Abstract Data Iypes &
Object-Oriented Programming

COS 301 - Programming Languages

UMAINECIS 1 Sy

Chapters 11 & 12 in the book

Slides are heavily based on Sebesta’s slides for
the chapters, with much left out!

Abstract data types &

The Concept of Abstraction
ntroduction to Data Abstraction

Design Issues for Abstract Data Types

_anguage Examples
Parameterized Abstract Data Types

Encapsulation Constructs

Naming Encapsulations

Abstraction

View/representation of entity that includes only
most significant attributes

Abstraction fundamental for CS
Process abstraction:
functions & subroutines, e.g.
nearly all languages

From the 80s — most languages support data
abstraction as well

Abstract data type (ADT)

" Protect
PrLgnrt?(elf grdwder '““'

No, not that ADT...

COS 301 — Programming Languages

Copyright © 2012 Addison-Wesley. Al rights reserved.

Abstract data type (ADT)

Abstract data type: class of data types defined by
a set of values and behavior/operations

E.g., lists, queues, stacks...
Sometimes: includes time complexity in definition

With respect to a programming language: user-
defined data type that:

hides the representation of “objects” — only
operations possible are provided by the type

single syntactic unit contains the declarations of
the type and of any operations on it

Advantages

Advantages of hiding data:

reliability: user code can’t access internals, thus
compromising other users’ use of object

flexibility: since user code can’t access internals, internals
can be changed to improve performance w/o affecting users

reduced name conflicts
Advantages having single syntactic unit for type:
Provides way to organize program

Enhances modifiability: everything needed for data structure
IS together in one place

Separate compilation, debugging

D | language reguirements

Syntactic unit for encapsulating definition

Way to make type names, method/subprogram
headers available while hiding definitions

Primitive operations on types must be part of the
compiler/interpreter

Design ISsues

What does the container for the interface to the
type look like”

Can abstract types be parameterized”?
What access controls are provided?

Is specification of the type separate from its
implementation?

L anguage example: Ada

Encapsulation construct: package
Interface: specification package
Implementation: body package

Information hiding — public and private parts of specification
package

Public part: name, maybe representation of any unhidden types
Private part:
representation of the abstract type

private types have built-in operations for assignment,
comparison

limited private types have no built-in operations

Ada specification

package Stack Pack is
type stack type is limited private;
max size: constant := 100;
function empty(stk: in stack type) return Boolean;
procedure push(stk: in out stack type; elem: in Integer);
procedure pop(stk: in out stack type);

function top(stk: in stack type) return Integer;

// private -- hidden from clients
type list type is array (1l..max size) of Integer;
type stack type is record
list: list type;
topsub: Integer range 0..max size) := 0;
end record;

end Stack Pack

Ada boady

with Ada.Text IO; use Ada.Text IO;

package body Stack Pack 1is
function Empty(Stk : 1n Stack Type) return Boolean 1is

begin
ceTturn Sthk,Fopetlo = U
SNCL BT
procediiee Pugn (STl 1im out Staclk Tyoag
Billemeinii = inhnl=clechaR i
begin

1f Stk.Topsub >= Max Size then
Put Line ("ERROR - Stack overflow"”);

else
Stlk, Topsuls = Stlk.Topsuls = 1L
Stik. st (Teosulo) s= BILEnEmE
Sigiel e
Sinel Puslo s

SiglelTSier el cilZelel ch

C++ example

Encapsulation is via classes
ADT based on C struct, Simula 67 class
Classes are types

All instances of a class share copy of member
functions (methods)

Each instance has its own copy of class data
members (instance variables)

Instances can be static, stack dynamic, or heap
dynamic

example

Information hiding:
Private clause for hidden entities

Public clause for interface entities

Protected clause for inheritance (later)

Constructors:
Functions to initialize the data members — they don’t create objects
May also allocate storage if part of the object is heap-dynamic
Can include parameters to provide parameterization of the objects
Implicitly called when an instance is created — but can be called explicitly, too
Name is the same as the class name
Destructors:
Clean up after an instance is destroyed — usually just to reclaim heap storage
Implicitly called when the object’s lifetime ends, or explicitly called

Name is the class name, preceded by a tilde (~)

