
COS 301 — Programming Languages UMAINE CIS

Statement-Level Control
Structures

COS 301: Programming Languages

COS 301 — Programming Languages UMAINE CIS

Topics
• Introduction

• Selection statements

• Iterative statements

• Unconditional branching

• Guarded commands

• Conclusion

COS 301 — Programming Languages UMAINE CIS

Control flow types
• Expression-level:

• operator precedence

• associativity

• Statement-level:

• control statements/structures

• Program unit-level:

• function calls

• concurrency

COS 301 — Programming Languages UMAINE CIS

Evolution
• FORTRAN

• original control statements were simple: conditional
branches, unconditional branches, etc.

• based on IBM 704 hardware

• 1960s: arguments, research about issue

• Important result: All algorithms represented by
flowcharts can be coded using only two-way selection
and pretest logical loops

• I.e., if-then-else and while loops

• Any language with these features → Turing-complete

COS 301 — Programming Languages UMAINE CIS

Goto statement
• Machine level:

• only have unconditional branches, conditional
branches

• both have form of “goto”

• Gotos: can implement any selection or iteration
structure

• But if not careful ⟹ “spaghetti code”

• ⟹ Need help to enforce discipline on control

COS 301 — Programming Languages UMAINE CIS

Control structures
• Control structure: control statement +

statements it controls

• Control structures ⟹ readability, writability

• Could just have simple control structures

• But maybe not as readable/usable as we’d like

COS 301 — Programming Languages UMAINE CIS

Simple control structures
• E.g., FORTRAN’s IF statement

IF (logical-exp) stmt

• Since there were no blocks in FORTRAN, often led to things like:

	 	 	 —FORTRAN— 	 	 	 	 	 —pseudocode—

IF (A .GT. B) GOTO 10 if (a <= b) {
stmt1 stmt1
stmt2 stmt2
GOTO 20 }

10 else-stmt else else-stmt
20 stmt-after-if stmt-after-if

COS 301 — Programming Languages UMAINE CIS

Simple control structures
• E.g., FORTRAN’s arithmetic IF:

	 IF (SUM/N - 50) 100,200,300

100 WRITE (6,*) ’Below average.’

GOTO 400

200 WRITE (6,*) ’Average.’

GOTO 400

300 WRITE (6,*) ’Above average.’

400 WRITE (6,*) ’Done.’

COS 301 — Programming Languages UMAINE CIS

Simple control structures
• Similarly, iteration constructs were simple:

	 	 DO 200 I=1,10,0.5
WRITE (6,*) ‘I=‘, I, ‘.’
IF (I .GT. 9) GOTO 300
WRITE (6,*) ‘Did not exit’

200 CONTINUE
300 WRITE (6,*) ‘Out of loop.’

COS 301 — Programming Languages UMAINE CIS

Structured programming
• Instead of designing control structures based on

machine ⟹ design to reflect how humans think

• more readable

• more writable

• reduce spaghetti code

COS 301 — Programming Languages UMAINE CIS

Structured programming
• Structured programming

• High-level control structures

• Linear control flow, if consider control
structures as statements

• Usually top-down design

• Most languages: high-level control structures

COS 301 — Programming Languages UMAINE CIS

Control structure design
Multiple exits from control structure?

Almost all languages allow multiple exits — e.g., Perl:
$count = 1;
while (1) {

last if ($count > 20); ←
$count++;
}

Question: is target of exit unrestricted?
If so, then ⇔ gotos

Multiple entry points:
Would need gotos, labels
Unwise in any case

COS 301 — Programming Languages UMAINE CIS

Topics
• Introduction

• Selection statements

• Iterative statements

• Unconditional branching

• Guarded commands

• Conclusion

COS 301 — Programming Languages UMAINE CIS

Selection statement
• Selection statement: chooses between 2 or

more paths of execution

• Categories:

• Two-way selectors

• Multi-way selectors

COS 301 — Programming Languages UMAINE CIS

Two-way selection
• E.g., if statement

<ifStatement> ! if (<exp>) <stmt>

 [else <stmt>]

• Design issues:

• Type of control expression (<exp>)?

