COS 301

School of Computing and Information Science
University of Maine

Fall 2018

Rresemee - Quitline

Introduction
COS 301

Preliminaries 0 Prellmlnarles
Why study
programming
languages?

9 Why study programming languages?

Programming
language
paradigms

Programming

domains e Programming language paradigms

e Programming domains

COS 301 Introduction

Programming Me

Enguages

Introduction

COS 301 @ Roy M. Turner
Preliminaries @ PhD: Georgia Tech

@ Research: Al (intelligent agents, robot control, software
agents, multiagent systems, computational ecology,
computer science education)

COS 301 Introduction

ogramming
%nguages

Introduction

COS 301

Preliminaries

The course

Programming languages
Design issues/trade-offs

Types of languages

Comparison of languages

Language implementation

COS 301

Introduction

Rrooemna - Course objectives

Introduction

COS 301 @ Good understanding of what a programming language is
BeelliEEs @ Understanding of major language paradigms

@ Grasp of issues having to do with syntax and semantics of
programs and programming languages

@ Knowledge of how control and data types are handled in a
variety of languages

@ Knowledge of the commonalities and differences between
programming languages

@ A basis for understanding how to select a programming
language for a problem

@ Deeper insight into programming languages you already
know

@ Better professional written communication skills

COS 301 Introduction

ogramming
%nguages

Introduction

COS 301

Preliminaries

Syllabus

® 6 6 o6 o

Office hours: MW 2-3 (or by appointment), 240 Boardman
Hall

Contacting me: rturner@maine.edu

TA — Lwam Ghebreggergish

Online: Course website + Blackboard (grades)
Homework/project/class participation

Academic honesty

COS 301 Introduction

Progamma - Homework

Introduction
COs 301 1. Make sure that you can access the COS 301 website and
oreliminarios Blackboard area

2. Project part 1:

e Programming language selection for the project
e Due 9/14

COS 301 Introduction

ogramming
%nguages

Introduction

COSs 301

Why study
programming
languages?

Why study programming languages?

COS 301 Introduction

ogramming
%nguages

Introduction

COS 301

Why study
programming
languages?

Expressing solutions to problems

@ Can view PL as language for expressing solutions to
problems

@ Languages constrain what can be expressed = what can be
solved

@ Studying PL = learn/create new ways to express/solve
problems

COS 301 Introduction

e Choosing right PL for problems

Introduction
COS 301 @ All PLs are theoretically equivalent in power (“Turing
equivalent”)
Why study @ PLs are tools: some better for some jobs
programming
languages?

COS 301 Introduction

ogramming
%nguages

Introduction

COS 301

Why study
programming
languages?

Choosing right PL for problems

@ All PLs are theoretically equivalent in power (“Turing
equivalent”)

@ PLs are tools: some better for some jobs

@ Some example problem areas: computational biology,
simulation, business data processing, GUIs, Al, data mining,
statistical processing, CAD/CAM,. ..

COS 301 Introduction

e Choosing right PL for problems

Introduction

COS 301 @ All PLs are theoretically equivalent in power (“Turing
equivalent”)
Why study @ PLs are tools: some better for some jobs
programming
languages? @ Some example problem areas: computational biology,

simulation, business data processing, GUIs, Al, data mining,
statistical processing, CAD/CAM,. ..

@ Limited if only know a couple of languages — even if you are
proficient

COS 301 Introduction

e Choosing right PL for problems

Introduction

COS 301 @ All PLs are theoretically equivalent in power (“Turing
equivalent”)
Why study @ PLs are tools: some better for some jobs
programming

languages?

@ Some example problem areas: computational biology,
simulation, business data processing, GUIs, Al, data mining,
statistical processing, CAD/CAM,. ..

@ Limited if only know a couple of languages — even if you are
proficient

@ More languages you know = more ways to express
solutions

e Can choose language with feature you need
e If you know about a feature that language doesn’t have
= implement it in the language

COS 301 Introduction

ogramming
%nguages

Introduction

COS 301

Why study
programming
languages?

