
Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages

Design & Implementation Overview

COS 301

Fall 2017

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Outline

1 Influences on language design

2 Language as VM

3 Compilation

4 Interpretation

5 Hybrid implementation

6 Preprocessors

7 Programming environments

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages

Influences on language design

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Ontological commitments

Imperative languages

Architecture:

Memory cells variables
Data movement (memory→memory, CPU→memory) 
assignment
Sequential machine instruction execution sequential
statements
Conditional execution if-then-else constructs,
goto
Iteration via conditionals + jump loops

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Ontological commitments

Functional languages

Variables “standing for” value binding, not
pointers/addresses

Function application→ produce new values 

No notion of “executing” sequential statements
No statements, only functions (with values)
Function composition as major characteristic
Recursion as primary way of repeating function
application

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Ontological commitments

Object-oriented languages

World consists of objects classes, instances, inheritance,
instantiation

No notion of address: variables hold value or references

∃ classes of objects inheritance, instantiation

Instance variables as properties or relations to other objects

Objects affordances (things they can do) methods

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Factors affecting design: early (< mid-1960s)

Computer time extremely valuable

� programmers’ time
 languages tailored toward machine, not humans

Computers relatively slow

Thousands–millions of instructions/s (kIPS – MIPS)
E.g.: IBM 360 mainframe, mid-60s, ~ 34 kIPS – ~ 17
MIPS
 extreme concern for efficiency

 compilation rather than interpretation
 simple languages

Relatively simple applications small programs

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Factors affecting design: late 60s–mid-70s

Cheaper processors cost of programmer time�
computer time

Demand for capable/sophisticated software applications 

More programming time
Larger programs harder to design, debug, maintain

Result:
Focus on

Human-friendly languages
Languages supporting design, debugging, maintenance

Structured programming:
Top-down design
Stepwise refinement
More sophisticated control structures

Prominence of ALGOL-like languages (PL/I, C, Pascal,
etc.)

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Factors affecting design: more recently

Data abstraction (Modula-2, Ada, etc.)

Object-orientation

Revived early work on CLU, Smalltalk, etc.
C++, Objective-C, Java. . .

More powerful computers 

More sophisticated compilers possible more
sophisticated/complex languages
Practical interpreters rapid prototyping/incremental
(iterative) development

Widespread availability of multi-core systems, clusters 
new languages (C*, StarLisp, Parallel Euclid,. . . )

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages

Language as VM

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Virtual machine

Programming language⇒ virtual machine

VM can be implemented as a compiler, interpreter or a hybrid

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Virtual machine: layers

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages

Compilation

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Compilation

Compiler: program that translates HLL⇒ object code

Link editor:

Gathers multiple object modules (e.g., subprograms,
libraries)
Patches (links) unresolved references in object modules
⇒ executable

Loader:

Part of OS
Allocates (virtual) memory
Loads (copies) executable file into (virtual) memory
May treat parts of executable differently
May create memory not present in executable (heap,
uninitialized data)

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Overview

Source (HLL) program→ lexical analyzer
⇒ lexical units
Updates symbol table

Lexical units→ syntax analyzer
Checks syntax for errors
Updates symbol table
⇒ parse tree

Parse tree→ intermediate code generator
Semantic analyzer
⇒ intermediate code
Interacts with optimizer

Intermediate code→ code generator
⇒ object code file
Machine language program
May have unresolved references

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Process

Source Code

Lexical Analyzer

Syntax Analyzer

Intermediate
Code Generator

Code Generator

OptimizerSymbol Table

lexical units

parse tree

intermediate code

Object File

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Properties

Fast execution

Running at native machine speed
Optimizer⇒ often faster than hand-coded assembly

Compiler has access to entire program at once

Can do global optimizations
Can have complex languages, easy forward references,
etc.

Possibly lengthy compilation time

Amortized over execution times, ameliorated by faster
machines
But during debugging/rapid prototyping

compile–test cycle cumbersome
source level debugging somewhat difficult
hard to change part without recompiling whole

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages

Interpretation

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Interpretation

Interpreter: Program that reads source code and carries out
actions

One of the very first: Lisp

No translation of HLL to machine code

Supports rapid prototyping

Need significant runtime environment (i.e., the interpreter)

Slower execution (10–100 times as slow as executable)

Historically rare for traditional HLLs (though Lisp, Scheme)

Now: Python, JavaScipt, PHP,. . .

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages

Hybrid implementation

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Hybrid implementations

Compromise between compilation and interpretation

One way: HLL translated to intermediate language that is
easy to interpret

Faster than pure interpretation
E.g., Perl, Java, Smalltalk, Microsoft Common
Language Runtime

Another way:

Allow both compiled and interpreted code
E.g., most Common Lisp systems, some of Perl

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Just-in-Time (JIT) compilers

Compile to byte code first (e.g., Java byte code)

When subprograms called, byte code compiled to machine
code

Machine code kept for subsequent calls

JIT used for Java, .NET languages

Makes Java competitive with fully-compiled languages

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages

Preprocessors

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Preprocessors

Preprocessor instructions:

handled immediately prior to compilation. . .
. . . or prior to loading code in interpreter

Types:

include other code (e.g., C’s #include)
macro commands (e.g., C’s #define)
templates (e.g., C++, for generic classes)
more complex macros: e.g., Lisp’s defmacro

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages

Programming environments

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Programming environments

Collection of tools used for software development

Compilers, editors, debuggers, profilers, linkers, etc.

E.g., Unix

Command line tools (e.g., make, grep, awk, sed, gcc)
Editors (e.g., Emacs, vi) and IDEs

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages IDEs

Integrated development environemnts (IDEs)

Includes a compiler, linker, debugger, editor, and build
automator

May also include source control system, class browser,
object inspector, profiler, etc.

Some support multiple languages, others single language

Examples:

PyCharm
Eclipse, Emacs
Netbeans
Xcode
MonoDevelop
Lisp machine, modern Lisp and Scheme IDEs (e.g.,
Allegro, PLT Scheme/Racket)

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages Microsoft .NET

Collection of languages, technologies, development
environment

Most common: C++, C#, VB. . . – dozens available

Large, complex visual environment (though command line
available)

.NET SDK available as free download

Output language: machine-independent byte code for the
Common Language Runtime

COS 301 Design & Implementation Overview



Design & Im-
plementation

Overview

COS 301

Influences on
language
design

Language as
VM

Compilation

Interpretation

Hybrid imple-
mentation

Preprocessors

Programming
environments

P
L

rogramming

anguages NetBeans

Java answer to .NET

Used for Java, but also supports C, PHP, Ruby, C++, others

Written in Java

Extensible via modules

COS 301 Design & Implementation Overview


