
COS 301 - 2018UMaine School of Computing and Information Science

Evolution of the Major
 Programming Languages

COS 301

Programming Languages

COS 301 - 2018UMaine School of Computing and Information Science

Topics
Zuse’s Plankalkül

Minimal Hardware Programming: Pseudocodes
The IBM 704 and Fortran

Functional Programming: LISP

ALGOL 60
COBOL

BASIC
PL/I

APL and SNOBOL

SIMULA 67
Orthogonal Design: ALGOL 68

COS 301 - 2018UMaine School of Computing and Information Science

Topics (continued)
Some Early Descendants of the ALGOLs

Prolog

Ada
Object-Oriented Programming: Smalltalk

Combining Imperative and Object-Oriented Features:
C++

Imperative-Based Object-Oriented Language: Java
Scripting Languages

A C-Based Language for the New Millennium: C#
Markup/Programming Hybrid Languages

COS 301 - 2018UMaine School of Computing and Information Science

Genealogy of Common Languages

COS 301 - 2018UMaine School of Computing and Information Science

Alternate View

COS 301 - 2018UMaine School of Computing and Information Science

Zuse’s Plankalkül
• Designed in 1945

• For computers based on electromechanical relays

• Not published until 1972, implemented in 2000 [Rojas et
al.]

• Advanced data structures:

– Two’s complement integers, floating point with hidden
bit, arrays, records

– Basic data type: arrays, tuples of arrays

• Included algorithms for playing chess

• Odd: 2D language

• Functions, but no recursion

• Loops (“while”) and guarded conditionals [Dijkstra, 1975]

COS 301 - 2018UMaine School of Computing and Information Science

Plankalkül Syntax
• 3 lines for a statement:

– Operation
– Subscripts
– Types

• An assignment statement to assign the expression
A[4] + 1 to A[5]

 | A + 1 => A
 V | 4 5 (subscripts)
 S | 1.n 1.n (data types)

COS 301 - 2018UMaine School of Computing and Information Science

Minimal Hardware Programming: Pseudocodes

• Late 1940’s – early 1950’s all programming was done in
machine code (not assembler)

• What was wrong with using machine code?
– Poor readability

– Poor modifiability

– Expression coding was tedious
– Machine deficiencies – no indexing or floating point

– Absolute addressing

COS 301 - 2018UMaine School of Computing and Information Science

Pseudocodes: Short Code
• Short Code (orig.: Brief Code) developed by John Mauchly in

1949 for BINAC computers, then UNIVAC

– Expressions coded left to right in 12 6-bit bytes

– Example of operations:
 01 – 06 abs value 1n (n+2)nd power
 02) 07 + 2n (n+2)nd root
03 = 08 pause 4n if <= n
04 / 09 (58 print and tab

• First “HLL”
• Short codes were interpreted, not translated to machine code

• So X0 = sqrt(abs(Y0)) would be
X0 03 20 06 Y0

• Interpreted, slow

COS 301 - 2018UMaine School of Computing and Information Science

Pseudocodes: Speedcoding
• Speedcoding developed by John Backus in 1954 for the IBM 701

• Turned it into a virtual 3-address calculator

– Pseudo ops for arithmetic and math functions

– Conditional and unconditional branching

– Auto-increment registers for array access

– OP1 A B C OP2

– OP1: arithmetic or I/O; OP2: logical ops on instruction
counter; A, B, C: addresses

• Example:
 523 SUBAB 100 200 300 TRPL 500

• 523 - address of instruction

• SUBAB: subtract [200] from [100] → 300

• Test [300]: if positive → 500

COS 301 - 2018UMaine School of Computing and Information Science

Pseudocodes: Speedcoding
• Format: OP1 A B C OP2 D

– OP1: arithmetic or I/O; OP2: logical ops on
instruction counter; A, B, C, D: addresses

• Example:
 523 SUBAB 100 200 300 TRPL 500

• 523 - address of instruction

• SUBAB: subtract [200] from [100] → 300

• Test [300]: if positive → 500
• Slower than 701 machine language — but faster for

programmer: weeks → hours

• But: Only 700 words left for user program!

COS 301 - 2018UMaine School of Computing and Information Science

Pseudocodes: Related Systems
• The UNIVAC Compiling System

– Developed by a team led by Grace Hopper

– Pseudocode expanded into machine code

• David J. Wheeler (Cambridge University)

– developed a method of using blocks of re-locatable
addresses to solve the problem of absolute addressing

COS 301 - 2018UMaine School of Computing and Information Science

Pros/Cons
As a group: Take three minutes and list pros and
cons of the things we’ve talked about with respect
to:

Machine or assembly language

HLLs

Take into account
purposes of programs at the time

limitations of the machines at the time

COS 301 - 2018UMaine School of Computing and Information Science

IBM 704 and Fortran
• FORTRAN: IBM Mathematical FORmula TRANslating

System
• Computing environment at that time:

– Machines: small memories, slow and unreliable

– Mostly for scientific computation (number-crunching)
– No programming tools
– Overhead of interpretive systems was small compared to

simulating floating point ops in software

• Fortran 0: 1954 - not implemented
• Fortran I:1957

– Designed for the new IBM 704 — index registers, floating
point hardware

– No longer need to do FP in software ⇒ nowhere to “hide”

cost of interpretation

COS 301 - 2018UMaine School of Computing and Information Science

Design Issues
• Primarily to do math

• Need good array handling, counting loops

• No need for string handling, decimal arithmetic, powerful I/O
• Maximize speed

• No need for dynamic storage was seen (if even thought about)

COS 301 - 2018UMaine School of Computing and Information Science

Fortran I Overview
• First implemented version
• Names: up to six characters

• Post-test counting loop (DO)

• Formatted I/O (simple)

• User-defined subprograms

• Three-way selection statement (arithmetic IF):

IF (A - B) 60,70,80

• Control structures based on 704 machine codes

• Implicit typing:
• Names beginning with “I” to “N”: integers

• Others: floating point

COS 301 - 2018UMaine School of Computing and Information Science

Fortran I Overview (cont’d)
• No separate compilation

• Compiler released April 1957 – 18 worker-years
• Reliability:

• main problem: 704 was unreliable

• ⇒ programs > 400 lines rarely compiled

• Code very fast

• Quickly became widely used

COS 301 - 2018UMaine School of Computing and Information Science

FORTRAN II
• Distributed in 1958

• Independent compilation

• Fixed the bugs in FORTRAN I

COS 301 - 2018UMaine School of Computing and Information Science

FORTRAN II
C
C FORTRAN-II VERSION OF 99 BOTTLES OF BEER
C DAVE PITTS, DPITTS AT COZX.COM
C
 DO 30 J = 1, 98
 I = 100 - J
 WRITE OUTPUT TAPE 6, 100, I, I
 WRITE OUTPUT TAPE 6, 110
 I = I - 1
 IF (I - 1) 10, 10, 20
10 WRITE OUTPUT TAPE 6, 125, I
 GO TO 30
20 WRITE OUTPUT TAPE 6, 120, I
30 CONTINUE
 I = 1
 WRITE OUTPUT TAPE 6, 105, I, I
 WRITE OUTPUT TAPE 6, 110
 WRITE OUTPUT TAPE 6, 130
 CALL EXIT
C
100 FORMAT (1H0,I2,30H BOTTLES OF BEER ON THE WALL,
 1,I2,16H BOTTLES OF BEER)
105 FORMAT (1H0,I2,29H BOTTLE OF BEER ON THE WALL,
 1,I2,15H BOTTLE OF BEER)
110 FORMAT (33H TAKE ONE DOWN AND PASS IT AROUND)
120 FORMAT (1H ,I2,17H BOTTLES OF BEER.)
125 FORMAT (1H ,I2,16H BOTTLE OF BEER.)
130 FORMAT (20H NO BOTTLES OF BEER.)
 END