• How are then, else clauses specified?

• How should nested selectors be specified?

COS 301 — Programming Languages UMAINE CIS

Control expression
• Syntactic markers:

• sometimes then or other marker (Python’s “:”)

• if not, then enclose <exp> in () — e.g., C-like lang’s

• C — no Booleans (more or less), so control expression →
integers, arithmetic expressions, relational expressions

• Many languages coerce control expression to Boolean

• 0 = false, non-zero = true

• empty string = false, non-empty = true

• some coerce to integer first, then test

• Other languages: must be Boolean (Ada, Java, C#, Ruby…)

COS 301 — Programming Languages UMAINE CIS

Then/else clauses
• Most modern languages: single statements or

compound statements

• Most C-like languages: compound statements using {}

• Perl: all clauses delimited by {}:

if ($x>$y) {

 print “greater\n”;

} else {

 print “less\n”;

}

COS 301 — Programming Languages UMAINE CIS

Then/else clauses
• Fortran 95, Ruby, Ada: statement sequences, delimited

by keywords

if (<expr>) then
…

else
…

end if

• Python: indentation
if x > y :
 x = y
 print “greater”

…

COS 301 — Programming Languages UMAINE CIS

Nesting selectors
• Java:

if (sum == 0)

if (count == 0)

result = 0;

else result = 1;

• The else goes with…?

• Java’s static semantics rule: else matches nearest if

• Can force alternative with {}

• Also for C, C++, C#

• Perl: not a problem — all clauses use {}

COS 301 — Programming Languages UMAINE CIS

Selectors using reserved words
• Avoid nested selection issue: use reserved words to

end clauses

• E.g., Fortran 95 (previous example)

• E.g.: Ruby:

 if sum == 0 then
 if count == 0 then
 result = 0
 else
 result = 1
 end
 end

COS 301 — Programming Languages UMAINE CIS

Nesting selectors
• Python — indentation decides

 if sum == 0:
 if count == 0:
 result = 0
 else:
 result = 1

if sum == 0:
 if count == 0:
 result = 0
else:
 result = 1

vs.

COS 301 — Programming Languages UMAINE CIS

Multi-way selection statements
• Select any number of control paths

• Can use 2-way selector to express multi-way
semantics

• Can use multi-way selector to express 2-way
semantics

• But better to have both — less clumsy (better
readability/writability)

COS 301 — Programming Languages UMAINE CIS

Multi-way selection
• Two different purposes:

• Single scalar’s value ⟹ multiple control paths
(ordinal values) → case/switch statements

• Flattening deeply nested if statements
consisting of mutually-exclusive cases → else-
if statements

• Some languages combine both purposes into a
single flexible case statement

COS 301 — Programming Languages UMAINE CIS

Case/switch design issues
• Form & type of control expression?

• How are the selectable segments specified?

• Single selectable segment per execution, or
multiple?

• Specification of case values?

• What about values not handled by a case?

start 11/20

COS 301 — Programming Languages UMAINE CIS

Case/switch statement
•Selection based on small set of ordinal values

•Start: FORTRAN’s computed GOTO:

	 GO TO (100, 87, 345, 190, 52) COUNT

•Semantics: if count = 1 goto 100, if count = 2
goto 87 etc.

