Statement-Level Control
Structures

COS 301: Programming Languages

Topics

Introduction

Control flow types

Expression-level:
operator precedence
associativity
Statement-level:
control statements/structures
Program unit-level:
function calls

concurrency

Fvolution

FORTRAN

original control statements were simple: conditional
branches, unconditional branches, etc.

based on IBM 704 hardware
1960s: arguments, research about issue

Important result: All algorithms represented by
flowcharts can be coded using only two-way selection
and pretest logical loops

l.e., if-then-else and while loops

Any language with these features — Turing-complete

Goto statement

Machine level:

only have unconditional branches, conditional
branches

both have form of “goto”

Gotos: can implement any selection or iteration
structure

But if not careful = “spaghetti code”

= Need help to enforce discipline on control

Control structures

Control structure: control statement +
statements it controls

Control structures = readability, writability
Could just have simple control structures

But maybe not as readable/usable as we’d like

Simple control structures

E.g., FORTRAN's IF statement

IF (logical-exp) stmt
Since there were no blocks in FORTRAN, often led to things like:

—FORTRAN— —pseudocode —
W (A . B)) EOnO 10 A2 (a <= b)) §
stmtl stmtl
stmt2 stmt2
GOTO 20 }
10 else-stmt else else-stmt
20 stmt-after-if stmt-after-if

Simple control structures

E.g., FORTRAN’s arithmetic IF:

IF (SUM/N - 50) 100,200,300
100 WRITE (6,*) ’'Below average.’
GOTO 400
200 WRITE (6,*) 'Average.’
GOTO 400
300 WRITE (6,*) ’'Above average.’
400 WRITE (6,*) ’'Done.’

Simple control structures

Similarly, iteration constructs were simple:

DO 200 I=1,10,0.5
WRITE (6,*) ‘I=‘, I, ‘.’
IF (I .GT. 9) GOTO 300
WRITE (6,*) ‘Did not exit’
200 CONTINUE
300 WRITE (6,*) ‘Out of loop.’

Structured programming

Instead of designing control structures based on
machine = design to reflect how humans think

more readable
more writable

reduce spaghetti code

Structured programming

Structured programming
High-level control structures

Linear control flow, if consider control
structures as statements

Usually top-down design

Most languages: high-level control structures

Control structure design

o Multiple exits from control structure?
® Aimost all languages allow multiple exits — e.g., Perl:
$Scount = 1;
while (1) {
s
Scount++;

b
® Question: is target of exit unrestricted?

® |f so, then & gotos

° Multiple entry points:
® Would need gotos, labels
® Unwise in any case

Topics

Selection statements

Selection statement

Selection statement: chooses between 2 or
more paths of execution

Categories:
Two-way selectors

Multi-way selectors

Two-way selection

E.g., if statement
<ifStatement> » if (<exp>) <stmt>
[else <stmt>]
Design issues:
Type of control expression (<exp>)?
How are then, else clauses specified?

How should nested selectors be specified?

Control expression

Syntactic markers:
sometimes then or other marker (Python’s “:”)
if not, then enclose <exp> in () — e.g., C-like lang’s

C — no Booleans (more or less), so control expression —
integers, arithmetic expressions, relational expressions

Many languages coerce control expression to Boolean
0 = false, non-zero = true
empty string = false, non-empty = true
some coerce to integer first, then test

Other languages: must be Boolean (Ada, Java, C#, Ruby...)

