
Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages

Introduction

COS 301

School of Computing and Information Science
University of Maine

Fall 2018

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Outline

1 Preliminaries

2 Why study programming languages?

3 Programming language paradigms

4 Programming domains

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages

Preliminaries

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Me

Roy M. Turner

PhD: Georgia Tech

Research: AI (intelligent agents, robot control, software
agents, multiagent systems, computational ecology,
computer science education)

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages The course

Programming languages

Design issues/trade-offs

Types of languages

Comparison of languages

Language implementation

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Course objectives

Good understanding of what a programming language is

Understanding of major language paradigms

Grasp of issues having to do with syntax and semantics of
programs and programming languages

Knowledge of how control and data types are handled in a
variety of languages

Knowledge of the commonalities and differences between
programming languages

A basis for understanding how to select a programming
language for a problem

Deeper insight into programming languages you already
know

Better professional written communication skills

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Syllabus

Office hours: MW 2-3 (or by appointment), 240 Boardman
Hall

Contacting me: rturner@maine.edu

TA – Lwam Ghebreggergish

Online: Course website + Blackboard (grades)

Homework/project/class participation

Academic honesty

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Homework

1. Make sure that you can access the COS 301 website and
Blackboard area

2. Project part 1:

Programming language selection for the project
Due 9/14

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages

Why study programming languages?

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Expressing solutions to problems

Can view PL as language for expressing solutions to
problems

Languages constrain what can be expressed⇒ what can be
solved

Studying PL⇒ learn/create new ways to express/solve
problems

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Choosing right PL for problems

All PLs are theoretically equivalent in power (“Turing
equivalent”)

PLs are tools: some better for some jobs

Some example problem areas: computational biology,
simulation, business data processing, GUIs, AI, data mining,
statistical processing, CAD/CAM,. . .

Limited if only know a couple of languages – even if you are
proficient

More languages you know⇒ more ways to express
solutions

Can choose language with feature you need
If you know about a feature that language doesn’t have
⇒ implement it in the language

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Choosing right PL for problems

All PLs are theoretically equivalent in power (“Turing
equivalent”)

PLs are tools: some better for some jobs

Some example problem areas: computational biology,
simulation, business data processing, GUIs, AI, data mining,
statistical processing, CAD/CAM,. . .

Limited if only know a couple of languages – even if you are
proficient

More languages you know⇒ more ways to express
solutions

Can choose language with feature you need
If you know about a feature that language doesn’t have
⇒ implement it in the language

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Choosing right PL for problems

All PLs are theoretically equivalent in power (“Turing
equivalent”)

PLs are tools: some better for some jobs

Some example problem areas: computational biology,
simulation, business data processing, GUIs, AI, data mining,
statistical processing, CAD/CAM,. . .

Limited if only know a couple of languages – even if you are
proficient

More languages you know⇒ more ways to express
solutions

Can choose language with feature you need
If you know about a feature that language doesn’t have
⇒ implement it in the language

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Choosing right PL for problems

All PLs are theoretically equivalent in power (“Turing
equivalent”)

PLs are tools: some better for some jobs

Some example problem areas: computational biology,
simulation, business data processing, GUIs, AI, data mining,
statistical processing, CAD/CAM,. . .

Limited if only know a couple of languages – even if you are
proficient

More languages you know⇒ more ways to express
solutions

Can choose language with feature you need
If you know about a feature that language doesn’t have
⇒ implement it in the language

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Learning new PL

Learning abstract concepts underlying languages helps learn
new languages – vocabulary for talking/thinking about them

Increases ability to read and understand unfamiliar
languages

Popularity of PLs change over time (e.g., Tiobe index). . .

. . . but the theoretical underpinnings don’t

COS 301 Introduction

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html


Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Implementing PLs

One view: PL defines a virtual machine for solving problems

But VM has to run on real one

Understanding PL concepts⇒ essential if implementing
compiler/interpreter

Understanding PL implementation can also help:

predict performance
write more efficient programs
avoid subtle bugs caused by the implementation

Exploit any helpful features of the implementation

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Improving your use of PLs

Programmer may not know or use all ways of using the
language

PLs usually very large⇒ seldom use entire language
May have different ways of programming (functional,
imperative, OO)

Studying PL⇒
understand the language features better
understand what features could be present
∴ better use of languages you already know

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Understanding computer science

Knowing history of PLs⇒ know what computer scientists
have tried, used, discarded, etc. – and why

Thus helps avoid making past mistakes, reinventing the
wheel

Helps understand current SOA:

Trends in PL design and use
Why some languages are more popular than others

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages

Programming language paradigms

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages What is a paradigm?