•Can be implemented as a jump table

COS 301 — Programming Languages UMAINE CIS

Jump Tables
“Table” of jump statements in machine code

Convert value of control expression into index into
table

Goto base of table + index

COS 301 — Programming Languages UMAINE CIS

Case/switch statement
•Case/switch entry statement contains a control
expression

•Body of statement:

•multiple tests for values of control expression

•each with associated block of code

•Control expression needs small number of discrete
values → efficient (jump table) implementation

COS 301 — Programming Languages UMAINE CIS

C switch statement
• Control expression: integers only

• Selectable segments: statement sequences or compound
statements

• Any number of segments can be executed — no implicit
branch at end of segment (have to use break)

• Default clause: unrepresented values

• If no default and no selectable segment matches →
statement does nothing

• Statement designed for flexibility

• However, flexibly much greater than usually needed

• Need for explicit break — seems like a design error

• May lead to poor readability

COS 301 — Programming Languages UMAINE CIS

Example for C-like
switch(n) {
 case 0:
 printf("You typed zero.\n");
 break;
 case 1:
 case 9:
 printf("n is a perfect square\n");
 break;
 case 2:
 printf("n is an even number\n");
 case 3:
 case 5:
 case 7:
 printf("n is a prime number\n");
 break;
 case 4:
 printf("n is a perfect square\n");
 case 6:
 case 8:
 printf("n is an even number\n");
 break;
 default:
 printf("Only single-digit numbers are allowed\n");
 break;
}

COS 301 — Programming Languages UMAINE CIS

C# changes to switch
• C# — static semantics rule disallows the implicit

execution of more than one segment

• Each segment must end with unconditional
branch — goto, return, continue, break

• Control expression, case constants can be
strings

COS 301 — Programming Languages UMAINE CIS

C# syntax
switch (expression)

{

 case constant-expression:

 statement

 jump-statement

 [default:

 statement

 jump-statement]

}

COS 301 — Programming Languages UMAINE CIS
UMaine School of Computing and Information Science

C# example
switch (value){

case -1:

minusone++;

break;

case 0:

zeros++;

goto case 1;

case 1:

nonnegs++;

break;

default:

return;

}

COS 301 — Programming Languages UMAINE CIS

Ada case statement:
• Expression: any ordinal type

• Segments: single or compound

• Only one segment executed out of choices

• Unrepresented values not allowed (have default keyword,
though)

• Constant list forms:

• constant

• list of constants

• subranges

• Boolean OR operators

COS 301 — Programming Languages UMAINE CIS
COS 301 - 2013

Ada case statement syntax
case expression is

when choice_list => stmt_sequence;

…

when choice_list => stmt_sequence;

when others => stmt_sequence;

end case;

• More reliable than C’s switch — once segment
selected and executed → statement after case

COS 301 — Programming Languages UMAINE CIS

Ada case example
type Directions is (North, South, East, West);

Heading : Directions;

case Heading is

 when North =>

 Y := Y + 1;

 when South =>

 Y := Y - 1;

 when East =>

 X := X + 1;

 when West =>

 X := X - 1;

end case;

Ada also supports choice lists:

case ch is

 when ‘A’..’Z’|’a’..’z’ =>

COS 301 — Programming Languages UMAINE CIS

Ruby’s switch statement
case n

when 0

 puts 'You typed zero'

when 1, 9

 puts 'n is a perfect square'

when 2

 puts 'n is a prime number'

 puts 'n is an even number'

when 3, 5, 7

 puts 'n is a prime number'

when 4, 6, 8

 puts 'n is an even number'

else

 puts 'Only single-digit numbers are allowed'

end

COS 301 — Programming Languages UMAINE CIS

Ruby’s switch statement
Switch can also return a value in Ruby:

catfood = case

 when cat.age <= 1 then junior

 when cat.age > 10 then senior

 else normal

 end

COS 301 — Programming Languages UMAINE CIS

Perl, Python, Lua
• Perl, Python and Lua do not have multiple-

selection constructs — but can do same thing
with else-if structures

• Python: use if…elif…elif…else

COS 301 — Programming Languages UMAINE CIS
UMaine School of Computing and Information Science

Perl, Python, Lua
Perl has a module, Switch, that adds a switch
statement when used:

From http://www.tutorialspoint.com/perl/perl_switch_statement.htm

use Switch;