Then/else clauses

Most modern languages: single statements or
compound statements

Most C-like languages: compound statements using {}
Perl: all clauses delimited by {}:
if ($x>$y) {
print “greater\n”;
} else {

prEime YlesE\n? g

Then/else clauses

Fortran 95, Ruby, Ada: statement sequences, delimited
by keywords

if (<expr>) then
else

end if
Python: indentation
if x >y :
XY
print “greater”

Nesting selectors

Java:
if (sum == 0)
if (count == 0)
result = 0;
else result = 1;
The else goes with...?
Java’s static semantics rule: else matches nearest if
Can force alternative with {}
Also for C, C++, C#
Perl: not a problem — all clauses use {}

Selectors using reserved words

Avoid nested selection issue: use reserved words to
end clauses

E.g., Fortran 95 (previous example)

o i
if sum == 0 then
if count == 0 then
result = 0
else

result = 1
end
end

Nesting selectors

Python — indentation decides

if sum == 0: if sum ==
if count == 0: if count == 0:
result = 0 vs. result = 0
else: else:
zesule = 1 esule = 1

Multi-way selection statements

Select any number of control paths

Can use 2-way selector to express multi-way
semantics

Can use multi-way selector to express 2-way
semantics

But better to have both — less clumsy (better
readability/writability)

Multi-way selection

Two different purposes:

Single scalar’s value = multiple control paths
(ordinal values) — case/switch statements
Flattening deeply nested if statements

consisting of mutually-exclusive cases — else-
if statements

Some languages combine both purposes into a
single flexible case statement

Case/switch design issues

Form & type of control expression?
How are the selectable segments specified?

Single selectable segment per execution, or
multiple?

Specification of case values?

What about values not handled by a case?

Case/switch statement

Selection based on small set of ordinal values
Start: FORTRAN's computed GOTO:
GO TO (100, 87, 345, 190, 52) COUNT

Semantics: if count = 1 goto 100, if count = 2
goto 87 etc.

Can be implemented as a jump table

Jump Tables

°“Table” of jump statements in machine code

°Convert value of control expression into index into
table

°Goto base of table + index

Case/switch statement

Case/switch entry statement contains a control
expression

Body of statement:
multiple tests for values of control expression
each with associated block of code

Control expression needs small number of discrete
values — efficient (jump table) implementation

C switch statement

Control expression: integers only

Selectable segments: statement sequences or compound
statements

Any number of segments can be executed — no implicit
branch at end of segment (have to use break)

Default clause: unrepresented values

If no default and no selectable segment matches —
statement does nothing

Statement designed for flexibility
However, flexibly much greater than usually needed
Need for explicit break — seems like a design error
May lead to poor readability

Example for C-like

switch(n) {
case 0:
printf("You typed zero.\n");
break;
case 1:
case 9:
printf("n is a perfect square\n");
break;
case 2:
printf("n is an even number\n");
case 3:
case 5:
case 7:
printf("n is a prime number\n");
break;
case 4:
printf("n is a perfect square\n");
case 6:
case 8:
printf("n is an even number\n");
break;
default:
printf("Only single-digit numbers are allowed\n");
break;

C# changes to switch

C# — static semantics rule disallows the implicit
execution of more than one segment

Each segment must end with unconditional
branch — goto, return, continue, break

Control expression, case constants can be
strings

C# syntax

switch (expression)
{
case constant-expression:
statement
jump-statement
[default:
statement

jump-statement]

C# example

switch (value){

case -1:
minusone++;
break;

case 0:
zeros++;
goto case 1;

case 1:
nonnegs++;
break;

default:

return;

Ada case statement:

Expression: any ordinal type

Segments: single or compound
Only one segment executed out of choices

Unrepresented values not allowed (have default keyword,
though)

Constant list forms:
constant
list of constants
subranges

Boolean OR operators

Ada case statement syntax

case expression is
when choice_list => stmt_sequence;
when choice_list => stmt_sequence;
when others => stmt_sequence;

end case;

More reliable than C’s switch — once segment
selected and executed — statement after case

Ada case example

type Directions is (North, South, East, West);
Heading : Directions;
case Heading is
when North =>
¥ g= W 4 A
when South => Ada also supports choice lists:
My case ch is
when East =>
WEm YA o6 737 [| 7ag o8 a0 ReD
when West =>
w8 K = 1B

end case;