From www.99-bottles-of-beer.net

COS 301 - 2018UMaine School of Computing and Information Science

Try to understand it
DO 30 J = 1, 98
 I = 100 - J
 WRITE OUTPUT TAPE 6, 100, I, I
 WRITE OUTPUT TAPE 6, 110
 I = I - 1
 IF (I - 1) 10, 10, 20
10 WRITE OUTPUT TAPE 6, 125, I
 GO TO 30
20 WRITE OUTPUT TAPE 6, 120, I
30 CONTINUE
 I = 1
 WRITE OUTPUT TAPE 6, 105, I, I
 WRITE OUTPUT TAPE 6, 110
 WRITE OUTPUT TAPE 6, 130
 CALL EXIT
C
100 FORMAT (1H0,I2,30H BOTTLES OF BEER ON THE WALL,
 1,I2,16H BOTTLES OF BEER)
105 FORMAT (1H0,I2,29H BOTTLE OF BEER ON THE WALL,
 1,I2,15H BOTTLE OF BEER)
110 FORMAT (33H TAKE ONE DOWN AND PASS IT AROUND)
120 FORMAT (1H ,I2,17H BOTTLES OF BEER.)
125 FORMAT (1H ,I2,16H BOTTLE OF BEER.)
130 FORMAT (20H NO BOTTLES OF BEER.)
 END

COS 301 - 2018UMaine School of Computing and Information Science

Fortran IV and Fortran 77
• FORTRAN IV evolved during 1960-62

– Explicit type declarations

– Logical selection statement
– Subprogram names could be parameters (consider a

generic sort routine)

– ANSI standard in 1966

• Fortran 77:
– Character string handling

– Logical loop control statement
– IF-THEN-ELSE statement

• Became the new standard in 1978

COS 301 - 2018UMaine School of Computing and Information Science

FORTRAN IV
CC
C
C THIS PROGRAM PRINTS THE ENTIRE LYRICS OF THE SONG - 99 BOTTLES OF
C BEER - TO STANDARD OUTPUT.
C
C WARNING!:
C IT IS ASSUMED THAT INTEGERS USE FOUR BYTES OF STORAGE EACH.
C
C COPYRIGHT 2010 JOHANNES SCHOEOEN
C
C---

 DIMENSION IBOBTW(7), IBOB(4), IT1DPI(8)

 DATA IBOBTW / 4H BOT, 4HTLES, 4H OF , 4HBEER,
 & 4H ON , 4HTHE , 4HWALL /
 DATA IBOB / 4H BOT, 4HTLES, 4H OF , 4HBEER /
 DATA IT1DPI / 4HTAKE, 4H ONE, 4H DOW, 4HN AN,
 & 4HD PA, 4HSS I, 4HT AR, 4HOUND /

C---

C MOST OF THE OUTPUT IS GENERATED BY THIS LOOP, BUT THE LAST COUPLE
C OF LINES ARE TREATED SEPARATELY. (YES, I CHEAT.)
 DO 1000 I = 99, 3, -1

C ARITHMETIC IF STATEMENTS ARE USED TO DIFFERENTIATE BETWEEN
C DOUBLE- AND SINGLE-DIGIT OUTPUT.

C FIRST LINE OF VERSE.
 IF (10 - I) 10, 10, 20
 10 WRITE (6, 9100) I, IBOBTW, 2H, , I, IBOB, 1H.
 GOTO 500
 20 WRITE (6, 9110) I, IBOBTW, 2H, , I, IBOB, 1H.

COS 301 - 2018UMaine School of Computing and Information Science

FORTRAN IV
C SECOND LINE.
 500 IF (11 - I) 30, 30, 40
 30 WRITE (6, 9200) IT1DPI, 2H, , I-1, IBOBTW, 1H.
 GOTO 1000
 40 WRITE (6, 9210) IT1DPI, 2H, , I-1, IBOBTW, 1H.

 1000 CONTINUE

C PRINT OUT THE LAST COUPLE OF ROWS.
 WRITE (6, 9999)

 STOP

C FIRST ROW OF VERSE, FIRST DOUBLE DIGIT, THEN SINGLE DIGIT.
 9100 FORMAT(1X, I2, 7A4, A2, I2, 4A4, A1)
 9110 FORMAT(1X, I1, 7A4, A2, I1, 4A4, A1)

C SECOND LINE OF VERSE -- DOUBLE DIGIT AND SINGLE DIGIT
 9200 FORMAT(1X, 8A4, A2, I2, 7A4, A1, /)
 9210 FORMAT(1X, 8A4, A2, I1, 7A4, A1, /)

C THE FINAL COUPLE OF ROWS, HARD-CODED FOR SIMPLICITY.
 9999 FORMAT(1X, 49H2 BOTTLES OF BEER ON THE WALL, 2 BOTTLES OF BEER.,/,
 & 1X, 50HTAKE ONE DOWN AND PASS IT AROUND, 1 BOTTLE OF BEER,
 & 13H ON THE WALL., //,
 & 1X, 47H1 BOTTLE OF BEER ON THE WALL, 1 BOTTLE OF BEER.,
 & 13H ON THE WALL., /,
 & 1X, 50HTAKE ONE DOWN AND PASS IT AROUND, NO MORE BOTTLES ,
 & 20HOF BEER ON THE WALL., //,
 & 1X, 37HNO MORE BOTTLES OF BEER ON THE WALL, ,
 & 24HNO MORE BOTTLES OF BEER., /,
 & 1X, 35HGO TO THE STORE AND BUY SOME MORE, ,
 & 31H99 BOTTLES OF BEER ON THE WALL.)
 END
9

COS 301 - 2018UMaine School of Computing and Information Science

FORTRAN 77 program ninetyninebottles
 integer bottles

* 99 Bottles of Beer, as implemented in FORTRAN 77
* Written by Alex Ford - gustavderdrache@bellsouth.net
* Notable feature: Arithmetic IF statement

 bottles = 99

* Format statements
 1 format (I2, A)
 2 format (A)
 3 format (I2, A, /)
 4 format (A, /)

* First 98 or so verses
 10 write (*,1) bottles, ' bottles of beer on the wall,'
 write (*,1) bottles, ' bottles of beer.'
 write (*,2) 'Take one down, pass it around...'
 if (bottles - 1 .gt. 1) then
 write (*,3) bottles - 1, ' bottles of beer on the wall.'
 else
 write (*,3) bottles - 1, ' bottle of beer on the wall.'
 end if

 bottles = bottles - 1

 if (bottles - 1) 30, 20, 10

* Last verse
 20 write (*,1) bottles, ' bottle of beer on the wall,'
 write (*,1) bottles, ' bottle of beer.'
 write (*,2) 'Take one down, pass it around...'
 write (*,4) 'No bottles of beer on the wall.'

 30 stop
 end

COS 301 - 2018UMaine School of Computing and Information Science

Compare with FORTRAN II
 program ninetyninebottles
 integer bottles

 bottles = 99

* Format statements
 1 format (I2, A)
 2 format (A)
 3 format (I2, A, /)
 4 format (A, /)

* First 98 or so verses
 10 write (*,1) bottles, ' bottles of beer on the wall,'
 write (*,1) bottles, ' bottles of beer.'
 write (*,2) 'Take one down, pass it around...'
 if (bottles - 1 .gt. 1) then
 write (*,3) bottles - 1, ' bottles of beer on the wall.'
 else
 write (*,3) bottles - 1, ' bottle of beer on the wall.'
 end if

 bottles = bottles - 1

 if (bottles - 1) 30, 20, 10

* Last verse
 20 write (*,1) bottles, ' bottle of beer on the wall,'
 write (*,1) bottles, ' bottle of beer.'
 write (*,2) 'Take one down, pass it around...'
 write (*,4) 'No bottles of beer on the wall.'

 30 stop
 end

COS 301 - 2018UMaine School of Computing and Information Science

Fortran 90
• Most significant changes from Fortran 77

– Modules

– Dynamic arrays
– Pointers

– Recursion
– CASE statement

– Parameter type checking
• Finally dropped the fixed formatting requirements used

with punch cards

• Started using mixed case!