Learning new PL

@ Learning abstract concepts underlying languages helps learn
new languages — vocabulary for talking/thinking about them

@ Increases ability to read and understand unfamiliar
languages

@ Popularity of PLs change over time (e.g., Tiobe index). ..

@ ...but the theoretical underpinnings don’t

COS 301 Introduction

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

B Implementing PLs

Introduction

COS 301

One view: PL defines a virtual machine for solving problems

@ But VM has to run on real one
Why study . T .
programming @ Understanding PL concepts = essential if implementing
languages?

compiler/interpreter

Understanding PL implementation can also help:

e predict performance
e write more efficient programs
e avoid subtle bugs caused by the implementation

Exploit any helpful features of the implementation

COS 301 Introduction

Progamna |mproving your use of PLs

Introduction

COs 301 @ Programmer may not know or use all ways of using the
language
Why study e PLs usually very large = seldom use entire language
AnguAges? e May have different ways of programming (functional,

imperative, OO)
@ Studying PL =

e understand the language features better
e understand what features could be present
e ... better use of languages you already know

COS 301 Introduction

ogramming
%nguages

Introduction

COS 301

Why study
programming
languages?

Understanding computer science

@ Knowing history of PLs = know what computer scientists
have tried, used, discarded, etc. —and why

@ Thus helps avoid making past mistakes, reinventing the
wheel

@ Helps understand current SOA:

@ Trends in PL design and use
e Why some languages are more popular than others

COS 301 Introduction

Prooumms What is a paradigm?

Introduction

COs 301 @ Dictionary (Kuhnian definition): paradigm is “a worldview
underlying the theories and methodology of a particular
scientific subject” [New Oxford American Dictionary]

@ Looser usage in computer science: an archetype, category

e E @ PL paradigm: way of thinking, pattern of characteristics that

Pl underlie a set of languages
@ Main PL paradigms:

Imperative (or procedural)
Object-oriented
Functional

Logical

Declarative

COS 301 Introduction

e Imperative/procedural paradigm

Introduction

COS 301 @ Oldest

@ Based on the von Neumann computer architecture

CPU Memory
Programming < » programs, data
language
paradigms

}

Input/Output

COS 301 Introduction

e Imperative/procedural paradigm

Introduction

COS 301 @ Oldest

@ Based on the von Neumann computer architecture

CPU Memory
Programming < » programs, data
language
paradigms

}

Input/Output

@ This is the paradigm’s ontological commitment

COS 301 Introduction

e Imperative/procedural paradigm

Introduction

COs 301 @ Program = series of instructions

Programming
language
paradigms

COS 301 Introduction

e Imperative/procedural paradigm

Introduction

COs 301 @ Program = series of instructions

@ State = contents of memory location

Programming
language
paradigms

COS 301 Introduction

e Imperative/procedural paradigm

Introduction

COs 301 @ Program = series of instructions
@ State = contents of memory location

@ Program and data both in memory, indistinguishable

Programming
language
paradigms

COS 301 Introduction

e Imperative/procedural paradigm

Introduction

COs 301 @ Program = series of instructions
@ State = contents of memory location

@ Program and data both in memory, indistinguishable

Programming o Language features:

language . .

PEEIETE e Variables (state), assignment
e Conditional execution
e Loops
e Procedure calls

COS 301 Introduction

e Imperative/procedural paradigm

Introduction

COs 301 Program = series of instructions

°
@ State = contents of memory location

@ Program and data both in memory, indistinguishable
°

Language features:

Programming
language . .
paradigms Variables (state), assignment
Conditional execution

Loops

Procedure calls

Examples: Fortran, Python, Perl, parts of Java, C,...