Dictionary (Kuhnian definition): paradigm is “a worldview
underlying the theories and methodology of a particular
scientific subject” [New Oxford American Dictionary]

Looser usage in computer science: an archetype, category

PL paradigm: way of thinking, pattern of characteristics that
underlie a set of languages

Main PL paradigms:

Imperative (or procedural)
Object-oriented
Functional
Logical
Declarative

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Imperative/procedural paradigm

Oldest

Based on the von Neumann computer architecture

This is the paradigm’s ontological commitment

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Imperative/procedural paradigm

Oldest

Based on the von Neumann computer architecture

This is the paradigm’s ontological commitment

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Imperative/procedural paradigm

Program = series of instructions

State = contents of memory location

Program and data both in memory, indistinguishable

Language features:

Variables (state), assignment
Conditional execution
Loops
Procedure calls

Examples: Fortran, Python, Perl, parts of Java, C,. . .

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Imperative/procedural paradigm

Program = series of instructions

State = contents of memory location

Program and data both in memory, indistinguishable

Language features:

Variables (state), assignment
Conditional execution
Loops
Procedure calls

Examples: Fortran, Python, Perl, parts of Java, C,. . .

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Imperative/procedural paradigm

Program = series of instructions

State = contents of memory location

Program and data both in memory, indistinguishable

Language features:

Variables (state), assignment
Conditional execution
Loops
Procedure calls

Examples: Fortran, Python, Perl, parts of Java, C,. . .

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Imperative/procedural paradigm

Program = series of instructions

State = contents of memory location

Program and data both in memory, indistinguishable

Language features:

Variables (state), assignment
Conditional execution
Loops
Procedure calls

Examples: Fortran, Python, Perl, parts of Java, C,. . .

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Imperative/procedural paradigm

Program = series of instructions

State = contents of memory location

Program and data both in memory, indistinguishable

Language features:

Variables (state), assignment
Conditional execution
Loops
Procedure calls

Examples: Fortran, Python, Perl, parts of Java, C,. . .

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Object-oriented paradigm

Ontological commitment:

World consists of objects
Objects have internal state
Objects have encapsulated behavior

Language features:

Classes, instances, inheritance
State: instance variables
Behavior: methods or messages

Polymorphism

Examples: Smalltalk, Java, C++, C#, Python, Lisp,. . .

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Functional paradigm

Ontological commitment: world consists of things (values)
and functions on those things

Language features:

Functional composition
Recursion
No state (in “pure” FL)

Some have aspects of other paradigms

Some languages from other paradigms have functional
aspects

Examples: ML, Scheme, Haskell, Lisp,. . .

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Logic paradigm

Ontological commitment: world consists of things and
statements about things that are true/false

Language features:

Declarative style: make statement about what should
be true
Facts are stated in logic (usually Horn clauses)
Usually contain theorem prover (e.g., resolution TP)

Examples: Prolog (mainly), ToonTalk, OWL (sort of, with TP
support)

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Declarative paradigm

Ontological commitment: there are statements that can be
made about the things in the world

Logic languages ⊂ declarative languages

Examples: database languages (SQL, e.g.), XPath (for XML)

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages

Programming domains

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Programming domains

Problems to be solved fall into domains – e.g.,

Scientific applications
Business applications
Databases, “big data”
Healthcare applications
Media applications & games
Artificial intelligence & data mining
Systems programming
Internet/Web programming
Embedded systems: IoT, industrial control, robotics
Consumer apps
Military applications

Different domains⇒ different requirements for the
language(s)

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Programming domains

Some languages: domain-specific (or created for a domain)

Some languages: general-purpose

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Scientific applications

First domain for computers (with military): 1940s

Require floating-point operations

Few sophisticated data structures or control structures
needed

Historically imperative (e.g., Fortran, C, Python), now OOP
too (e.g., Java, C++, Python)

Critical feature: efficiency

Wide range in use: Fortran, C, Python (e.g., w/ NumPy), R,
Java, C++,. . .