COS 301 - 2018UMaine School of Computing and Information Science

Fortran 90
! F90 (Fortran 90) version of 99 bottles of beer.
! written by Akira KIDA, SDI00379@niftyserver.or.jp
! Note that this source is in FIXED format.

program ninetynine
implicit none
integer, parameter :: BOTTLES = 99
integer :: i
integer :: k
character*7 :: btl = 'bottles'

do i = BOTTLES, 1, -1
k = len(btl)
if (i == 1) k = k - 1
print *, i, btl(1:k), ' of beer on the wall, ',

 c i, btl(1:k), ' of beer.'
print *, 'Take one down, pass it around.'
if (i == 0) exit
print *, i, btl(1:k), ' of beer on the wall.'

end do
print *, 'No more bottles of beer on the wall.'
end

COS 301 - 2018UMaine School of Computing and Information Science

Latest versions of Fortran
• Fortran 95 – relatively minor additions, plus some

deletions

• Fortran 2003

– Added support for OOP (like everybody else...)
– Parameterized derived types

– Procedure pointers

– C language interoperability (changes in object file
format)

COS 301 - 2018UMaine School of Computing and Information Science

OOP in Fortran 2003
type shape
 integer :: color
 logical :: filled
 integer :: x
 integer :: y
end type shape
type, EXTENDS (shape) :: rectangle
 integer :: length
 integer :: width
end type rectangle
type, EXTENDS (rectangle) :: square
end type square

from www.pgroup.com/lit/articles/insider/v3n1a3.htm

COS 301 - 2018UMaine School of Computing and Information Science

Fortran is different…
• Language before Fortran 90

– Types and storage of all variables are fixed before
run time
•Speed wins the tradeoff between speed and

flexibility

– No dynamic data structures

– No recursion – why?
• Dramatically changed forever the way computers are

used

• Characterized by Alan Perlis as the lingua franca of the
computing world

COS 301 - 2018UMaine School of Computing and Information Science

Problem: Spaghetti
code

SUBROUTINE OBACT(TODO)
 INTEGER TODO,DONE,IP,BASE

 COMMON /EG1/N,L,DONE
 PARAMETER (BASE=10)
 13 IF(TODO.EQ.0) GO TO 12

 I=MOD(TODO,BASE)
 TODO=TODO/BASE

 GO
TO(62,42,43,62,404,45,62,62,62),I

 GO TO 13
 42 CALL COPY

 GO TO 127
 43 CALL MOVE

 GO TO 144
 404 N=-N

 44 CALL DELETE
 GO TO 127
 45 CALL PRINT

 GO TO 144
 62 CALL BADACT(I)

 GO TO 12
 127 L=L+N

 144 DONE=DONE+1
 CALL RESYNC
 GO TO 13

 12 RETURN
 END

COS 301 - 2018UMaine School of Computing and Information Science

Functional Programming: LISP
• LISt Processing language

• Delimiters are parentheses
• Joke: LISP = Lots of Irritating Stupid Parentheses
• Designed by John McCarthy (MIT)
• Replaced IPL (Information Processing Language)

• Artificial intelligence (AI) research needed a language to
– Process data in lists (rather than arrays)
– Symbolic computation (rather than numeric)

• Only two primary data types: atoms and lists
• Syntax is based on Church’s lambda calculus

– One of several models of computation developed before
computers came into existence

COS 301 - 2018UMaine School of Computing and Information Science

Lisp
Lists – dynamic linked lists whose elements can be
anything

Lists composed of cons cells

Two parts based on two registers machine had at the
time: address register and data registers:

Two pointers of cons fit into AR and DR

First pointer points to element, second points to
rest of the list

First pointer = car (contents of the AR)
Second pointer = cdr (contents of the DR)

COS 301 - 2018UMaine School of Computing and Information Science

Box-and-pointer example

(A B C D)

(A (B C) D (E (F G)))

COS 301 - 2018UMaine School of Computing and Information Science

Box-and-pointer example

(A B C D)

(A (B C) D (E (F G)))

COS 301 - 2018UMaine School of Computing and Information Science

Atoms
Lisp atoms:

Anything that isn’t a list

Scalar data types: integer, float, character, and, of
course, and, of course, symbols
Some structured data types: string, complex
numbers, arrays/vectors, bitstrings…

Symbols:

Lisp has runtime access to its symbol tables
Scope and symbol tables

Functions: also lists

COS 301 - 2018UMaine School of Computing and Information Science

Lisp
• Pioneered functional programming

– Target domain: theorem proving

•Required recursion and conditional expressions
– features not available in FORTRAN

– No need for variables or assignment
• Powerful macro facility

• Still the dominant language for AI (arguably)
• Common Lisp and Scheme are contemporary dialects

of Lisp

• Modern Lisps: variables & assignment, loop structures,
etc.

• ML, Miranda, and Haskell are related languages

COS 301 - 2018UMaine School of Computing and Information Science

Recursion and Iteration
Fundamental control structures in any language:

sequential execution
selection/conditional execution

repetition

Most languages: repetition = iteration
Functional languages: repetition mostly by recursion

Modeled on recursive function theory
Developed in the 1930’s: Alan Turing, Alonzo Church,
Kurt Gödel, others

COS 301 - 2018UMaine School of Computing and Information Science

Lisp example

;; Ninety-nine bottles of beer on the wall, recursive version

(defun beer-song (n)
 (cond
 ((= n 1)
 (princ "One bottle of beer on the wall, one more bottle of beer; take one down,")
 (princ "pass it around, no more bottles of beer on the wall."))
 (t
 (format t "~@(~R~) bottles of beer on the wall, ~:*~R bottles of beer;~%" n)
 (format t "take one down, pass it around, ~R bottle~:p of beer on the wall.~%~%"
 (1- n))
 (beer-song (1- n)))))

COS 301 - 2018UMaine School of Computing and Information Science

Try to understand:

;; Ninety-nine bottles of beer on the wall, recursive version

(defun beer-song (n)
 (cond
 ((= n 1)
 (princ "One bottle of beer on the wall, one more bottle of beer; take one down,")
 (princ "pass it around, no more bottles of beer on the wall."))
 (t
 (format t "~@(~R~) bottles of beer on the wall, ~:*~R bottles of beer;~%" n)
 (format t "take one down, pass it around, ~R bottle~:p of beer on the wall.~%~%"
 (1- n))
 (beer-song (1- n)))))

;; Mystery function 1

(defun foo (thing1 thing2)
 (cond
 ((null thing2) nil)
 ((equal thing1 thing2) t)
 (t (foo thing1 (cdr thing2)))))

;; Mystery function2

(defun bar (thing1 thing2)
 (cond
 ((null thing2) nil)
 ((equal thing1 (second thing2)) t)
 ((bar thing1 (first thing2)))
 ((bar thing1 (third thing2)))))

COS 301 - 2018UMaine School of Computing and Information Science

Lisp example

;; Ninety-nine bottles of beer on the wall, iterative version:

(defun beer-song2 (n)
 (loop for i from n downto 1
 do
 (format t "~@(~R~) bottles of beer on the wall, ~:*~R bottles of beer;~%"
 i)
 (format t "take one down, pass it around, ~R bottle~:p of beer on the wall.~%~%"
 (1- i))
 finally
 (format t
 (concatenate 'string
 "One bottle of beer on the wall, one more bottle of beer;”
 “take one down,~%"
 "pass it around, no more bottles of beer on the wall.”))))

COS 301 - 2018UMaine School of Computing and Information Science

Slightly obfuscated Lisp example

(defun ninety-nine (n)
 (cond
 ((= n 0)
 (princ "No more bottles of beer on the wall."))
 (t (dotimes (i 4)

 (if (not (= i 2))
 (format t "~:(~R~) bottle~:P of beer~a~%"

 (if (= i 3) (1- n) n)
 (if (oddp i) "." " on the wall,"))

 (format t "Take one down, pass it around,~%")))
 (terpri)
 (ninety-nine (1- n)))))

COS 301 - 2018UMaine School of Computing and Information Science

Output
CL-USER> (ninety-nine 99)
Ninety-Nine bottles of beer on the wall,
Ninety-Nine bottles of beer.
Take one down, pass it around,
Ninety-Eight bottles of beer.

Ninety-Eight bottles of beer on the wall,
 […]
Take one down, pass it around,
One bottle of beer.

One bottle of beer on the wall,
One bottle of beer.
Take one down, pass it around,
Zero bottles of beer.

No more bottles of beer on the wall.