COS 301 Introduction

Proamns - Object-oriented paradigm

Introduction

COS 301 @ Ontological commitment:

e World consists of objects
e Objects have internal state
o Objects have encapsulated behavior

AR @ Language features:

language
paradigms

e Classes, instances, inheritance
e State: instance variables
e Behavior: methods or messages

@ Polymorphism

@ Examples: Smalltalk, Java, C++, C#, Python, Lisp,. ..

COS 301 Introduction

Proowmm - Functional paradigm

Introduction

COs 301 @ Ontological commitment: world consists of things (values)
and functions on those things

@ Language features:

e Functional composition
Programming @ Recursion

language

paradigms e No state (in “pure” FL)
@ Some have aspects of other paradigms

@ Some languages from other paradigms have functional
aspects

@ Examples: ML, Scheme, Haskell, Lisp,. ..

COS 301 Introduction

Progamnna | ogic paradigm

Introduction

COs 301 @ Ontological commitment: world consists of things and
statements about things that are true/false

@ Language features:

e Declarative style: make statement about what should
lzr;’gguf:g“em‘”g be true

paradigms e Facts are stated in logic (usually Horn clauses)
e Usually contain theorem prover (e.g., resolution TP)

@ Examples: Prolog (mainly), ToonTalk, OWL (sort of, with TP
support)

COS 301 Introduction

Proowmn - Declarative paradigm

Introduction

COs 301 @ Ontological commitment: there are statements that can be
made about the things in the world

@ Logic languages C declarative languages

@ Examples: database languages (SQL, e.g.), XPath (for XML)

Programming
language
paradigms

COS 301 Introduction

ogramming
%nguages

Introduction

COS 301

Programming
domains

Programming domains

@ Problems to be solved fall into domains — e.g.,

Scientific applications

Business applications

Databases, “big data”

Healthcare applications

Media applications & games
Artificial intelligence & data mining
Systems programming
Internet/Web programming
Embedded systems: loT, industrial control, robotics
Consumer apps

Military applications

@ Different domains = different requirements for the
language(s)

COS 301 Introduction

B Programming domains

Introduction

COs 301 @ Some languages: domain-specific (or created for a domain)

@ Some languages: general-purpose

Programming
domains

COS 301 Introduction

Proowmmn - Scientific applications

Introduction

COs 301 @ First domain for computers (with military): 1940s
@ Require floating-point operations

@ Few sophisticated data structures or control structures
needed

@ Historically imperative (e.g., Fortran, C, Python), now OOP
Programming too (e.g., Java, C++, Python)
domains @ Critical feature: efficiency

@ Wide range in use: Fortran, C, Python (e.g., w/ NumPy), R,

Java, C++,...

COS 301 Introduction

ogramming
%nguages

Introduction

COS 301

Programming
domains

Business applications

Business applications gained importance in 1950s (=
special-purpose computers)

Floating point not very important
I/O capacity and sophistication very important

First business language: COBOL (COmmon Business
Oriented Language) — Adm. Grace Hopper

o Very verbose

e Supposedly easy for business people to learn

e Still in use — some estimates: possibly most common
language in world (in lines of code)

e Contemporary COBOL has OOP, other modern features

Other languages used, too: RPG, general-purpose
languages

COS 301 Introduction

Rrooeins Databases & big data

iniroduction @ Database management systems (DBMS) require:
TS e Fault tolerance for data
o Efficient storage and retrieval mechanisms
@ Relational databases, OO databases

@ Languages for DBMS:

o Efficiency
e Able to refer to persistent data
ST e Ability to express sophisticated queries to the database

domains
@ SQL (Structured Query Language): declarative, succinct,
powerful access to relational algebra
@ “Big data”: 11 need for data storage, efficient retrieval

e Data framework (e.g., Apache Hadoop) rather than
DBMS

e General- and special-purpose languages (e.g., Pig
framework w/ Pig Latin statements)