$var = 10;
@array = (10, 20, 30);
%hash = ('key1' => 10, 'key2' => 20);

switch($var){
 case 10 { print "number 100\n"; next; }
 case "a" { print "string a" }
 case [1..10,42] { print "number in list" }
 case (\@array) { print "number in list" }
 case (\%hash) { print "entry in hash" }
 else { print "previous case not true" }
}
When the above code is executed, it produces following result:
number 100
number in list

COS 301 — Programming Languages UMAINE CIS

Lisp
• Has both kinds of multi-way conditionals

• case statement:
(case foo

(valSpec stmt…)

 (valspec stmt…)
 …
 (otherwise stmt…)

• “otherwise” clause optional

• Ex:

(case (read)

		 ((#\y #\Y) ’ok)

		 ((#\n #\N) ’nope)

		 (otherwise (error “Bad response!”)))

COS 301 — Programming Languages UMAINE CIS

Lisp
•cond statement

•Syntax:

(cond (test {stmt}*)*)

•Semantics:

• first clause whose test is non-nil executes

• return last form evaluated

• if no clause’s test is true: return nil

•Ex:
(defun factorial (n)

 (cond
 ((not (numberp n)) (warn “bad argument ~s” n)

 nil)
 ((<= n 1) 1)
 (t (* n (factorial (1- n))))))

COS 301 — Programming Languages UMAINE CIS

Implementing Multiple Selection
• Four main techniques

1. Multiple conditional branches

mov eax, var

cmp eax, 1

je target1

cmp eax, 2

je target2

…

2. Jump tables

3. Hash table of segment labels

4. Binary search table

COS 301 — Programming Languages UMAINE CIS

Implementing Multiple
• Four main techniques

1. Multiple conditional branches

2. Jump table

(a) Constructed in program code (above)

(b) Indexing into array
mov edx, var

mov edi, jmptable_address

jmp [edi+edx]

3. Hash table of segment labels

4. Binary search table

COS 301 — Programming Languages UMAINE CIS

Implementing Multiple
Four main techniques

1. Multiple conditional branches

2. Jump tables

3. Hash table of segment labels

4. Binary search of table

COS 301 — Programming Languages UMAINE CIS

Implementing Multiple
Four main techniques

1. Multiple conditional branches

2. Jump tables

3. Hash table of segment labels

4. Binary search of table

COS 301 — Programming Languages UMAINE CIS

Deeply-nested ifs
if (grade > 89) {
 ltr = 'A';
} else {
 if (grade > 79) {
 ltr = 'B';
 } else {
 if (grade > 69) {
 ltr = 'C';
 } else {
 if (grade > 59) {
 ltr = 'D';
 } else {
 ltr = 'E';
 }
 }
 }
}

COS 301 — Programming Languages UMAINE CIS

Using else-if statement
if (grade > 89) {
 ltr = 'A';
} else if (grade > 79) {
 ltr = 'B';
} else if (grade > 69) {
 ltr = 'C';
} else if (grade > 59) {
 ltr = 'D';
} else
 ltr = 'E';
}

COS 301 — Programming Languages UMAINE CIS

Multi-way selection with if
• Else-if and similar statements/clauses ⟹ multi-

way selection

• E.g. Python’s elif:

	 if count < 10:
 bag1 = True
 elif count < 100:
 bag2 = True
 elif count < 1000:
 bag3 = True

COS 301 — Programming Languages UMAINE CIS

Multi-way selection with if
• Can be rewritten as (e.g.) a Ruby case statement:

 case

 when count < 10 then bag1 = true

 when count < 100 then bag2 = true

 when count < 1000 then bag3 = true

 end

COS 301 — Programming Languages UMAINE CIS

Topics
• Introduction

• Selection statements

• Iterative statements

• Unconditional branching

• Guarded commands

• Conclusion

COS 301 — Programming Languages UMAINE CIS

Iterative statements
• Repetition in programming languages:

• recursion

• iteration

• First iterative constructs — directly related to
array processing

• General design issues:

• How is iteration controlled?

