
COS 301 — Programming Languages UMAINE CIS

Abstract Data Types &
Object-Oriented Programming

COS 301 - Programming Languages

COS 301 — Programming Languages UMAINE CIS

• Chapters 11 & 12 in the book

• Slides are heavily based on Sebesta’s slides for
the chapters, with much left out!

COS 301 — Programming Languages UMAINE CIS

Abstract data types &
• The Concept of Abstraction

• Introduction to Data Abstraction

• Design Issues for Abstract Data Types

• Language Examples

• Parameterized Abstract Data Types

• Encapsulation Constructs

• Naming Encapsulations

COS 301 — Programming Languages UMAINE CIS

Abstraction
• View/representation of entity that includes only

most significant attributes

• Abstraction fundamental for CS

• Process abstraction:
• functions & subroutines, e.g.

• nearly all languages

• From the 80s — most languages support data
abstraction as well

Copyright © 2012 Addison-Wesley. All rights reserved. 1-3

COS 301 — Programming Languages UMAINE CIS

Abstract data type (ADT)

Copyright © 2012 Addison-Wesley. All rights reserved. 1-4

No, not that ADT…

COS 301 — Programming Languages UMAINE CIS

Abstract data type (ADT)
• Abstract data type: class of data types defined by

a set of values and behavior/operations

• E.g., lists, queues, stacks…

• Sometimes: includes time complexity in definition

• With respect to a programming language: user-
defined data type that:

• hides the representation of “objects” — only
operations possible are provided by the type

• single syntactic unit contains the declarations of
the type and of any operations on it

Copyright © 2012 Addison-Wesley. All rights reserved. 1-4

COS 301 — Programming Languages UMAINE CIS

Advantages
• Advantages of hiding data:

• reliability: user code can’t access internals, thus
compromising other users’ use of object

• flexibility: since user code can’t access internals, internals
can be changed to improve performance w/o affecting users

• reduced name conflicts

• Advantages having single syntactic unit for type:

• Provides way to organize program

• Enhances modifiability: everything needed for data structure
is together in one place

• Separate compilation, debugging

COS 301 — Programming Languages UMAINE CIS

ADT language requirements
• Syntactic unit for encapsulating definition

• Way to make type names, method/subprogram
headers available while hiding definitions

• Primitive operations on types must be part of the
compiler/interpreter

COS 301 — Programming Languages UMAINE CIS

Design issues
• What does the container for the interface to the

type look like?

• Can abstract types be parameterized?

• What access controls are provided?

• Is specification of the type separate from its
implementation?

COS 301 — Programming Languages UMAINE CIS

Language example: Ada
• Encapsulation construct: package

• Interface: specification package

• Implementation: body package

• Information hiding — public and private parts of specification
package

• Public part: name, maybe representation of any unhidden types

• Private part:

• representation of the abstract type

• private types have built-in operations for assignment,
comparison

• limited private types have no built-in operations

COS 301 — Programming Languages UMAINE CIS

Ada specification
package Stack_Pack is
type stack_type is limited private;

max_size: constant := 100;

function empty(stk: in stack_type) return Boolean;
procedure push(stk: in out stack_type; elem: in Integer);

procedure pop(stk: in out stack_type);

function top(stk: in stack_type) return Integer;

// private -- hidden from clients

type list_type is array (1..max_size) of Integer;
type stack_type is record

list: list_type;

topsub: Integer range 0..max_size) := 0;
end record;

end Stack_Pack

COS 301 — Programming Languages UMAINE CIS

Ada body
with Ada.Text_IO; use Ada.Text_IO;
package body Stack_Pack is
 function Empty(Stk : in Stack_Type) return Boolean is
 begin
 return Stk.Topsub = 0;
 end Empty;
 procedure Push(Stk: in out Stack_Type;
 Element : in Integer) is
 begin
 if Stk.Topsub >= Max_Size then
 Put_Line(″ERROR – Stack overflow″);
 else
 Stk.Topsub := Stk.Topsub + 1;
 Stk.List(Topsub) := Element;
 end if;
 end Push;
 …
end Stack_Pack;

COS 301 — Programming Languages UMAINE CIS

C++ example
• Encapsulation is via classes

• ADT based on C struct, Simula 67 class

• Classes are types

• All instances of a class share copy of member
functions (methods)