Ruby’s switch statement

case n

when 0

puts 'You typed zero'
when 1, 9

puts 'n is a perfect square'
when 2

puts 'n is a prime number'

puts 'n is an even number'
when 3, 5, 7

puts 'n is a prime number'
when 4, 6, 8

puts 'n is an even number'
else

puts 'Only single-digit numbers are allowed'

end

Ruby’s switch statement

® Switch can also return a value in Ruby:
catfood = case
when cat.age <= 1 then junior
when cat.age > 10 then senior
else normal

end

Perl, Python, Lua

Perl, Python and Lua do not have multiple-
selection constructs — but can do same thing
with else-if structures

Python: use if..elif..elif..else

Perl, Python, Lua

° Perl has a module, Switch, that adds a switch
statement when used:

use Switch;

$var = 10;
Qarray = (10, 20, 30);
%hash = ('keyl' => 10, 'key2' => 20);

switch ($var) {
case 10
case "a"
case [1..10,42]
case (\@array)
case (\%hash)
else
}
When the above code is executed, it produces following result:
number 100

print "number 100\n"; next; }
print "string a" }

print "number in list" }

print "number in list" }

print "entry in hash" }

print "previous case not true" }

number in list

Lisp

Has both kinds of multi-way conditionals
case statement:
(case foo

(valSpec stmt...)
(valspec stmt...)

(otherwise stmt...)
“otherwise” clause optional

Ex:
(case (read)
(@ #\Y) "0k)
(#\n #\N) 'nope)

(otherwise (error “Bad response!”)))

Lisp

cond statement
Syntax:
(cond (test{stmt}*)*)
Semantics:
first clause whose test is non-nil executes
return last form evaluated
if no clause’s test is true: return nil
Ex:
(defun factorial (n)
(cond
((not (numberp n)) (warn “bad argument ~s” n)
nil)
((<=n1)1)
(t (* n (factorial (1- n))))))

Implementing Multiple Selection

Four main techniques
1. Multiple conditional branches
mov eax, var
cmp eax, 1
je targetl
cmp eax, 2

je target2

Implementing Multiple

Four main techniques

2. Jump table
(a) Constructed in program code (above)
(b) Indexing into array
mov edx, var
mov edi, jmptable address

Jjmp [edi+tedx]

Implementing Multiple

° Four main techniques

3. Hash table of segment labels

Implementing Multiple

® Four main techniques

4. Binary search of table

Deeply-nested ifs

if (grade > 89) {

ltr = 'A';
} else {
if (grade > 79) {
ltr = 'B';
} else {
if (grade > 69) {
el = Nt -
} else {
if (grade > 59) {
ez = Vg
} else {
e = Umlp

:

Using else-if statement

if (grade > 89) {

ltr = 'A";

} else if (grade > 79) {
Llegre = "BVg

} else if (grade > 69) {
ity = @

} else if (gracdz > 59) {
ltr = 'D';

} else
legr = Yiplg

Multi-way selection with i f

Else-if and similar statements/clauses = muilti-
way selection
E.g. Python'’s elif:
if count < 10:
bagl = True
elif count < 100:
bag2 = True
eliliE couwnt < 10003
bag3 = True

Multi-way selection with i f

Can be rewritten as (e.g.) a Ruby case statement:
case

when count < 10 then bagl = true

when count < 100 then bag2 = true

when count < 1000 then bag3 = true

end

Topics

[terative statements

lterative statements

Repetition in programming languages:
recursion
iteration

First iterative constructs — directly related to
array processing

General design issues:
How is iteration controlled?

Where is the control mechanism in the loop?

Loop Control

Body: collection of statements controlled by the
loop

Several varieties of loop control:
Test at beginning (while)
Test at end (repeat)
Infinite (usually terminated by explicit jump)

Count-controlled (restricted while)

Count-controlled loops

Counting iterative statement:

loop variable, means of specifying initial, terminal, and
step values (loop parameters)

e.g., for statement

Note — some machine architectures directly implement count
controlled loops (e.g., Intel LOOP instruction)

Design issues:
What are the type and scope of the loop variable?