• Where is the control mechanism in the loop?

COS 301 — Programming Languages UMAINE CIS

Loop Control
• Body: collection of statements controlled by the

loop

• Several varieties of loop control:

• Test at beginning (while)

• Test at end (repeat)

• Infinite (usually terminated by explicit jump)

• Count-controlled (restricted while) 

COS 301 — Programming Languages UMAINE CIS

Count-controlled loops
• Counting iterative statement:

• loop variable, means of specifying initial, terminal, and
step values (loop parameters)

• e.g., for statement

• Note — some machine architectures directly implement count
controlled loops (e.g., Intel LOOP instruction)

• Design issues:

• What are the type and scope of the loop variable?

• Can the loop variable be changed in the body? If so, how
does it affect loop control?

• Loop parameters — evaluate only once, or each time
through the loop

COS 301 — Programming Languages UMAINE CIS

Fortran 95 DO Loops
• FORTRAN 95 syntax
 DO var = start, finish[, stepsize]
 …
 END DO

• Stepsize: any value but zero

• Parameters can be expressions

• Design choices:

• Loop variable must be INTEGER

• Loop variable cannot be changed in the loop

• Loop parameters are evaluated only once

• Parameters can be changed within loop — but evaluated only
once, so no effect on loop control

COS 301 — Programming Languages UMAINE CIS

Operational semantics
init_val = init_expression

term_val = terminal_expression
step_val = step_expression

do_var = init_val
it_count = max(int(term_val – init_val + step_val)/step_val,0)

loop:
 if it_count <= 0 goto done
 [body]

 do_var = do_var + step_val
 it_count = it_count - 1

 goto loop:
done:

COS 301 — Programming Languages UMAINE CIS

Example: Ada for loop
• Ada

 for var in [reverse]discrete_range loop
...

 end loop

• Design choices:

• Loop variable → discrete range

• Loop variable does not exist outside the loop

• Cannot change loop variable in loop

• The discrete range is evaluated just once

• Cannot branch into the loop body

COS 301 — Programming Languages UMAINE CIS

C-style Languages
• C-based languages

for ([expr_1] ; [expr_2] ; [expr_3])

 statement

• All expressions are optional

• Expressions:

• Can be multiple statements, separated by commas

• Value of list of expressions is value of last expression

COS 301 — Programming Languages UMAINE CIS

C-Style For Loops
• This…

for (expressions1; expression2; expressions3)

 statement;

• …is semantically equivalent to:
expressions1;

while (expression2) {

 statement;

 expressions3;

}

COS 301 — Programming Languages UMAINE CIS

C-style for loops
• Consider: for (init; test; increment) {}

• If test missing → considered true → infinite loop

• If increment missing → equiv. to while loop

• C for loop design choices

• No explicit loop variable

• Can change anything — loop variable, test, increment —
during loop

• Can even branch into loop body! (goto label; → label: stmt;)

• C versus (e.g.) Ada:

• C: flexible, anything goes culture; unsafe

• Ada: prevent errors at expense of flexibility

COS 301 — Programming Languages UMAINE CIS

Python for loop
• Format

for loop_var in object:

…loop body…

[else:

…else clause…]

• object: often a range
• list of values in brackets: [1, 3, 5]
• range() function: only integer arguments, optional lower bound and step size

• range(5) ⟹ [0, 1, 2, 3, 4], range(2,7) ⟹ [2, 3, 4, 5, 6], range(0,8,2) ⟹ [0,2,4,6]

• loop_var: takes one of the values of range per iteration
• Else clause (optional)

• executed when the loop terminates normally
• break statement will keep it from executing:

for item in list:

if item == 3:

break

else:
print(“Didn’t find item”)

COS 301 — Programming Languages UMAINE CIS

Logically-controlled loops
• Repetition depends on Boolean expression

• Simpler than count-controlled loops

• C-like for loop is really this

• Design issues:

• Pre-test (while loop) or post-test (until loop)

• Allow arbitrary exits?