• Each instance has its own copy of class data
members (instance variables)

• Instances can be static, stack dynamic, or heap
dynamic

COS 301 — Programming Languages UMAINE CIS

C++ example
• Information hiding:

• Private clause for hidden entities

• Public clause for interface entities
• Protected clause for inheritance (later)

• Constructors:
• Functions to initialize the data members — they don’t create objects
• May also allocate storage if part of the object is heap-dynamic

• Can include parameters to provide parameterization of the objects
• Implicitly called when an instance is created — but can be called explicitly, too

• Name is the same as the class name
• Destructors:

• Clean up after an instance is destroyed — usually just to reclaim heap storage

• Implicitly called when the object’s lifetime ends, or explicitly called
• Name is the class name, preceded by a tilde (~)

COS 301 — Programming Languages UMAINE CIS

C++ example: Header file
// Stack.h - the header file for the Stack class
#include <iostream.h>
class Stack {
private: //** These members are visible only to other
 //** members and “friends” (see textbook)

 int *stackPtr;
 int maxLen;
 int topPtr;
public: //** These members are visible to clients
 Stack(); //** A constructor
 ~Stack(); //** A destructor

 void push(int);
 void pop();
 int top();
 int empty();
}

Copyright © 2012 Addison-Wesley. All rights reserved. 1-17

COS 301 — Programming Languages UMAINE CIS

C++ example: Code file
class Stack {
private:

int *stackPtr, maxLen, topPtr;
public:

Stack() { // a constructor
stackPtr = new int [100];
maxLen = 99;
topPtr = -1;

};
~Stack () {delete [] stackPtr;};
void push (int number) {

 if (topSub == maxLen)
 cerr << ″Error in push - stack is full\n″;
 else stackPtr[++topSub] = number;
 };

void pop () {…};
int top () {…};
int empty () {…};

}

COS 301 — Programming Languages UMAINE CIS

C++ example: Friends

• Friend functions or classes

• Allow access to private members from
unrelated units

• Necessary in C++

Copyright © 2012 Addison-Wesley. All rights reserved. 1-19

COS 301 — Programming Languages UMAINE CIS

Objective-C
• Based on C, Smalltalk
• Classes, which are types
• Interfaces (C-like .h file):
 @interface class-name: parent-class {
 instance variable declarations
 }
 method prototypes
 @end
• Implementations (.m file):
 @implementation class-name
 method definitions
 @end

Copyright © 2012 Addison-Wesley. All rights reserved. 1-20

COS 301 — Programming Languages UMAINE CIS

Objective-C example
• Method prototypes
 (+ | -) (return-type) method-name [: (formal-parameters)];
• +/- for class/instance methods (resp.)
• Colon, parentheses — not included when no parameters
• Odd nomenclature:

• One parameter:
• Ex: (int) foo: (int) x;
• Name of method is foo:
• Message: (call): [objectName foo: 3] → x = 3

• Two parameters:
• Ex: (int) foo: (int) x bar: (float) y;
• Name of method is foo:bar:
• Message: [objectName foo: 3 bar: 4.5] → x = 3, y = 4.5

COS 301 — Programming Languages UMAINE CIS

Objective-C example
• Initializers: constructors

• Only initialize variables

• Can have any name, and are only explicitly
called

• Initializers return the instance itself

• Create object → call alloc + initializer

Adder *myAdder = [[Adder alloc] init];

• All class instances are heap dynamic

Copyright © 2012 Addison-Wesley. All rights reserved. 1-23

COS 301 — Programming Languages UMAINE CIS

Objective-C example
• Standard prototypes (e.g., for I/O):
 #import <Foundation/Foundation.h>

• Program must initialize a pool for its storage:
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

• NSxxx — from NextStep

• At program end, release storage:
 [pool drain];

COS 301 — Programming Languages UMAINE CIS

Objective-C — information
• @public, @private, @protected — specify instance variable access

• @public: accessible anywhere

• @private: accessible only in class where defined

• @protected: accessible in that class and any subclasses

• Default access is @protected

• However: no really good way to restrict access to methods

• Getter and setter methods for instance variables

• Name of getter is always name of instance variable

• Name of setter is always the word set with the capitalized variable
name attached (e.g., setFoo)