COS 301 Introduction

Ress Healthcare applications

Introduction

COS 301 @ Requirements from DBMS, business, science domains
@ Additional requirements on language/frameworks:

e privacy protection

@ security

e assurance of correctness
@ Languages:

Programming

domains e Many general-purpose languages
@ In 2013, ClO.com lists these among “hottest healthcare”
programming skills for healthcare computing
professionals:
SQL Java JavaScript
C C++ C#
PHP XML/HTML ASPnet
(HTML, XML, and ASP.net aren’t programming languages)

COS 301 Introduction

http://www.cio.com/article/2369526/careers-staffing/103069-10-Hottest-Healthcare-IT-Developer-and-Programming-Skills.html#slide1

Prooens Media & games

Introduction

COs 301 @ Media: movies (CGl), music, VR, ...

Efficiency

Ability to manipulate binary data

Access large amount of data

Access hardware

General-purpose languages, e.g., Python + libraries

Programming @ Games:

domains

e Access hardware

e Languages: C++, e.g. (Unity, Unreal Engine)

e Extensions for games: e.g., C#, JavaScript, Boo (Unity),
C++ (Unreal)

COS 301 Introduction

e Artificial intelligence & data mining

Introduction

COS 301 @ Symbolic Al:

e Mostly symbolic, not numeric, processing
e Data structures: trees, lists

@ Languages:

e Need easy support for symbols
e Linked list data structures useful

Programming
domains

@ First Al language: Lisp (LISt Processing language) — 1958

e Symbols, linked lists - built-in data types
e Programs & data: both lists
e Easy introspection, program creation by programs

@ Other languages: Scheme, Prolog, Haskell, general-purpose
languages

COS 301 Introduction

e Artificial intelligence & data mining

Introduction

COs 301 @ Deep learning (neural nets), other machine learning

@ = numeric processing, speed
e C, C++, Python (NumPy, Theano, Tensorflow, Keras, ...

)

@ Data mining: shares requirements with Al and DB/big data

Programming
domains

COS 301 Introduction

ogramming
%nguages

Introduction

COS 301

Programming
domains

Systems programming

@ Systems programming — operating systems, drivers,
networking, compilers, ...

@ Language requirements:

@ Need access to raw machine
o Need extreme efficiency
e Helpful if assembly can be mixed w/ HLL

@ Languages:

@ Reason C was created

@ Trades safety for speed
@ Low-level HLL

e PL/S: version of PL/I, IBM’s systems language

COS 301 Introduction

Prooemnna Internet/Web programming

Introduction

COS 301 @ Markup languages (XML, HTML):
e Not programming languages
e For data, display description

@ Need dynamic content
e Server side:
@ DB access, access to other programs, ability to create
HTML
Erodramming @ PHP, Python, Perl, Ruby, Java, .NET
o Client side:
@ Need access to DOM (document object model), control
of canvas
@ JavaScript, Flash, Java applets
e AJAX (Asynchronous JavaScript and XML)
Group of technologies for client-server communication
Display: HTML/XHTML + CSS
Communication: XML, JSON, XMLHttpRequest
JavaScript on client, PHP (etc.) on server
COS 301 Introduction

Prooemrs - Embedded systems, etc.

Introduction

COS 301 Software as integral part of hardware system

E.g., robotics, “Internet of Things” (loT), industrial control

-]
o
@ Shares many similarities with systems programming
@ Real-time requirement

0

Languages: general-purpose — C, etc., even (especially?)
Programming Java

domains

COS 301 Introduction

Rrogemns - Consumer apps

Introduction

COs 301 @ Wide range of applications: desktop, laptop, mobile
@ Wide range of requirements: many of preceding
@ Languages: Many: C, C++, C#, Swift, Objective C,. ..

Programming
domains

COS 301 Introduction

ogramming
%nguages

Introduction

COS 301

Programming
domains

Military applications

@ Wide range of applications

@ Virtually all of the preceding

@ Languages: C, Ada, C++,...

COS 301

Introduction