Can the loop variable be changed in the body? If so, how
does it affect loop control?

Loop parameters — evaluate only once, or each time
through the loop

Fortran 95 DO Loops

FORTRAN 95 syntax

DO var = start, finish[, stepsize]

END WDO

Stepsize: any value but zero

Parameters can be expressions

Design choices:
Loop variable must be INTEGER
Loop variable cannot be changed in the loop
Loop parameters are evaluated only once

Parameters can be changed within loop — but evaluated only
once, so no effect on loop control

Operational semantics

init_val = init_expression
term_val = terminal_expression
step_val = step_expression
do_var = init_val
it_count = max(int(term_val — init_val + step_val)/step_val,0)
loop:
if it_count <= 0 goto done
[body]
do_var = do_var + step_val
it_count = it_count - 1
goto loop:

done:

Example: Ada for loop

Ada
for var in [reverse]discrete_range loop

end loop
Design choices:
Loop variable — discrete range
Loop variable does not exist outside the loop
Cannot change loop variable in loop
The discrete range is evaluated just once

Cannot branch into the loop body

C-style Languages

C-based languages
for ([expr_1] ; [expr_2] ; [expr_3])

statement
All expressions are optional
Expressions:
Can be multiple statements, separated by commas

Value of list of expressions is value of last expression

C-Style For Loops

HhiST

for (expressionsl; expression2; expressions3)

statement;

...is semantically equivalent to:

expressionsl;

while (expression2) {
statement;

expressions3;

C-style for loops

Consider: for (init; test; increment) {}

If test missing — considered true — infinite loop
If increment missing — equiv. to while loop
C for loop design choices

No explicit loop variable

Can change anything — loop variable, test, increment —
during loop

Can even branch into loop body! (goto label; = label: stmt;)
C versus (e.g.) Ada:
C: flexible, anything goes culture; unsafe

Ada: prevent errors at expense of flexibility

Python for loop

Format
for loop_var in object:

..loop body..
[else:
..else clause..]
object: often a range
list of values in brackets: [1, 3, 5]
range() function: only integer arguments, optional lower bound and step size
range(5) = [0, 1, 2, 3, 4], range(2,7) = [2, 3, 4, 5, 6], range(0,8,2) = [0,2,4,6]
loop_var: takes one of the values of range per iteration
Else clause (optional)
executed when the loop terminates normally
break statement will keep it from executing:
for item in list:
if item == 3:
break
else:
print(“Didn’t find item”)

Logically-controlled loops

Repetition depends on Boolean expression
Simpler than count-controlled loops
C-like for loop is really this
Design issues:
Pre-test (while loop) or post-test (until loop)
Allow arbitrary exits?

Separate statement or special case of counting
loop (e.g., C-like)

Pre-test loops

Grammar (in general):

<whileStmt> » while (<exp>) <stmt>
Semantics:
1. expression evaluated
2. if true, then <stmt> executed, goto 1
3. if false, terminate loop
Loop body executes O or more times

Can use this for all iteration

Pre-test loop operational semantics

loop: if (control_expression==false) goto out
[loop body]
goto loop

elfiE

Pre-test loops

What if want loop body executed 1 or more
times?

Have to repeat loop body before loop

Not the best way of doing things!

Post-test loops

Test is at end of loop

Body of loop done 1 or more times: body then
test, etc.