• Separate statement or special case of counting
loop (e.g., C-like)

COS 301 — Programming Languages UMAINE CIS

Pre-test loops
• Grammar (in general):
<whileStmt> ! while (<exp>) <stmt>

• Semantics:

1. expression evaluated

2. if true, then <stmt> executed, goto 1

3. if false, terminate loop

• Loop body executes 0 or more times

• Can use this for all iteration

COS 301 — Programming Languages UMAINE CIS
COS 301 - 2013UMaine School of Computing and Information Science

Pre-test loop operational semantics
 loop: if (control_expression==false) goto out

 [loop body]

 goto loop

 out: …

COS 301 — Programming Languages UMAINE CIS

Pre-test loops
• What if want loop body executed 1 or more

times?

• Have to repeat loop body before loop

• Not the best way of doing things!

COS 301 — Programming Languages UMAINE CIS

Post-test loops
• Test is at end of loop

• Body of loop done 1 or more times: body then
test, etc.

• Called repeat until, until, or repeat loops

• Possible grammar rules:

<doWhile> → do <stmt> while <exp>

<doUntil> → do <stmt> until <expr>

• Test at end of loop; body executes at least once

COS 301 — Programming Languages UMAINE CIS

Post-test loop operational semantics
• With “while”

 loop: [loop body]

 if (control_expression==true) goto loop
 out:

• With “until”
 loop: [loop body]
 if (control_expression == false) goto loop
 out:

COS 301 — Programming Languages UMAINE CIS

C while and do
• C, C++: both pre- and post-test forms

• Arithmetic control expression

• Pre-test:

while (exp) stmt

• Post-test:

do stmt while (exp)

• Java:

• like C and C++…

• but control expression Boolean, not arithmetic

• cannot enter body except at beginning (no goto in any case)

COS 301 — Programming Languages UMAINE CIS
COS 301 - 2013UMaine School of Computing and Information Science

Loops in Ada
• Allows arbitrary tests (like many languages):

loop

 Get(Current_Character);

 exit when Current_Character = '*';

end loop;

• General form: can do both pre- and post- tests, plus other

• Ada’s while loop:

 while Bid(N).Price < Cut_Off.Price loop

 Record_Bid(Bid(N).Price);

 N := N + 1;

 end loop;

COS 301 — Programming Languages UMAINE CIS

Loops in FORTRAN IV
111 FORMAT(I2,’ squared=‘,I4)

 DO 200 I=1,20

J = I**2

WRITE(6,111) I,J

200 CONTINUE

Now, though, have do…end do loops

COS 301 — Programming Languages UMAINE CIS

Loops in Lisp
• Repetition in Lisp — primarily via recursion

• But does have built-in loops:

• General: (do …)

• (dolist (var list) {form}*)

• (dotimes (var limit) {form}*)

• Infinite loop: (loop {form}*)

COS 301 — Programming Languages UMAINE CIS

Loops in Lisp
• Loop macro — very flexible:

CL-USER> (loop for i from 1 to 20

 for j from 20 downto 1

 while (not (= i (+ j 1)))

 when (evenp i)

 do (format t "~s ~s~%" i j)

 collect (list i j)

 finally (print "Done!"))

2 19

4 17

6 15

8 13

10 11

"Done!"