COS 301 - 2018UMaine School of Computing and Information Science

Obfuscated Lisp example

(labels ((foo (x)
 (and (<= 0 x) (cons x (foo (1- x))))))
 (format t (format nil
 "~~{~~&~~@(~~%~~R ~A ~A!~~)~~:*~~&~~@(~~R
~0@*~A!~~)~~&~~@(~2@*~A!~~)~~&~~@(~~[~A~~:;~~:*~~R~~:*~~] ~0@*~A!~~)~~}"
 "bottles of beer"
 "on the wall"
 "take one down, pass it around"
 "no more"
)
 (foo 99)))

COS 301 - 2018UMaine School of Computing and Information Science

Scheme  

• Descendant/dialect of LISP

• Developed at MIT — mid-1970s

• Small language
• Extensive use of static (lexical) scoping

• Functions are first-class entities

• Simple syntax (and small size) ⇒ well suited for

educational applications

COS 301 - 2018UMaine School of Computing and Information Science

Common Lisp
• Goal: combine features of several dialects of Lisp

(including Scheme) ⇒ single language

• Large, complex language

– Static and dynamic scoping
– Data types include: records, arrays, complex

numbers, character strings

– Packages facilitate abstract data type

– OOP:
– Flavors: Smalltalk-like

– Later: Common Lisp Object System (CLOS)

– CLOS: first ANSI standard for OOP

COS 301 - 2018UMaine School of Computing and Information Science

ML and other functional languages
ML – functional language, support for imperative
programming

Robin Milner, Edinburgh, 1970’s
Does not use parenthesized syntax of LISP

Static typing

Descendants: Miranda, Haskell, etc.
Haskell uses lazy evaluation

delay expression evaluation until needed
some interesting capabilities – e.g., computation
with infinite data structures

COS 301 - 2018UMaine School of Computing and Information Science

Pros and cons
Comparison of FORTRAN and Lisp — pros and
cons?

COS 301 - 2018UMaine School of Computing and Information Science

Toward expressiveness: ALGOL
• ALGOL development environment

– FORTRAN had (barely) arrived for IBM 70x
– Many other languages being developed, all for specific

machines

– No portable languages; all machine-dependent

– No universal language for communicating algorithms

• ALGOL 60 — goal was to design universal language for:

• scientific applications
• algorithm specification

COS 301 - 2018UMaine School of Computing and Information Science

Early Design Process
• ACM and GAMM met for four days for design (May 27

to June 1, 1958)

• Goals:
– Syntax should be close to standard mathematical

notation

– Should be possible to use the language to describe
algorithms in publications

– Must be translatable to machine code

COS 301 - 2018UMaine School of Computing and Information Science

ALGOL 58
• Borrowed a lot from FORTRAN
• Concept of type was formalized

• Names could be any length

• Arrays could have any number of subscripts
• Parameters were separated by mode (in & out)

• Subscripts were placed in brackets

• Compound statements (begin ... end)

• Semicolon as a statement separator

• Assignment operator was :=
• if had an else-if clause

• No I/O - “would make it machine dependent”

COS 301 - 2018UMaine School of Computing and Information Science

ALGOL 58
• Not meant to be implemented

• Variations (MAD, JOVIAL) were implemented

• Jule’s Own Version of the International Algorithmic
Language (JOVIAL): official scientific language of the
US Air Force until 1984

• IBM was initially enthusiastic
• …but all support was dropped by mid-1959

• why?

COS 301 - 2018UMaine School of Computing and Information Science

ALGOL 60
• Modified ALGOL 58 at 6-day meeting in Paris
• One of most significant developments: Backus-Naur

Form (BNF) to describe syntax
• New features

– Block structure (local/lexical scope)
– Two parameter passing methods (by value and by

name)
– Subprogram recursion
– Stack-dynamic arrays (variables hold index limits)
– Still no I/O and no string handling

COS 301 - 2018UMaine School of Computing and Information Science

ALGOL 60 Successes
Standard way to publish algorithms for over 20 years

All subsequent imperative languages owe something
to Algol 60

Direct and indirect descendants: PL/I, Simula 97, Algol
68, C, Pascal, Ada, C++, Java, others
First language designed to be machine-independent

First language whose syntax was formally defined
(BNF)

Block structure and recursive subprogram calls ⇒

adoption of hardware-stack machines

COS 301 - 2018UMaine School of Computing and Information Science

ALGOL 60 Failures

Never widely used, especially in U.S.

Reasons:
Lack of I/O, the character set ⇒ programs non-

portable

Too flexible – some features hard to implement,
understand

Entrenchment of Fortran
BNF: considered strange, difficult to understand

Lack of support from IBM

COS 301 - 2018UMaine School of Computing and Information Science

Algol 60 Example
// the main program, calculate the mean of
// some numbers
begin
 integer N;
 Read Int(N);

 begin
 real array Data[1:N];
 real sum, avg;
 integer i;
 sum:=0;

 for i:=1 step 1 until N do
 begin real val;
 Read Real(val);
 Data[i]:=if val<0 then -val else val
 end;

 for i:=1 step 1 until N do
 sum:=sum Data[i];
 avg:=sum/N;
 Print Real(avg)
 end
end

COS 301 - 2018UMaine School of Computing and Information Science

Easy or hard to understand?
// the main program, calculate the mean of
// some numbers
begin
 integer N;
 Read Int(N);

 begin
 real array Data[1:N];
 real sum, avg;
 integer i;
 sum:=0;

 for i:=1 step 1 until N do
 begin real val;
 Read Real(val);
 Data[i]:=if val<0 then -val else val
 end;

 for i:=1 step 1 until N do
 sum:=sum Data[i];
 avg:=sum/N;
 Print Real(avg)
 end
end

Compared to FORTRAN?
Compared to Lisp?
Any downsides you can
 think of?

COS 301 - 2018UMaine School of Computing and Information Science

COBOL (Common Business Oriented Language)

• COBOL – one of the most widely used languages in
the world

• Compare to ALGOL:

• ALGOL never used, huge impact on subsequent
language development

• COBOL widely used, virtually no impact on
subsequent language development (save PL/I)

COS 301 - 2018UMaine School of Computing and Information Science

COBOL
• Late 1950’s

– UNIVAC used FLOW-MATIC (proprietary)
– The USAF was beginning to use AIMACO (a FLOW-

MATIC variant)

– IBM was developing COMTRAN

• Grace Hopper 1953:
“Mathematical programs should be written in
mathematical notation; data processing programs
should be written in English statements.”

COS 301 - 2018UMaine School of Computing and Information Science

FLOW-MATIC
Names up to 12 characters, with embedded hyphens

English names for arithmetic operators (no
arithmetic expressions)

Data and code were completely separate
The first word in every statement was a verb

COS 301 - 2018UMaine School of Computing and Information Science

COBOL Design Process
• First Design Meeting (Pentagon) - May 1959

• Design goals:
– Must look like simple English

– Must be easy to use, even if ⇒ less powerful

– Must broaden the base of computer users

– Must not be biased by current compiler problems

• Design committee members were all from computer
manufacturers and DoD branches

• Design Problems:

• arithmetic expressions?

• subscripts?

• Fights among manufacturers

COS 301 - 2018UMaine School of Computing and Information Science

COBOL Evaluation
• Contributions

– First macro facility (DEFINE) in a high-level
language (other than Lisp)

– Hierarchical data structures (records)
– Nested selection statements

– Long names (up to 30 characters), with hyphens

– Separate data division

– Strong I/O, file operation set

• Weaknesses
– Lack of functions

– Prior to 1974, no parameters for subprogram calls

COS 301 - 2018UMaine School of Computing and Information Science

COBOL: DoD Influence
• First language required by DoD

• Would have failed without DoD: poor compilers

• Still most widely used business applications language
• E. Dijkstra on COBOL

“The use of COBOL cripples the mind; its teaching
should, therefore, be regarded as a criminal offense.”

COS 301 - 2018UMaine School of Computing and Information Science

COBOL Example 1: Multiplication
$ SET SOURCEFORMAT"FREE"

IDENTIFICATION DIVISION.

PROGRAM-ID. Multiplier.

AUTHOR. Michael Coughlan.

* Example program using ACCEPT, DISPLAY and MULTIPLY to
* get two single digit numbers from the user and multiply them together

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Num1 PIC 9 VALUE ZEROS.

01 Num2 PIC 9 VALUE ZEROS.

01 Result PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.

 DISPLAY "Enter first number (1 digit) : " WITH NO ADVANCING.

 ACCEPT Num1.

 DISPLAY "Enter second number (1 digit) : " WITH NO ADVANCING.

 ACCEPT Num2.

 MULTIPLY Num1 BY Num2 GIVING Result.

 DISPLAY "Result is = ", Result.

 STOP RUN.

COS 301 - 2018UMaine School of Computing and Information Science

Example 2: Count student records from file
$ SET SOURCEFORMAT "FREE"

IDENTIFICATION DIVISION.

PROGRAM-ID. StudentNumbersReport .