• Can be implicitly generated if no additional constraints to be defined
— called “properties” in this case

COS 301 — Programming Languages UMAINE CIS

Objective-C — another
// stack.m – interface and implementation for a

simple stack

#import <Foundation/Foundation.h>

@interface Stack: NSObject {

 int stackArray[100], stackPtr,maxLen, topSub;

}

 -(void) push: (int) number;

 -(void) pop;

 -(int) top;

 -(int) empty;

@end

@implementation Stack

 -(Stack *) initWith {
 maxLen = 100;
 topSub = -1;
 stackPtr = stackArray;
 return self;

}
-(void) push: (int) number {
 if (topSub == maxLen)
 NSLog(@″Stack is full″);

 else
 stackPtr[++topSub] = number;
 ...
}
@end

COS 301 — Programming Languages UMAINE CIS

Using the stack ADT
int main (int argc, char *argv[]) {

 int temp;

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 Stack *myStack = [[Stack alloc] initWith];

 [myStack push: 5];

 [myStack push: 3];

 temp = [myStack top];

 NSLog(@″Top element is: %i″, temp);
 [myStack pop];

 temp = [myStack top];

 NSLog(@″Top element is: %i″, temp);
 temp = [myStack top];

 myStack pop];

 [myStack release];

 [pool drain];

 return 0;

}

COS 301 — Programming Languages UMAINE CIS

Java
• Similar to C++, except:

• All user-defined types are classes

• All objects are heap-dynamic

• All objects accessed via reference variables

• Access control modifiers for class entities

• Package scope:

• All entities in all classes in package that are not
restricted by access control modifiers → visible
throughout package

• Eliminates need for C++’s friend functions & classes

COS 301 — Programming Languages UMAINE CIS

Java example
class StackClass {

 private int [] stackRef;

 private int [] maxLen, topIndex;

 public StackClass() { // a constructor

 stackRef = new int [100];

 maxLen = 99;

 topPtr = -1;

 };

 public void push (int num) {…};

 public void pop () {…};

 public int top () {…};

 public boolean empty () {…};

} // also have “protected”, with same meaning as Objective-C

COS 301 — Programming Languages UMAINE CIS

C#
• Based on C++, Java

• Adds two access modifiers, internal (within project)
and protected internal (= protected or internal)

• All class instances: heap dynamic

• Default constructors — available for all classes

• Garbage collection is used for most heap objects,
so destructors are rarely used

• structs are lightweight classes that do not support
inheritance

COS 301 — Programming Languages UMAINE CIS

C#
• Getter and setter methods to access data members (instance

variables)

• Properties:

• allows implementation of getters/setters without explicit
method calls

• ex:

• assume foo is reference to the instance, bar is an
instance variable

• property used to access bar in foo:

	 	 a = foo.bar; // getter

 foo.bar = 3.5; // setter

COS 301 — Programming Languages UMAINE CIS

Ruby
• Encapsulation construct: class

• Variable names:

• Local: regular identifiers

• Instance variables: begin with @

• Class variables: begin with @@

• Methods: defined with function definition syntax (def…end)

• Constructors:

• Named initialize

• Only one per class

• Implicitly called when new is called

• If additional constructors needed: different names, and they must call new

• Class members can be marked private or public (default)

• Classes are heap dynamic

COS 301 — Programming Languages UMAINE CIS

Ruby example
class StackClass
 def initialize

 @stackRef = Array.new

 @maxLen = 100
 @topIndex = -1

 end

 def push(number)

 if @topIndex == @maxLen

 puts " Error in push – stack is full"
 else

 @topIndex = @topIndex + 1
 @stackRef[@topIndex] = number

 end
 end

 def pop … end

 def top … end
 def empty … end

end

COS 301 — Programming Languages UMAINE CIS

Parameterized ADTs
• Parameterized ADTs

• can design an ADT to store any element type
(e.g.)