Called repeat until, until, or repeat loops
Possible grammar rules:
<doWhile> — do <stmt> while <exp>
<doUntil> — do <stmt> until <expr>

Test at end of loop; body executes at least once

Post-test loop operational semantics

With “while”
loop: [loop body]
if (control_expression==true) goto loop
out:
With “until”
loop: [loop body]
if (control_expression == false) goto loop
out:

C while and do

C, C++: both pre- and post-test forms
Arithmetic control expression
Pre-test:
while (exp) stmt
Post-test:
do stmt while (exp)
Java:
like C and C++...
but control expression Boolean, not arithmetic

cannot enter body except at beginning (no goto in any case)

Loops in Ada

Allows arbitrary tests (like many languages):

loop
Get(Current_Character);
exit when Current_Character = "';
end loop;
General form: can do both pre- and post- tests, plus other
Ada’s while loop:
while Bid(N).Price < Cut_Off.Price loop
Record_Bid(Bid(N).Price);
N:=N+1;

end loop;

Loops in FORTRAN IV

111 FORMAT(I2,’ squared=‘,I4)
DO 200 I=1,20
g 8 ILDBY)
WRITE(6,111) I,J

200 CONTINUE

Now, though, have do..end do loops

Loops in Lisp

Repetition in Lisp — primarily via recursion
But does have built-in loops:
General: (do ...)
(dolist (var list) {form}¥*)
(dotimes (var limit) {form}*)

Infinite loop: (loop {form}*)

Loops in Lisp

Loop macro — very flexible:
CL-USER> (loop for i from 1 to 20
for j from 20 downto 1
while (not (=i (+ 3 1)))
when (evenp i)
do (format t "~s ~s~%" i j)
collect (list i j)

finally (print "Done!"))
219

417
%N
b
18 1

"Done!"
((1 20) (2 19) (3 18) (4 17) (5 16) (6 15)
(7 14) (8 13) (9 12) (10 11))

Loop macro expansion

(BLOCK NIL
(LET (1))
(DECLARE (TYPE (AND REAL NUMBER) I))
(LET ((J 20))
(DECLARE (TYPE (AND REAL NUMBER) J))
(SB-LOOP:: OOP-LIST-COLLI (#LOOP-LI

#LOOP-LIST-TAIL-932)
(SB-LOOP::LOOP-BODY NIL

(NIL NIL (WHEN (> | '20) (GO SB-LOOP::END-LOOP))
NIL NIL NIL (WHEN (< J 1) (GO SB-LOOP:END-LOOP))

(UNLESS (NOT (=1 (+ J 1)))
(GO SB-LOOP::END-LOOP)))
((IF (EVENP 1)

(FORMAT T "~s ~5~%" | J))
(SB-LOOP:LOOP-COLLECT-RPLACD
(#:LOOP-LIST-HEAD-931 #:LOOP-LIST-TAIL-932)
(LIST (LIST 1 J)))

(NIL (SB-LOOP::LOOP-REALLY-DESETQ I (1+ 1))
(WHEN (> 1 '20) (GO SB-LOOP::END-LOOP)) NIL NIL
(SB-LOOP::LOOP-REALLY-DESETQ J (1- J))
(WHEN (< J '1) (GO SB-LOOP:END-LOOP)) NIL
(UNLESS (NOT (=1 (+ J 1))
(GO SB-LOOP::END-LOOP)))
((PRINT "Done!")

L.oop control and exit

Sometimes top/bottom for loop control not
sufficient

For single (unnested) loop:
break statement (or equiv.)
Ada’s exit when mechanism

What about nested loops? How to get out of
more than one loop?

Loop control

C: provides two goto-like constructs
break — exit current loop/switch structure
continue — transfer control to loop test
C/C++/Python:
continue is unlabeled
— skip remainder of current iteration, don’t exit
Java/Perl: labeled version of continue
Ada: labeled version of exit when:

foo:
loop
stmts
exit foo when condition
stmts
end loop foo;

lteration based on data

Control mechanism:
Call an iterator function that returns next element
Terminate when done
Iterator: object with state
Remembers last element returned, next
init_iterator(it);
while (obj = it.getNextObject()) {

process_obj(obj);

}

lteration based on data

C for loop —can easily be used for a user-
defined iterator:

for (p=root; p==NULL; p = p->next){
process_node(p);

Python for statement

for statement in Python — really an iterator

Iterates over elements of a sequence or other iterable object

Syntax:

<forStmt> — for <targetList> in <exprlList> : <stmts1> [else : <stmts2>]
<exprList> evaluated once, should — iterable object

<stmts1> is then executed once per item provided by iterator,
with the item assigned to <targetList>

When iterator is exhausted, else clause is executed, if present

If break occurs in <stmts1> = loop terminates without
executing else clause

continue is allowed as well

Python for statement

Statements can change the <targetList> variables — next value wil
be assigned in same way, though

If the sequence (e.g., a list) is modified by the loop statements:

Python keeps an internal counter to keep track of which item is
next

If delete current or previous element, next item will be skipped!