AUTHOR. Michael Coughlan.

*INPUT The student record file Students.Dat Records in this file

* are sequenced on ascending Student Number.

*OUTPUT Shows the number of student records in the file and the

* number of records for males and females.

*PROCESSING For each record read;

* Adds one to the TotalStudents count

* IF the Gender is Male adds one to TotalMales

* IF the Gender is Female adds one to TotalFemales

* At end of file writes the results to the report file.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT StudentFile ASSIGN TO "STUDENTS.DAT"

 ORGANIZATION IS LINE SEQUENTIAL.

 SELECT ReportFile ASSIGN TO "STUDENTS.RPT"

 ORGANIZATION IS LINE SEQUENTIAL.

COS 301 - 2018UMaine School of Computing and Information Science

Example 2: Count student records from file

DATA DIVISION.

FILE SECTION.

FD StudentFile.
01 StudentDetails.

 88 EndOfStudentFile VALUE HIGH-VALUES.

 02 StudentId PIC 9(7).

 02 StudentName.

 03 Surname PIC X(8).

 03 Initials PIC XX.

 02 DateOfBirth.

 03 YOBirth PIC 9(4).

 03 MOBirth PIC 9(2).

 03 DOBirth PIC 9(2).

 02 CourseCode PIC X(4).

 02 Gender PIC X.

 88 Male VALUE "M", "m".

FD ReportFile.

01 PrintLine PIC X(40).

COS 301 - 2018UMaine School of Computing and Information Science

Example 2: Count student records from file

WORKING-STORAGE SECTION.

01 HeadingLine PIC X(21) VALUE " Record Count Report".

01 StudentTotalLine.

 02 FILLER PIC X(17) VALUE "Total Students = ".

 02 PrnStudentCount PIC Z,ZZ9.

01 MaleTotalLine.

 02 FILLER PIC X(17) VALUE "Total Males = ".

 02 PrnMaleCount PIC Z,ZZ9.

01 FemaleTotalLine.

 02 FILLER PIC X(17) VALUE "Total Females = ".

 02 PrnFemaleCount PIC Z,ZZ9.

01 WorkTotals.

 02 StudentCount PIC 9(4) VALUE ZERO.

 02 MaleCount PIC 9(4) VALUE ZERO.
 02 FemaleCount PIC 9(4) VALUE ZERO.

COS 301 - 2018UMaine School of Computing and Information Science

Example 2: Count student records from file
PROCEDURE DIVISION.

Begin.

 OPEN INPUT StudentFile

 OPEN OUTPUT ReportFile

 READ StudentFile

 AT END SET EndOfStudentFile TO TRUE

 END-READ

 PERFORM UNTIL EndOfStudentFile

 ADD 1 TO StudentCount

 IF Male ADD 1 TO MaleCount

 ELSE ADD 1 TO FemaleCount

 END-IF

 READ StudentFile

 AT END SET EndOfStudentFile TO TRUE

 END-READ

 END-PERFORM

 PERFORM PrintReportLines

 CLOSE StudentFile, ReportFile

 STOP RUN.

COS 301 - 2018UMaine School of Computing and Information Science

Example 2: Count student records from file

 PrintReportLines.

 MOVE StudentCount TO PrnStudentCount

 MOVE MaleCount TO PrnMaleCount

 MOVE FemaleCount TO PrnFemaleCount

 WRITE PrintLine FROM HeadingLine

 AFTER ADVANCING PAGE

 WRITE PrintLine FROM StudentTotalLine

 AFTER ADVANCING 2 LINES

 WRITE PrintLine FROM MaleTotalLine

 AFTER ADVANCING 2 LINES

 WRITE PrintLine FROM FemaleTotalLine

 AFTER ADVANCING 2 LINES.

COS 301 - 2018UMaine School of Computing and Information Science

99 Bottles of beer
IDENTIFICATION DIVISION.
 PROGRAM-ID. 99-Bottles-of-Beer-On-The-Wall.
 AUTHOR. Joseph James Frantz.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 Keeping-Track-Variables.
 05 Bottles PIC S99 VALUE 0.
 05 Remaining-Bottles PIC S99 VALUE 0.
 05 Counting PIC 99 VALUE 0.
 05 Start-Position PIC 99 VALUE 0.
 05 Positions PIC 99 VALUE 0.
 PROCEDURE DIVISION.
 PASS-AROUND-THOSE-BEERS.
 PERFORM VARYING Bottles FROM 99 BY -1 UNTIL Bottles = -1
 DISPLAY SPACES
 SUBTRACT 1 FROM Bottles GIVING Remaining-Bottles
 EVALUATE Bottles
 WHEN 0
 DISPLAY "No more bottles of beer on the wall, "
 "no more bottles of beer."
 DISPLAY "Go to the store and buy some more, "
 "99 bottles of beer on the wall."
 WHEN 1
 DISPLAY "1 bottle of beer on the wall, "
 "1 bottle of beer."
 DISPLAY "Take one down and pass it around, "
 "no more bottles of beer on the wall."

COS 301 - 2018UMaine School of Computing and Information Science

99 Bottles… (cont’d)

 WHEN 2 Thru 99
 MOVE ZEROES TO Counting
 INSPECT Bottles,
 TALLYING Counting FOR LEADING ZEROES
 ADD 1 TO Counting GIVING Start-Position
 SUBTRACT Counting FROM 2 GIVING Positions
 DISPLAY Bottles(Start-Position:Positions)
 " bottles of beer on the wall, "
 Bottles(Start-Position:Positions)
 " bottles of beer."
 MOVE ZEROES TO Counting
 INSPECT Remaining-Bottles TALLYING
 Counting FOR LEADING ZEROES
 ADD 1 TO Counting GIVING Start-Position
 SUBTRACT Counting FROM 2 GIVING Positions
 DISPLAY "Take one down and pass it around, "
 Remaining-Bottles(Start-Position:Positions)
 " bottles of beer on the wall."
 END-EVALUATE
 END-PERFORM
 STOP RUN.

COS 301 - 2018UMaine School of Computing and Information Science

Compare & contrast
FORTRAN

Algol

Lisp
COBOL

COS 301 - 2018UMaine School of Computing and Information Science

BASIC
• Like COBOL, widely used but gets little respect

– “The Rodney Dangerfield of computer languages”
• Design Goals:

– Easy to learn and use for non-science students
– Must be “pleasant and friendly”
– Fast turnaround for homework
– Free and private access
– User time is more important than computer time

• BASIC was designed for interactive terminals on a
time-sharing system

COS 301 - 2018UMaine School of Computing and Information Science

BASIC
• Based on FORTRAN

• Many different versions came into existence; 1978 ANSI
standard was minimal

• Digital used a version of BASIC to write part of the
operating system for the PDP-11

COS 301 - 2018UMaine School of Computing and Information Science

E. Dijkstra on BASIC

It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC; as
potential programmers they are mentally mutilated
beyond hope of regeneration.

COS 301 - 2018UMaine School of Computing and Information Science

Unstructured Programming
Djikstra’s comment referred to code like this:

10 IF X = 42 GOTO 40

20 X = X + 1

30 GOTO 10

40 PRINT "X is finally 42!”

COS 301 - 2018UMaine School of Computing and Information Science

Modern BASIC
Most hobby computers in1970s had tiny BASIC
interpreters
MS-DOS include BASICA and later QBASIC
With Windows, Microsoft started developing Visual
Basic

Even the oldest VB versions: object-oriented
languages with classes, inheritance, etc.
Visual Studio 6 (1998) was the most popular
version
VBScript was (and still is) used for web
development (Classic ASP)
 VBA was (and still is) used to automate Office
applications

COS 301 - 2018UMaine School of Computing and Information Science

VB.NET
VB 7

released 2002 with .NET

broke compatibility with earlier versions

Can be used for anything from console applications to web
development
Virtually same capabilities as C#

Visual Studio 2008: VB acquired capabilities such as
lambda expressions

anonymous types

type inferencing, etc.