C++ example: Header file

// Stack.h - the header file for the Stack class
#include <iostream.h>

class Stack {
private: //** These members are visible only to other

//** members and “friends” (see textbook)
int *stackPtr;
int maxLen;
int topPtr;

public: //** These members are visible to clients
Stack(); //** A constructor
~Stack(); //** A destructor

void push(int);
void pop();

sohe =@)7

int empty();

example: Code file

class Stack {
private:
int *stackPtr, maxLen, topPtr;
public:
Stack() { // a constructor
stackPtr = new int [100];
maxLen = 99;

topPtr = -1;
}i
~Stack () {delete [] stackPtr;};
void push (int number) {
if (topSub == maxLen)
cerr << "Error in push - stack is full\n”;
else stackPtr[++topSub] = number;

}i
void pop () {..};
it e () febs
int empty () {..};

C++ example: Friends

® Friend functions or classes

® Allow access to private members from
unrelated units

Necessary in C++

Objective-C

Based on C, Smalltalk
Classes, which are types
Interfaces (C-like .h file):
@interface class-name: parent-class {
instance variable declarations
}
method prototypes
@end
Implementations (.m file):
@implementation class-name
method definitions
@end

Objective-C example

Method prototypes
(+ | -) (return-type) method-name [: (formal-parameters)];
+/- for class/instance methods (resp.)
Colon, parentheses — not included when no parameters
Odd nomenclature:
One parameter:
Ex: (int) foo: (int) x;
Name of method is foo:
Message: (call): [objectName foo: 3] = x=3
Two parameters:
Ex: (int) foo: (int) x bar: (float) y;
Name of method is foo:bar:
Message: [objectName foo: 3 bar: 4.5] = x=3,y=4.5

Objective-C example

Initializers: constructors
Only initialize variables

Can have any name, and are only explicitly
called

Initializers return the instance itself

Create object — call alloc + initializer
Adder *myAdder = [[Adder alloc] init];

All class instances are heap dynamic

Objective-C example

Standard prototypes (e.qg., for 1/O):
#import <Foundation/Foundation.h>

Program must initialize a pool for its storage:

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSxxx — from NextStep

At program end, release storage:

[pool drain];

Objective-C — information

@public, @private, @protected — specify instance variable access
@public: accessible anywhere
@private: accessible only in class where defined
@protected: accessible in that class and any subclasses
Default access is @protected

However: no really good way to restrict access to methods

Getter and setter methods for instance variables
Name of getter is always name of instance variable

Name of setter is always the word set with the capitalized variable
name attached (e.g., setFoo)

Can be implicitly generated if no additional constraints to be defined
— called “properties” in this case

Objective-C — another

// stack.m — interface and implementation for a

simple stack @implementation Stack
#import <Foundation/Foundation.h> -(Stack *) initWith {
. . Rasiie HE=] (s
@interface Stack: NSObject { topSub = -1;
int stackArray[100], stackPtr,maxLen, topSub; SfeElellgeinie = CleEleldia eey s
return self;
}
I
-(void) push: (int) number; = vesd)i push = it namb el
(void) pop: if (topSub == maxLen)
: NSEe gt asii=alelamnicEfnsnlsy)
-(int) top; else
-(int) empty; stackPtr[++topSub] = number;
@end
}

@end

)OS 301 — Programming Languages

Using the stack ADT

int main (int argc, char *argv[]) {
int temp;
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
Stack *myStack = [[Stack alloc] initWith];
[myStack push: 5];
[myStack push: 37;
temp = [myStack topl];
NSLog(@“Top element is: %i”, temp);
[myStack popl;
temp = [myStack top];
NSLog(@“Top element is: %i”, temp);
temp = [myStack topl];
myStack popl;
[myStack releasel];
[pool drain];

return 9;

Java

Similar to C++, except:
All user-defined types are classes
All objects are heap-dynamic
All objects accessed via reference variables
Access control modifiers for class entities
Package scope:

All entities in all classes in package that are not
restricted by access control modifiers — visible
throughout package

Eliminates need for C++’s friend functions & classes

Java example

class StackClass {

private int [] stackRef;

private int [] maxLen, topIndex;

public StackClass() { // a constructor
stackRef = new int [100];
maxLen = 99;
topPtr = -1;

b

public void push (int num) {..};

ollollile verlel pep O 0

public int top () {..};

public boolean empty () {..};

} // also have “protected”, with same meaning as Objective-C

CH#

Based on C++, Java

Adds two access modifiers, internal (within project)
and protected internal (= protected or internal)

All class instances: heap dynamic
Default constructors — available for all classes

Garbage collection is used for most heap objects,
SO destructors are rarely used

structs are lightweight classes that do not support
INnheritance

CH#

Getter and setter methods to access data members (instance
variables)

Properties:

allows implementation of getters/setters without explicit
method calls

ex.