((1 20) (2 19) (3 18) (4 17) (5 16) (6 15)

 (7 14) (8 13) (9 12) (10 11))

COS 301 — Programming Languages UMAINE CIS

Loop macro expansion
(BLOCK NIL
 (LET ((I 1))
 (DECLARE (TYPE (AND REAL NUMBER) I))
 (LET ((J 20))
 (DECLARE (TYPE (AND REAL NUMBER) J))
 (SB-LOOP::WITH-LOOP-LIST-COLLECTION-HEAD (#:LOOP-LIST-HEAD-931
 #:LOOP-LIST-TAIL-932)
 (SB-LOOP::LOOP-BODY NIL
 (NIL NIL (WHEN (> I '20) (GO SB-LOOP::END-LOOP))
 NIL NIL NIL (WHEN (< J '1) (GO SB-LOOP::END-LOOP))
 NIL
 (UNLESS (NOT (= I (+ J 1)))
 (GO SB-LOOP::END-LOOP)))
 ((IF (EVENP I)
 (FORMAT T "~s ~s~%" I J))
 (SB-LOOP::LOOP-COLLECT-RPLACD
 (#:LOOP-LIST-HEAD-931 #:LOOP-LIST-TAIL-932)
 (LIST (LIST I J))))
 (NIL (SB-LOOP::LOOP-REALLY-DESETQ I (1+ I))
 (WHEN (> I '20) (GO SB-LOOP::END-LOOP)) NIL NIL
 (SB-LOOP::LOOP-REALLY-DESETQ J (1- J))
 (WHEN (< J '1) (GO SB-LOOP::END-LOOP)) NIL
 (UNLESS (NOT (= I (+ J 1)))
 (GO SB-LOOP::END-LOOP)))
 ((PRINT "Done!")

COS 301 — Programming Languages UMAINE CIS

Loop control and exit
• Sometimes top/bottom for loop control not

sufficient

• For single (unnested) loop:

• break statement (or equiv.)

• Ada’s exit when mechanism

• What about nested loops? How to get out of
more than one loop?

COS 301 — Programming Languages UMAINE CIS

Loop control
• C: provides two goto-like constructs

• break — exit current loop/switch structure

• continue — transfer control to loop test

• C/C++/Python:

• continue is unlabeled

• → skip remainder of current iteration, don’t exit

• Java/Perl: labeled version of continue

• Ada: labeled version of exit when:

foo:
 loop
 stmts
 exit foo when condition
 stmts

 end loop foo;

COS 301 — Programming Languages UMAINE CIS

Iteration based on data
• Control mechanism:

• Call an iterator function that returns next element

• Terminate when done

• Iterator: object with state

• Remembers last element returned, next

init_iterator(it);

while (obj = it.getNextObject()) {

process_obj(obj);

}

COS 301 — Programming Languages UMAINE CIS

Iteration based on data
• C for loop —can easily be used for a user-

defined iterator:

	for (p=root; p==NULL; p = p->next){
 process_node(p);

. . .
}

COS 301 — Programming Languages UMAINE CIS

Python for statement
•for statement in Python — really an iterator

• Iterates over elements of a sequence or other iterable object

•Syntax:
<forStmt> → for <targetList> in <exprList> : <stmts1> [else : <stmts2>]

• <exprList> evaluated once, should → iterable object

• <stmts1> is then executed once per item provided by iterator,
with the item assigned to <targetList>

• When iterator is exhausted, else clause is executed, if present

• If break occurs in <stmts1> ⟹ loop terminates without
executing else clause

• continue is allowed as well

COS 301 — Programming Languages UMAINE CIS

Python for statement
• Statements can change the <targetList> variables — next value will

be assigned in same way, though

• If the sequence (e.g., a list) is modified by the loop statements:

• Python keeps an internal counter to keep track of which item is
next

• If delete current or previous element, next item will be skipped!

• If insert item prior to the current one, current will be processed
again!

• Avoid this by making a copy of the list, e.g., with a slice:

for x in a[:]:

if x < 0:

a.remove(x)

COS 301 — Programming Languages UMAINE CIS
COS 301 - 2013UMaine School of Computing and Information Science

Javascript object iteration
var o = {a:1, b:"aardvark", c:3.55};

function show_props(obj, objName) {
 var result = "";
 for (var prop in obj) {
 result += objName+"."+prop+" = "+ obj[prop] + "\n";
 }
 return result;
}

alert(show_props(o, "o"));
/* alerts :
o.a = 1
o.b = aardvark
o.c = 3.55
*/

COS 301 — Programming Languages UMAINE CIS

Topics
• Introduction

• Selection statements

• Iterative statements

• Unconditional branching

• Guarded commands

COS 301 — Programming Languages UMAINE CIS

Unconditional Branching
• goto, e.g.