If insert item prior to the current one, current will be processed
again!

Avoid this by making a copy of the list, e.g., with a slice:
for xin a[:]:
ifx<0:

a.remove(x)

Javascript object iteration

var o = {a:1, b:"aardvark", c:3.55};

function show_props(obj, objName) {
var result = "";
for (var prop in obj) {
result += objName+"."+prop+" = "+ obj[prop] + "\n";
}
return result;

}

alert(show_props(o, "o"));
/* alerts :

o.a =1

o.b = aardvark
@@ = B

*/

Topics

Unconditional branching

Unconditional Branching

goto, e.g.
Equivalent to unconditional branch/jump in machine lang.
Caused one of the most heated debates in 1960's and 1970’s
Major concern: readability (of “spaghetti code”)
C has goto, as you'd expect
Some languages — don’t even support goto statement (e.g., Java)
C# — has goto statement, can be used in switch statements
Gotos that aren’t quite gotos:

loop exits

but restricted — “safer” gotos

The goto controversy

Flowcharts: primary program design tool in 60s
Programs often resembled flowcharts

FORTRAN, Basic: line numbers (or labels) —
branch targets

Edsger Dijkstra (1968) — letter to the editor of
CACM: “GoTo Considered Harmful”

Flowchart Examples

START

PRINT SUM

END

Structured programming

Dijkstra advocated eliminating goto statement —
conditional and iterative structures

C, Pascal (& Algol)

developed with these structures — “structured
programming revolution”

languages have goto statements, but not used
much

A good use of gotos

E.g., a natural implementation of DFSAs

State0:
ch = getchar();
if (ch ==70")
goto Statel;
else
goto State2;
Statel:
while ((ch = getchar()) == ‘0')
i
Goto state5
State3:

Difficult to see how to program this easily using
purely structured programming

A rebuttal to structured

E.C.R. Hehner (1979) — Acta Informatica article
“do considered od: A contribution to the
programming calculus”

Suggested that repetitive constructs weren’t
the best thing ever

argued for recursive refinement

claimed it was simpler and clearer

Topics

Guarded commands

Guarded commands

Dijkstra:

wanted loop and selection mechanisms that
helped ensure correctness of programs

wanted to allow nondeterminism in programs
(and avoid overcommitment)

= guarded commands

Nondeterminism — good for concurrent
programming

Guarded selection

Form:

if <cond> -> <stmt>
[1] <cond> -> <stmt>
Il scond> —> <catmt >

fi
[] = “fatbars” — separators

<cond> = guard

<cond> -> <stmt> = guarded command

Guarded selection

Form:

if <cond> -> <stmt>
[1] <cond> -> <stmt>
[] <cond> -> <stmt>

fi
Differences from standard selection:
guarded commands:
No set order

Any command with a true guard is eligible —
nondeterminism

if no guard is true = exception

Guarded selection

Example:

if a >> b -> max =
[] b > a ->max = b
il

Don’t know (or care) whether a or b is max if they’re equal, so why
commit?

Example:
aliE near_obstacle -> turnLeft ()
{1

[1 predator_near -> speedUp ()
il

near_obstacle -> turnRight ()

In concurrent system...

Guarded iteration

Iteration construct also guarded:

do <guard> -> <stmt>
[1 <guard> -> <stmt>

[] <guard> -> <stmt>

od
Semantics:

if one or more guards is true, pick a statement
and execute it

when all guards are false — exit loop