assume foo Is reference to the instance, bar is an
INnstance variable

property used to access bar in foo:

a = foo.bar; // getter
foo.bar = 3.5; // setter

LUy

Encapsulation construct: class
Variable names:

Local: regular identifiers

Instance variables: begin with @

Class variables: begin with @@
Methods: defined with function definition syntax (def...end)
Constructors:

Named initialize

Only one per class

Implicitly called when new is called

If additional constructors needed: different names, and they must call new
Class members can be marked private or public (default)

Classes are heap dynamic

Ruby example

class StackClass
def initialize
@stackRef = Array.new
@maxLen = 100
@topIndex = -1
end

def push(number)
if @topIndex == @maxlLen

puts " Error in push — stack is full”

else
@topIndex = @topIndex + 1
@stackRef[@topIndex] = number
end
end
def pop .. end
def top .. end
def empty .. end
end

Parameterized AD TS

Parameterized ADTs

can design an ADT to store any element type
(€.9.)

only issue for statically-typed languages

Also known as generic classes

Supported in C++, Ada, Java (5.0), C# (2005)

Parameterized AD s In Ada

generic
Max_Size: Positive;
type Elem_Type is private;
package Generic_Stack is
type Stack_Type is limited private;
function Empty(Stk : in Stack_Type) return Boolean;
function Top(Stk: in out StackType) return Elem_type;

private
type List_Type is array (1..Max_Size) of Element_Type;
type Stack_Type is
record
List : List_Type;
Topsub : Integer range @ .. Max_Size := 0;

end record;

end Generic Stack: package Integer_Stack is new Generic_Stack(100,Integer);

package Float_Stack is new Generic_Stack(100,Float);

Parameterized ADTs In C++

Can make classes somewhat generic with
parameterized constructors:

Stack (int size) {
stk_ptr = new int [size];
max_len = size - 1;
top = -1;

s

Stack stk(150);

Parameterized ADTs in C++ — templates

template <class Type>
class Stack {
private:
Type *stackPtr;
const int maxlLen;
int topPtr;
public:
Stack() { // Constructor for 100 elements
stackPtr = new Type[100];
maxLen = 99;
roeelr = 1
i

Stack(int size) { // Constructor for a given number
stackPtr = new Typel[size];

maxLen = size — 1;

topSub = -1;

Stack<int> myIntStack;

—Ncapsulation constructs

Large programs — two special needs:

Some means of organization, other than simply
division into subprograms

Some means of partial compilation — i.e.,
compilation units smaller than whole program

= Group logically-related subprograms into units

Allow units to be separately compiled (i.e.,
compilation units)

Such units are encapsulation constructs

Nested subprograms as encapsulation

One way to organize subprograms: nest them

Inner subprograms are encapsulated within
outer, but can share variables

Supported in Ada, Fortran 95+, Python,
JavaScript, Ruby, Lisp, ...

—ncapsulation in G

Encapsulation in C — basically a compilation unit

Interface is placed (by convention) in header (.h)
file

Implementation in .c file
#include — used to Include header files

Problem: linker doesn’t check types between
header and implementation

—ncapsulation N C++

Header & code files, like C

Also has classes
Class definition used as the interface

Member (instance variables, methods) defined in
separate file

Friend functions/classes — provide a way to
grant access to private members of a class

—Ncapsulation In Ada

Packages — encapsulation unit in Ada

Specification packages — any number of data,
subprogram definitions

Specification, body parts of package can be
compiled separately

Encapsulation in C#

Assembly: collection of files that appears as a single
executable or...
...dynamic link library (DLL)
Microsoft’s version of shared libraries

collection of classes, methods (in C#) that are
iIndividually linked to an executing program

Each file contains module that can be separately
compiled

Internal access modifier;: member is visible to all
classes in the assembly

Naming encapsulations

Large programs:
define many global names
need way to divide into logical groups

Naming encapsulation: used to create a new scope
for names

C++ namespaces
Can place each library in its own namespace

Qualify names used outside with their namespace, e.g.,
foo::bar, foo::baz

C# also includes namespaces

Naming encapsulations

Java — packages

Package contains one or more class definitions
Classes within package are partial friends

Clients of a package — use fully qualified name or use
the import declaration

Ada — packages

Packages are defined in hierarchies which correspond
to file hierarchies

Visibility from a program unit is gained with the with
clause

Naming encapsulations

Ruby:
Classes, but also modules

Typically encapsulate collections of constants and
methods

Modules cannot be instantiated or subclassed, and
they cannot define variables

Methods defined in a module must include the
module’s name

Access to the contents of a module is requested
with the require method