COS 301 - 2018UMaine School of Computing and Information Science

Everything for everybody: PL/I
• Designed by IBM and SHARE

• Computing situation in 1964 (IBM's point of view)

– Scientific computing

• IBM 1620 and 7090 computers
• FORTRAN

• SHARE user group

– Business computing
• IBM 1401, 7080 computers

• COBOL

• GUIDE user group

COS 301 - 2018UMaine School of Computing and Information Science

PL/I: Background
• By 1963

– Scientific users began to need more elaborate I/O
– Business users began to need floating point type, arrays for

MIS
– Too costly to have two kinds of computers, languages

• Obvious solution
– Build new computer to do both kinds of applications
– Design new language to do both kinds of applications
– Goal: PL/I could replace COBOL, FORTRAN, LISP and

assembler

COS 301 - 2018UMaine School of Computing and Information Science

PL/I: Design Process
• Designed in five months by the 3 X 3 Committee

– Three members from IBM, three members from
SHARE

• Initial concept was an extension of Fortran IV
• Initially: NPL (New Programming Language)

• Name changed (1965): PL/I (Programming Language/I)

COS 301 - 2018UMaine School of Computing and Information Science

PL/I Overview
Famous for “kitchen sink” approach
PL/I contributions:

Programs could create concurrently executing
subprograms
First exception handling in a programming
language
Recursion allowed, but could disabled for efficient
function calls
Pointer data type
Array cross sections

Concerns
Many new features were poorly designed
Too large and too complex

COS 301 - 2018UMaine School of Computing and Information Science

PL/I …
• Partial success, but…

• slow compilers

• difficult-to-use features,
• partial implementations

• buggy compilers

• Many subsets: PL/C for teaching, PL/S for systems
programming,…

• Widely used in 1970’s on mainframes

• Used for IBM OS development

• Usage continued until the 1990’s with some PC
implementations

• Virtually dead now

COS 301 - 2018UMaine School of Computing and Information Science

PL/I example
BOTTLES: PROC OPTIONS(MAIN);

 DCL NUM_BOT FIXED DEC(3);
 DCL PHRASE1 CHAR(100) VAR;
 DCL PHRASE2 CHAR(100) VAR;
 DCL PHRASE3 CHAR(100) VAR;

 DO NUM_BOT = 100 TO 1 BY -1;

 PHRASE1 = NUM_BOT||' Bottles of Beer on the wall,';
 PHRASE2 = NUM_BOT||' Bottles of Beer';
 PHRASE3 = 'Take one down and pass it around';
 DISPLAY(PHRASE1||PHRASE2);
 DISPLAY(PHRASE3);
 END;
 PHRASE1 = 'No more Bottles of Beer on the wall, ';
 PHRASE2 = 'No more Bottles of Beer';
 PHRASE3 = 'Go to the store and buy some more';
 DISPLAY(PHRASE1||PHRASE2);
 DISPLAY(PHRASE3);
 END BOTTLES;

COS 301 - 2018UMaine School of Computing and Information Science

Ada
• Named for Augusta Ada Byron, Countess of Lovelace

• Lord Byron’s daughter

• Worked with Charles Babbage

• First programmer in history

• Department of Defense (DoD) drove development:

• Explosion of PLs in use: ~450 by 1974

• Embedded systems:

• > half of applications

• Many: assembly language for special-purpose processors

• Usually: no HLL suitable

• Little code reuse

• No general SW development tools

COS 301 - 2018UMaine School of Computing and Information Science

Ada

• High Order Language Working Group (HOLWG) produced
requirement documents

• Huge design effort:
• hundreds of people, much $$, and ~8 years
• Phases:

– Strawman requirements (April 1975)
– Woodenman requirements (August 1975)
– Tinman requirements (1976)
– Ironman requirments (1977)
– Steelman requirements (1978)

• By 1979: 100s of proposals → 4 — all based on Pascal

COS 301 - 2018UMaine School of Computing and Information Science

Ada
• Contributions

– Packages - data abstraction by encapsulating data types, objects
and procedures

– Elaborate exception handling model

– Generic program units: allowed algorithms to be implemented
without specifying data types

– Concurrency - through rendezvous mechanism

• Good:

– Competitive design

– Included all then known about SW engineering, PL design

• Not so good:

– Building first compiler: very difficult

– First really usable compiler: ~5 years after PL design complete

COS 301 - 2018UMaine School of Computing and Information Science

Ada 95
Ada 95 (began in 1988)
Packages: very similar to classes

…but no components could be added to base “class”
Added support for OOP:

type derivation

runtime subprogram dispatching
Better control mechanisms for shared data

New concurrency features

More flexible libraries
Popularity decreased over time: DoD no longer
requires it

COS 301 - 2018UMaine School of Computing and Information Science

Ada example
with Text_IO;
procedure Bar is

 Out_Of_Beer : Exception;

 protected Bartender is
 function Count return Integer;
 procedure Take_One_Down;
 private
 Remaining : Integer range 0 .. 99 := 99;
 end Bartender;

 protected body Bartender is
 function Count return Integer is
 begin return Remaining; end Count;

 procedure Take_One_Down is
 begin
 if Remaining = 0 then raise Out_Of_Beer;
 else Remaining := Remaining - 1;
 end if;
 end Take_One_Down;
 end Bartender;

COS 301 - 2018UMaine School of Computing and Information Science

Ada example
 type Names is (Charles, Ada, John, Grace, Donald,
 Edsger, Niklaus, Seymour, Fred, Harlan);

 task type Customers is
 entry Enter_Bar(Who : in Names);
 end Customers;

 Customer_List : array(Names) of Customers;

 task body Customers is
 Me : Names;
 procedure Sing_And_Drink(Singer_ID : in String) is
 procedure Sing(S : in String) renames Text_IO.Put_Line;
 begin
 loop
 declare
 Bottle_Part : constant String
 := Integer'image(Bartender.Count) & " bottles of beer";
 begin
 Sing(Bottle_Part & " on the wall" & Singer_ID);
 Sing(Bottle_Part & Singer_ID);
 end;
 Sing(" Take one down and pass it around" & Singer_ID);
 Bartender.Take_One_Down;
 delay 10.0; -- allow ten seconds to gulp one down
 end loop;
 exception
 when Out_Of_Beer => Sing("no more beer!" & Singer_ID);
 end Sing_And_Drink;

COS 301 - 2018UMaine School of Computing and Information Science

Ada example (cont’d)
 begin -- customer task
 accept Enter_Bar(Who : in Names) do
 Me := Who;
 end Enter_Bar;
 Sing_And_Drink(" - " & Names'image(Me));
 end Customers;

begin -- operating bar

 for Person in Customer_List'range loop
 Customer_List(Person).Enter_Bar(Person);
 delay 2.0; -- allow two seconds between customers
entering bar
 end loop;

end Bar;

COS 301 - 2018UMaine School of Computing and Information Science

Parallels with RISC/CISC
Take a couple of minutes: any parallels between:

 FORTRAN & COBOL vs PL/I & Ada
and

RISC vs CISC?

RISC = Reduced Instruction Set Computers

CISC = Complex Instruction Set Computers

COS 301 - 2018UMaine School of Computing and Information Science

Early dynamic languages

• Dynamic typing and dynamic storage allocation

• “Variables are untyped” ⇒ “no types declared”

• Variable acquires type when assigned a value
• Storage allocated when variable assigned value

• First: Lisp
• Other early ones: APL, SNOBOL

• Now: Ruby, Python, …

COS 301 - 2018UMaine School of Computing and Information Science

APL: A Programming Language
Designed as hardware description language at IBM by
Ken Iverson around 1960
Highly expressive - many operators, for both scalars
and arrays of various dimensions

Programs very difficult to read:

use of single special characters for complex
operations
called a “write-only” language

Still in use after 45 years; minimal changes

COS 301 - 2018UMaine School of Computing and Information Science

Example
Using the “Sieve
of Eratosthenes”
method, find all
prime numbers
less than or equal
to X

C version:

/* Sieve of Eratosthenes in C */
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char **argv)
{
 unsigned long n, x, y, *primes;

 /* Get the upper limit value, n */
 if (argc != 2) {
 fprintf (stderr, "Usage is e.g:\n %s 10\n", argv[0]);
 return -1;
 }

 n = strtoul (argv[1], NULL, 0);
 if (n == 0) {
 fprintf (stderr, "Argument must be greater than 0\n");
 return -1;
 }

 /* Run the sieve algorithm */
 primes = (unsigned long *) calloc (n+1, sizeof (unsigned long));
 if (primes == NULL) {
 fprintf (stderr, "Out of memory\n");
 return -1;
 }

 for (x = 2; x <= n; x++) {
 for (y = 2; y <= x; y++) {
 if (x * y > n)
 break;
 primes [x * y] = 1;
 }
 }

 /* Print the results */
 for (x = 2; x <= n; x++) {
 if (primes [x] == 0)
 printf ("%d ", x);
 }
 printf ("\n");
 return 0;
}

COS 301 - 2018UMaine School of Computing and Information Science

Example
Using the “Sieve of Eratosthenes” method, find all
prime numbers less than or equal to X
APL version:

(2=+⌿0=(⍳X)∘.|⍳X)/⍳X

And, no, I can’t explain it to you!