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Business applications

Business applications gained importance in 1950s (⇒
special-purpose computers)

Floating point not very important

I/O capacity and sophistication very important

First business language: COBOL (COmmon Business
Oriented Language) – Adm. Grace Hopper

Very verbose
Supposedly easy for business people to learn
Still in use – some estimates: possibly most common
language in world (in lines of code)
Contemporary COBOL has OOP, other modern features

Other languages used, too: RPG, general-purpose
languages

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Databases & big data

Database management systems (DBMS) require:
Fault tolerance for data
Efficient storage and retrieval mechanisms

Relational databases, OO databases

Languages for DBMS:
Efficiency
Able to refer to persistent data
Ability to express sophisticated queries to the database

SQL (Structured Query Language): declarative, succinct,
powerful access to relational algebra

“Big data”: ↑↑ need for data storage, efficient retrieval
Data framework (e.g., Apache Hadoop) rather than
DBMS
General- and special-purpose languages (e.g., Pig
framework w/ Pig Latin statements)

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Healthcare applications

Requirements from DBMS, business, science domains

Additional requirements on language/frameworks:

privacy protection
security
assurance of correctness

Languages:

Many general-purpose languages
In 2013, CIO.com lists these among “hottest healthcare”
programming skills for healthcare computing
professionals:

SQL Java JavaScript
C C++ C#
PHP XML/HTML ASP.net

(HTML, XML, and ASP.net aren’t programming languages)

COS 301 Introduction

http://www.cio.com/article/2369526/careers-staffing/103069-10-Hottest-Healthcare-IT-Developer-and-Programming-Skills.html#slide1


Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Media & games

Media: movies (CGI), music, VR, . . .

Efficiency
Ability to manipulate binary data
Access large amount of data
Access hardware
General-purpose languages, e.g., Python + libraries

Games:

Access hardware
Languages: C++, e.g. (Unity, Unreal Engine)
Extensions for games: e.g., C#, JavaScript, Boo (Unity),
C++ (Unreal)

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Artificial intelligence & data mining

Symbolic AI:

Mostly symbolic, not numeric, processing
Data structures: trees, lists

Languages:

Need easy support for symbols
Linked list data structures useful

First AI language: Lisp (LISt Processing language) – 1958

Symbols, linked lists - built-in data types
Programs & data: both lists
Easy introspection, program creation by programs

Other languages: Scheme, Prolog, Haskell, general-purpose
languages

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Artificial intelligence & data mining

Deep learning (neural nets), other machine learning

⇒ numeric processing, speed
C, C++, Python (NumPy, Theano, Tensorflow, Keras, . . .
)

Data mining: shares requirements with AI and DB/big data

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Systems programming

Systems programming – operating systems, drivers,
networking, compilers, . . .

Language requirements:

Need access to raw machine
Need extreme efficiency
Helpful if assembly can be mixed w/ HLL

Languages:

Reason C was created
Trades safety for speed
Low-level HLL

PL/S: version of PL/I, IBM’s systems language

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Internet/Web programming

Markup languages (XML, HTML):
Not programming languages
For data, display description

Need dynamic content
Server side:

DB access, access to other programs, ability to create
HTML
PHP, Python, Perl, Ruby, Java, .NET

Client side:
Need access to DOM (document object model), control
of canvas
JavaScript, Flash, Java applets

AJAX (Asynchronous JavaScript and XML)
Group of technologies for client-server communication
Display: HTML/XHTML + CSS
Communication: XML, JSON, XMLHttpRequest
JavaScript on client, PHP (etc.) on server

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Embedded systems, etc.

Software as integral part of hardware system

E.g., robotics, “Internet of Things” (IoT), industrial control

Shares many similarities with systems programming

Real-time requirement

Languages: general-purpose – C, etc., even (especially?)
Java

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Consumer apps

Wide range of applications: desktop, laptop, mobile

Wide range of requirements: many of preceding

Languages: Many: C, C++, C#, Swift, Objective C,. . .

COS 301 Introduction



Introduction

COS 301

Preliminaries

Why study
programming
languages?

Programming
language
paradigms

Programming
domains

P
L

rogramming

anguages Military applications

Wide range of applications

Virtually all of the preceding

Languages: C, Ada, C++,. . .

COS 301 Introduction