• Equivalent to unconditional branch/jump in machine lang.

• Caused one of the most heated debates in 1960’s and 1970’s

• Major concern: readability (of “spaghetti code”)

• C has goto, as you’d expect

• Some languages — don’t even support goto statement (e.g., Java)

• C# — has goto statement, can be used in switch statements

• Gotos that aren’t quite gotos:

• loop exits

• but restricted — “safer” gotos

COS 301 — Programming Languages UMAINE CIS

The goto controversy
• Flowcharts: primary program design tool in 60s

• Programs often resembled flowcharts

• FORTRAN, Basic: line numbers (or labels) —
branch targets

• Edsger Dijkstra (1968) → letter to the editor of
CACM: “GoTo Considered Harmful”

COS 301 — Programming Languages UMAINE CIS

Flowchart Examples

COS 301 — Programming Languages UMAINE CIS

Structured programming
• Dijkstra advocated eliminating goto statement →

conditional and iterative structures

• C, Pascal (& Algol)

• developed with these structures → “structured
programming revolution”

• languages have goto statements, but not used
much

COS 301 — Programming Languages UMAINE CIS

A good use of gotos
• E.g., a natural implementation of DFSAs

State0:
 ch = getchar();
 if (ch ==‘0’)
 goto State1;
 else
 goto State2;
State1:
 while ((ch = getchar()) == ‘0’)
 ;
 Goto state5
State3:
…

•Difficult to see how to program this easily using
purely structured programming

COS 301 — Programming Languages UMAINE CIS

A rebuttal to structured
• E.C.R. Hehner (1979) — Acta Informatica article

“do considered od: A contribution to the
programming calculus”

• Suggested that repetitive constructs weren’t
the best thing ever

• argued for recursive refinement

• claimed it was simpler and clearer

COS 301 — Programming Languages UMAINE CIS

Topics
• Introduction

• Selection statements

• Iterative statements

• Unconditional branching

• Guarded commands

COS 301 — Programming Languages UMAINE CIS

Guarded commands
• Dijkstra:

• wanted loop and selection mechanisms that
helped ensure correctness of programs

• wanted to allow nondeterminism in programs
(and avoid overcommitment)

• ⟹ guarded commands

• Nondeterminism → good for concurrent
programming

COS 301 — Programming Languages UMAINE CIS

Guarded selection
• Form:

if <cond> -> <stmt>
[] <cond> -> <stmt>
[] <cond> -> <stmt>
…
fi

• [] = “fatbars” — separators

• <cond> = guard

• <cond> -> <stmt> = guarded command

COS 301 — Programming Languages UMAINE CIS

Guarded selection
• Form:

if <cond> -> <stmt>
[] <cond> -> <stmt>
[] <cond> -> <stmt>
…
fi

• Differences from standard selection:

• guarded commands:

• No set order

• Any command with a true guard is eligible —
nondeterminism

• if no guard is true → exception

COS 301 — Programming Languages UMAINE CIS

Guarded selection
• Example:

if a >= b -> max = a

[] b >= a -> max = b

fi

• Don’t know (or care) whether a or b is max if they’re equal, so why
commit?

• Example:
if near_obstacle -> turnLeft()

[] near_obstacle -> turnRight()

[] predator_near -> speedUp()

fi

• In concurrent system…

COS 301 — Programming Languages UMAINE CIS

Guarded iteration
• Iteration construct also guarded:

do <guard> -> <stmt>

 [] <guard> -> <stmt>

 [] <guard> -> <stmt>

 …

od

• Semantics:

• if one or more guards is true, pick a statement
and execute it

• when all guards are false → exit loop