COS 301 - 2018UMaine School of Computing and Information Science

SNOBOL (String Oriented Symbolic Language)  

• String manipulation language (Bell Labs; Farber,
Griswold, Polensky, 1964)

• Patterns: first-class objects in the language
• Could be very simple (strings)

• Could be entire programming language grammars

• Powerful string pattern matching operators
– Can create strings, treat as programs, execute them

– SNOBOL patterns equivalent to context-free
grammars

– More powerful than regular expressions (e.g., Perl,
JavaScript, awk, etc.)

• Pattern matching: backtracking algorithm similar to
Prolog execution

COS 301 - 2018UMaine School of Computing and Information Science

SNOBOL
Still used for some text-processing tasks

See http://www.snobol4.org
SPITBOL (A Speedy Implementation of SNOBOL) —
released under GNU license in 2009

See http://code.google.com/p/spitbol/

COS 301 - 2018UMaine School of Computing and Information Science

SNOBOL example
 B = 99

LOOP SENTENCE1 = "?? BOTTLES OF BEER ON THE WALL, ?? BOTTLES OF BEER"

 SENTENCE2 = "TAKE ON AND DOWN PASS IT AROUND, ?? BOTTLES OF BEER ON THE WALL."

S1 SENTENCE1 "??" = B :S(S1)

S2 SENTENCE1 "BOTTLES" = EQ(B,1) "BOTTLE" :S(S2)

 OUTPUT = SENTENCE1

 B = B - 1

 EQ(B,0) :S(FINISH)

 SENTENCE2 "??" = B

 SENTENCE2 "BOTTLES" = EQ(B,1) "BOTTLE"

 OUTPUT = SENTENCE2

 OUTPUT = " "

 GT(B,0) :S(LOOP)

FINISH OUTPUT = "TAKE ONE DOWN AND PASS IT AROUND, NO MORE BOTTLES OF BEER ON THE WALL."

 OUTPUT = " "

 OUTPUT = "NO MORE BOTTLES OF BEER ON THE WALL, NO MORE BOTTLES OF BEER"

 OUTPUT = "GO TO THE STORE AND BUY SOME MORE, 99 BOTTLES OF BEER ON THE WALL."

END

COS 301 - 2018UMaine School of Computing and Information Science

Python
• Interpreted, dynamic (“scripting”) language
• Guido van Rossum; named after Monty Python

• Type checked but dynamically typed

• Basic data types: numbers, etc., and lists, tuples, and
hashes (associative arrays)

• Designed for readability – spaces as delimiters

• Designed as an extensible language
• Large set of libraries available

• Very widely used

• A major language for Deep Learning — with libraries

COS 301 - 2018UMaine School of Computing and Information Science

Example

"""
99 Bottles of Beer (by Gerold Penz)
Python can be simple, too :-)
"""

for quant in range(99, 0, -1):
 if quant > 1:
 print quant, "bottles of beer on the wall,", quant, "bottles of beer."
 if quant > 2:
 suffix = str(quant - 1) + " bottles of beer on the wall."
 else:
 suffix = "1 bottle of beer on the wall."
 elif quant == 1:
 print "1 bottle of beer on the wall, 1 bottle of beer."
 suffix = "no more beer on the wall!"
 print "Take one down, pass it around,", suffix
 print "--"

COS 301 - 2018UMaine School of Computing and Information Science

Example
Readable Python Version of "99 Bottles of Beer" Program
Well, its readable if you know Python reasonably well.
Public Domain by J Adrian Zimmer [[jazimmer.net]]

verse1 = lambda x: \
"""%s of beer on the wall, %s of beer.
Take one down, pass it around, %s of beer on the wall.
""" % (bottle(x),bottle(x),bottle(x-1))

verse2 = \
"""No more bottles of beer on the wall, no more bottles of beer.
Go to the store, buy some more, 99 bottles of beer on the wall.
"""

def verse(x):
 if x==0: return verse2
 else: return verse1(x)

def bottle(x):
 if x==0: return "no more bottles"
 elif x==1: return str(x) + " bottle"
 else: return str(x) + " bottles"

print "\n".join([verse(x) for x in range(99,-1,-1)])

COS 301 - 2018UMaine School of Computing and Information Science

Example
#! /usr/bin/env python

class BottleException(Exception):
 def __init__(self, i, c):
 self.cause = c
 self.cnt = i
 try:
 a = 1/(99-i)
 raise BottleException(i+1, self)
 except ZeroDivisionError:
 pass

 def getCause(self):
 return self.cause

 def printStackTrace(self):
 print("%d Bottle(s) of beer on the wall, %d Bottle(s) of beer" % (self.cnt, self.cnt))
 print("Take one down and pass it around,")
 print("%d Bottle(s) of beer on the wall" % (self.cnt - 1))
 try:
 self.getCause().printStackTrace()
 except AttributeError:
 pass

try:
 raise BottleException(1, None)
except Exception, e:
 e.printStackTrace()

COS 301 - 2018UMaine School of Computing and Information Science

Example

a,t="\n%s bottles of beer on the wall","\nTake one down, pass it around"
for d in range(99,0,-1):print(a%d*2)[:-12]+t+a%(d-1 or'No')

COS 301 - 2018UMaine School of Computing and Information Science

The Zen of Python
http://www.python.org/dev/peps/pep-0020/

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-and preferably only one-obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

COS 301 - 2018UMaine School of Computing and Information Science

Lua
• Functional and imperative
• Limited support for OO as with Javascript

• Functions are first-class values

• Designed to be extensible

• Only 21 reserved words

• Small number of atomic data types (Booleans,
Numbers, Strings)

• One complex data structure called a “table” similar to
associative arrays or hashes

• Lua very popular for video game scripting: used in both
Angry Birds and in the Flame cyber weapon

COS 301 - 2018UMaine School of Computing and Information Science

Lua example
do
 local oldprint = print -- Store current print function as oldprint
 function print(s) -- Redefine print function, the usual print function
can still be used
 if s == "foo" then
 oldprint("bar")
 else
 oldprint(s)
 end
 end
end

from <sigh> Wikipedia

COS 301 - 2018UMaine School of Computing and Information Science

Lua Example
-- Lua 99 Bottles of Beer
-- by Philippe Lhoste <PhiLho@GMX.net> http://jove.prohosting.com/~philho/

function PrintBottleNumber(n)
 local bs
 if n == 0 then
 bs = "No more bottles"
 elseif n == 1 then
 bs = "One bottle"
 else
 bs = n .. " bottles"
 end
 return bs .. " of beer"
end

for bn = 99, 1, -1 do
 write(PrintBottleNumber(bn), " on the wall, \n")
 write(PrintBottleNumber(bn), "\n")
 write("Take one down and pass it around,\n")
 write(PrintBottleNumber(bn-1), " on the wall, \n\n")
end
write("No more bottles of beer on the wall,\nNo more bottles of beer\n")
write("Go to the store, buy some more!\n")

COS 301 - 2018UMaine School of Computing and Information Science

Ruby
• Author: Yukihiro Matsumoto (a.k.a, “Matz”)
• Began as a replacement for Perl and Python
• Pure object-oriented language – everything is an object
• Operators are methods, can be redefined
• A number features from Perl (e.g., implicit variables)
• Extensible like Python, Perl
• First Japanese language widely adopted in US
• Ruby on Rails: popular web application framework

using Ruby
• Example: www.99-bottles-of-beer.net/language-ruby-1272.html

COS 301 - 2018UMaine School of Computing and Information Science

Example
class Wall

 def initialize(num_of_bottles)
 @bottles = num_of_bottles
 end

 def sing_1_verse
 @output = sing_num(@bottles) + " on the wall, " + sing_num(@bottles) + "\n"
 @output += "take one down, pass it around, " + sing_num(@bottles-1) + "\n\n"
 return @output
 end

 def sing_all
 @output = ''
 while @bottles > 0 do
 @output += sing_1_verse()
 @bottles -= 1
 end
 return @output
 end

 def sing_num(num)
 @counter = (num > 1) ? 'bottles' : 'bottle'
 "#{num} #{@counter} of beer"
 end

end # class Wall

wall = Wall.new(99)
puts wall.sing_all()

COS 301 - 2018UMaine School of Computing and Information Science

Dynamic languages
Pros and cons vs “static” languages (with some/most
static storage & with types)

COS 301 - 2018UMaine School of Computing and Information Science

Orthogonal design philosophy
Provide a few basic, non-overlapping concepts

control structures

variables/types
other features

Provide a few combining mechanisms

Pro: Clean language, small grammars, smaller/faster
compilers/interpreters

Con: Puts effort → programmer, longer programs
(RISC vs CISC again?)

