
+ Pop 4, Pop 6
Push 6+4 = 10 (10)
5 Push (1@ &)
3 Push (10 5 3)
* Pop 3, Pop 5;
Push 5*3 = 15 (10 15)
6 Push (LOFUSNE)
- Pop 6, Pop 15
Push 15-6 = 9 (10 9)
+ Pop 9, Pop 10
Push 10+9 = 19 (19)

EOLPop and return 19

Languages using postfix

RPN calculators

Forth

e.g., a square function in Forth:
: squareit dup *;
3 squareit .
9
Postscript (and PDF)

L

Unary operators in postfix or prefix

Can’t have same operator be both unary and
n-ary

Don’t know how many to take off stack, e.g.
(postfix)

One solution: use different operators
Another solution: Cambridge Polish notation
Parenthesized
E.g., for Cambridge Polish prefix notation:

(+abcd=a+b+c+d

Languages using prefix notation

Logo

Lisp & Scheme — pretty much Cambridge Polish
prefix notation

=
Infix: 3 + (4 * 5) - (-23)
Prefix: -+3*45~23
Lisp:
(- (+3(* 4 5)-23)) or
(+3(45(-239)

Qutline

Overloaded operators

Overloaded operators

Using operator for more than one thing —
operator overloading

Common: + for int & float (e.g.)
Problematic:
E.g., *in C/C++
Can't really detect missing operator:
a = *foo * 2;

8 = e ¥ 27

User-defined overloading

Some languages allow user-defined overloads (C++,
C#, Ada...)

E.g., Ada:

function “+” (a,b : complex) return complex;

User-defined overloading

Functional languages
E.g., Lisp
(defvar *old+* #'+)

(defmethod + ((a number) &rest args)
(apply *old+* (cons a args)))

(defmethod + ((a string) &rest args)
(apply #'concatenate (cons ’string (cons a args))))

OO languages
Ruby
Smalltalk

Problematic overloading

JavaScript, Python: + is addition & concatenation

E.g., JavaScript

var x = “10”;

var y = x + 5; // y = 105

VEE B 2 R o Ip 70 a s 7
E.g., Python

=8 vl

y =x + *‘hi’ # ‘10hi”

ZR=E XIS # error

N
[}

eval(x) + 3 # 13

Outline

Type conversion

Type conversions: Reprise

narrowing conversion:
long integer — integer
float = integer

widening conversion:
integer — long integer

integer — float (i.e., float can represent (at least
approximately) all integers in range

considered widening if conversion retains
magnitude, even if it loses precision

Mixed mode conversions

Operands of different types — mixed-mode expression
Requires coercion by language

Decreases error detection ability of compiler

Most languages:

all numeric types are automatically coerced in
expressions

use widening conversions

Ada: virtually no coercion in expressions, however: forces
user to do casting

Coercion and casting inefficient — require runtime code

Casting

Explicit type conversions
E.g., C: (int) angle
E.g., Ada: Float (Sum)

Ada, many other languages: look like function call

Outline

Relational & Boolean expressions

Relational expressions

Relational expressions:
Relational operators, operands of various types

Evaluate to Boolean

OB YERE Bk &, /=, ==, NE, ©, #oo
JavaScript, PHP:
Two additional operators: === and !==

Like == and !=, but no coercion of operands

Boolean expressions

Operands, operators are Boolean

Examples:

FORTRAN 77 FORTRAN 90 C da

AND. and && and

.OR. or I or

.NOT. not ! not
xor

Languages without Booleans

C
uses int: O = false, nonzero = true
reprise: 5 <3< 4
legal expression, but odd

left-associative = (6 <3) < 4= 0<4 =
]

Bebeid=1<gd=1

Languages without Booleans

Python:

Originally no True/False: O, ', (), I, {} nil, other
true

Now: O, 1 — but also True/False
Perl: 0, ‘0, (), etc. = false; else true

Lisp: nil, t — anything not nil = true

Short-circuit evaluation

Short-circuit evaluation

Short-circuit evaluation: stop executing the (Boolean)
expression when some condition met

For “and” expressions: stop when false encountered
For “or” expressions: stop when true encountered
E.g.:

Node p = head;

while (p != null && p.info != key)
p = p.next;

SHE (jo == wwdlll) /4 mere din sl

else // found it

If p null = doesn’t try to eval p. info

Short-circuit evaluation

Without short-circuit, would have to do, e.g.:

boolean found = false;
while (p != null && ! found) {
if (p.info == key)
found = true;
else
p = p.next;

Short-circuit evaluation

Not all languages support it
C, C++, Java: yes, for && and ||
Ada, VB (.Net):

Programmer can specify

Use: and then, or else

Short-circuit evaluation

Lisp:
or, and

(or (and (numberp a) (> a b))
(and (stringp a)..)

Often used in lieu of conditionals

Can use to prevent some problems:

if (count != 0 && total/count > 10) ..

Short-circuit evaluation

Potential problem: not calling functions whose
side-effects you want:

if f(a, b) && g(y) {
/* do something */

}
Never calls g () if £() returns false
Eg.,
if ((a > b) || (b++ / 3)){ }

If you were counting on b++...

Qutline

Assignment statements

Assignment statements

General syntax
target assign-op expression
Assignment operator:
FORTRAN, BASIC, C-based languages:
flooR=EbapENbaz4:
ALGOL, Pascal, Ada:

iEeE 8= logur ¥ [oREp

Assignment statements

APL:
a8 ¢
Lisp — assignments are function-like
(see “a 3)
=hes T D
(setf a 3)
(setf (cdr b) 4)

Targets

Usually a variable: I-value — address

Can also be a conditional assignment target
in some languages

E.g., recall C’s ternary operator, also in Perl:
($flag ? $total : $subtotal) = 0;

Either $total or $subtotal < 0, depending on
$flag

Compound assignment

Shorthand for commonly-needed assignment idioms
a=a+b; //replace by:
a+=b;

Introduced in ALGOL, adopted by all later C-based languages &
VB

Can be used with almost any binary operator:
a+=b; a-=b; a/=b; ad&=b; all=b;
a*=b; // careful! easy to confuse with *a =b
y<<=1;

$s .= “PHP string concatenation”;

Multiple assignments

Some languages: multiple assignments/statement
- Simple:
Ca=b=0
Python: a, b = b, a

Lisp: (setf a 3 b 4..)

Qutline

Other assignment mechanisms

Unary assignment

Most C-based languages: pre- and post-
operators ++ and --

Assignment operators of a sort: change the value
of a variable

Derived from INC, DEC machine instructions

Examples:

sum = ++count; //inc count then add to sum
sum = count++; //add to sum then inc count

count--; //dec count, same as --count;

n = -count++; // same as - (count++)

X = *p++; // inc pointer p after dereference
X = (*p)++; // dereference then inc value

Assignment expressions

C, C++, Java: assignment statement returns a value
while ((ch = getchar()) != EOF) {..}
void strcopy (char *s, char *t) {

while (*s++ = *t++);
}

Functional languages (of course)

(cond
((and (setqg ch (read-char t nil :EOF))
(not (eq :EOF ch)))

Assignment expressions

Assignment operator usually has low precedence
= need parentheses in assignment expressions

Assignment expressions — a type of side-effect
= readability issues

a=b+(c=d/b)-1;
Useful for multiple assignment:
total = subtotal = count = 0;

Note: assignment has to be right-associative for
this to work like this!

List assignments

Perl, Ruby:

($first, $second, $third) = (20, 30, 40);
Swapping variables:

($first, $second) = ($second, $first);
Lisp:

(destructuring-bind (a b)
'23)
(list b a))