• only issue for statically-typed languages

• Also known as generic classes

• Supported in C++, Ada, Java (5.0), C# (2005)

COS 301 — Programming Languages UMAINE CIS

Parameterized ADTs in Ada
generic

 Max_Size: Positive;

 type Elem_Type is private;

package Generic_Stack is

 type Stack_Type is limited private;

 function Empty(Stk : in Stack_Type) return Boolean;

 function Top(Stk: in out StackType) return Elem_type;

 ...

private

 type List_Type is array (1..Max_Size) of Element_Type;

 type Stack_Type is

 record

 List : List_Type;

 Topsub : Integer range 0 .. Max_Size := 0;

 end record;

end Generic_Stack; package Integer_Stack is new Generic_Stack(100,Integer);

package Float_Stack is new Generic_Stack(100,Float);

COS 301 — Programming Languages UMAINE CIS

Parameterized ADTs in C++
• Can make classes somewhat generic with

parameterized constructors:
	 Stack (int size) {

 stk_ptr = new int [size];
 max_len = size - 1;

 top = -1;

 };

 Stack stk(150);

COS 301 — Programming Languages UMAINE CIS

Parameterized ADTs in C++ — templates

template <class Type> 
class Stack { 
 private: 
 Type *stackPtr; 
 const int maxLen; 
 int topPtr; 
 public: 
 Stack() { // Constructor for 100 elements 
 stackPtr = new Type[100]; 
 maxLen = 99; 
 topPtr = -1; 
 }

Stack(int size) { // Constructor for a given number

 stackPtr = new Type[size];

 maxLen = size – 1;
 topSub = -1;

 } 
 …

}

 Stack<int> myIntStack;

COS 301 — Programming Languages UMAINE CIS

Encapsulation constructs

• Large programs — two special needs:

• Some means of organization, other than simply
division into subprograms

• Some means of partial compilation — i.e.,
compilation units smaller than whole program

• ⟹ Group logically-related subprograms into units

• Allow units to be separately compiled (i.e.,
compilation units)

• Such units are encapsulation constructs

COS 301 — Programming Languages UMAINE CIS

Nested subprograms as encapsulation

• One way to organize subprograms: nest them

• Inner subprograms are encapsulated within
outer, but can share variables

• Supported in Ada, Fortran 95+, Python,
JavaScript, Ruby, Lisp, …

Copyright © 2012 Addison-Wesley. All rights reserved. 1-45

COS 301 — Programming Languages UMAINE CIS

Encapsulation in C
• Encapsulation in C — basically a compilation unit

• Interface is placed (by convention) in header (.h)
file

• Implementation in .c file

• #include — used to include header files

• Problem: linker doesn’t check types between
header and implementation

COS 301 — Programming Languages UMAINE CIS

Encapsulation in C++
• Header & code files, like C

• Also has classes

• Class definition used as the interface

• Member (instance variables, methods) defined in
separate file

• Friend functions/classes — provide a way to
grant access to private members of a class

COS 301 — Programming Languages UMAINE CIS

Encapsulation in Ada
• Packages — encapsulation unit in Ada

• Specification packages — any number of data,
subprogram definitions

• Specification, body parts of package can be
compiled separately

COS 301 — Programming Languages UMAINE CIS

Encapsulation in C#

• Assembly: collection of files that appears as a single

• executable or…

• …dynamic link library (DLL)

• Microsoft’s version of shared libraries

• collection of classes, methods (in C#) that are
individually linked to an executing program

• Each file contains module that can be separately
compiled

• Internal access modifier: member is visible to all
classes in the assembly

Copyright © 2012 Addison-Wesley. All rights reserved. 1-49

COS 301 — Programming Languages UMAINE CIS

Naming encapsulations
• Large programs:

• define many global names

• need way to divide into logical groups

• Naming encapsulation: used to create a new scope
for names

• C++ namespaces

• Can place each library in its own namespace

• Qualify names used outside with their namespace, e.g.,
foo::bar, foo::baz

• C# also includes namespaces

COS 301 — Programming Languages UMAINE CIS

Naming encapsulations
• Java — packages

• Package contains one or more class definitions

• Classes within package are partial friends

• Clients of a package — use fully qualified name or use
the import declaration

• Ada — packages

• Packages are defined in hierarchies which correspond
to file hierarchies

• Visibility from a program unit is gained with the with
clause

COS 301 — Programming Languages UMAINE CIS

Naming encapsulations
• Ruby:

• Classes, but also modules

• Typically encapsulate collections of constants and
methods

• Modules cannot be instantiated or subclassed, and
they cannot define variables

• Methods defined in a module must include the
module’s name

• Access to the contents of a module is requested
with the require method