COS 301 - 2018UMaine School of Computing and Information Science

ALGOL 68
• Continuation of ALGOL 60 – but not a superset

• Didn’t achieve widespread use – but introduced:
• User-defined data types

• Dynamic arrays

• Reference types
• Strongly influenced subsequent languages, especially

Pascal, C, and Ada

• Language used to describe it was a problem
 “The coercion is called deproceduring. This can be employed in

any soft, and therefore any weak, meek, firm or strong
syntactic position.”

From ALGOL 68: A First and Second course (Andrew D. McGettrick)

COS 301 - 2018UMaine School of Computing and Information Science

ALGOL 68 example
99 Bottles of Beer #

by Otto Stolz <Otto.Stolz@Uni-Konstanz.de> #

(PROC width = (INT x) INT: (x>9 | 2 | 1)

; FOR i FROM 99 BY -1 TO 1

 DO printf (($ 2l n(width(i))d

 , x "bottle" b("","s") x "of beer on the wall,"

 , x n(width(i))d

 , x "bottle" b("","s") x "of beer."

 , l "Take one down, pass it around,"

 , x n(width(i-1))d

 , x "bottle" b("","s") x "of beer."

 $

 , i , i=1

 , i , i=1

 , i-1, i=2

))

 OD

)

COS 301 - 2018UMaine School of Computing and Information Science

Pascal
• ALGOL strongly influenced development of Pascal

(Wirth, 1971)
• Niklaus Wirth was member of ALGOL 68 committee

• Designed for teaching structured programming

• Small, simple, nothing really new
• 70s–90s: most widely-used teaching language

• Emphasis on reliable programming: type-safety, index
bounds check, etc.

"If you call me by name, it is Neeklaws Veert, but if you call
me by value, it is Nickle's Worth."

COS 301 - 2018UMaine School of Computing and Information Science

Pascal
Lacked features necessary for real-world
programming, e.g.:

separate compilation
decent I/O

Non-standard dialects were developed

E.g., Turbo Pascal (Borland) for IBM PC
35 KB of code written in assembler

Included complete editor, compiler and debugger
⇒ Modula-2

Pascal not used much anymore

Delphi is OO descendent, in use

COS 301 - 2018UMaine School of Computing and Information Science

Pascal example
program BottlesOfBeer (output);
{this program plays the 99 bottles of beer song}

const
 BOTTLESSTART = 99;
 BOTTLESEND = 1;

type
 tBottles = BOTTLESEND..BOTTLESSTART;

var
 bottles : tBottles;

begin
 for bottles := BOTTLESSTART downto BOTTLESEND do
 begin
 if bottles > 1 then
 begin
 writeln (bottles,' bottles of beer on the wall, ',bottles, ' bottles of beer.');
 write ('Take one down, pass it around, ');
 writeln (bottles - 1, ' bottles of beer on the wall.');
 writeln
 end
 else
 begin
 writeln ('1 bottle of beer on the wall, one bottle of beer.');
 writeln ('Take one down, pass it around, no more bottles of beer on the wall');
 writeln;
 writeln ('No more bottles of beer on the wall, no more bottles of beer.');
 writeln ('Go to the store and buy some more, 99 bottles of beer on the wall.')
 end
 end
end.

COS 301 - 2018UMaine School of Computing and Information Science

C
C language designed 1972 (Dennis Richie, Bell Labs)
For systems programming

Evolved primarily from BCLP, B, but also ALGOL 68
BCLP and B are not typed languages

All data: considered to be machine words

Very low-level HLL
Powerful set of operators – poor type checking

Used to develop Unix

Very widely used, esp. for systems programming

COS 301 - 2018UMaine School of Computing and Information Science

C
No standard for the language initially

Kernigan and Ritchie’s C Programming Language

ANSI standard created in 1989
2nd edition of K&R came out after 1989 ANSI C

Weak type support/checking: e.g.:
No boolean types: ints are used

No built-in character or string support

Characters: 8-bit numbers (char)

Strings: arrays of char

Pointers
Little or no runtime type checking

COS 301 - 2018UMaine School of Computing and Information Science

Prolog
• Logic-based programming language

• Developed by Comerauer, Roussel, & Kowalski (U. Aix-Marseille and U.
Edinburg)

• Based on subset of predicate logic — Horn clauses

• Disjunction with at most one negated literal

• Equiv: X1 ∨ X2 ∨ … ∨ Xn-1 ⇒ Xn

• Resolution theorem proving

• Inference mechanism: (A ∨ B) ∧ (¬A ∨ B) → B

• Backtracking search built in

• Non-procedural – declarative

• Can view: intelligent DB system w/ inferencing ⇒ truth of queries

• Inefficient…

• … but some Prolog chips were developed ⇒ high-speed inferencing

COS 301 - 2018UMaine School of Computing and Information Science

Prolog Programs

Consist of two components: facts and rules. Ex:

speaks(allen, russian).
speaks(bob, english).
speaks(mary, russian).
speaks(mary, english).
talkswith(P1,P2) :- speaks(P1,L),speaks(P2,L), P1\= P2.

COS 301 - 2018UMaine School of Computing and Information Science

Prolog programs

?- speaks(Who, russian).

Asks for: instantiation of variable Who that makes the query true
asks for an instantiation of the variable Who for which the query
speaks(Who, russian) succeeds.
Prolog considers every fact and rule whose head is speaks. (If
more than one, consider them in order.)

Rule chaining using resolution theorem proving ⇒ inferences

Who = allen ;

 Who = mary ;

 No

speaks(allen, russian).
speaks(bob, english).
speaks(mary, russian).
speaks(mary, english).
talkswith(P1,P2) :- speaks(P1,L),speaks(P2,L), P1\= P2.

Consist of two components: facts and rules. Ex:

Queries:

COS 301 - 2018UMaine School of Computing and Information Science

Prolog example
bottles :-

 bottles(99).

bottles(1) :-

 write('1 bottle of beer on the wall, 1 bottle of beer,'), nl,

 write('Take one down, and pass it around,'), nl,

 write('Now they are all gone.'), nl,!.

bottles(X) :-

 write(X), write(' bottles of beer on the wall,'), nl,

 write(X), write(' bottles of beer,'), nl,

 write('Take one down and pass it around,'), nl,

 NX is X - 1,

 write(NX), write(' bottles of beer on the wall.'), nl, nl,

 bottles(NX).

COS 301 - 2018UMaine School of Computing and Information Science

Try to understand it:
bottles :-
 bottles(99).

bottles(1) :-
 write('1 bottle of beer on the wall, 1 bottle of beer,'), nl,

 write('Take one down, and pass it around,'), nl,
 write('Now they are all gone.'), nl,!.

bottles(X) :-
 write(X), write(' bottles of beer on the wall,'), nl,

 write(X), write(' bottles of beer,'), nl,

 write('Take one down and pass it around,'), nl,
 NX is X - 1,

 write(NX), write(' bottles of beer on the wall.'), nl, nl,
 bottles(NX).

Call with: bottles(99)

COS 301 - 2018UMaine School of Computing and Information Science

OO languages
Early: Simula, CLU, Smalltalk

Later: Objective C, Swift, Ruby
Mixed: Java, C++, C#

Add-ons to other languages:

Flavors (Lisp)
CLOS (Lisp)

C++ (originally)
Python

Perl

Fortran, COBOL, etc., etc.

COS 301 - 2018UMaine School of Computing and Information Science

SIMULA 67
• Simulation language (Nygaard & Dahl; Norway)

• Based on ALGOL 60 – superset of it
• First OO language (though cf. CLU)

• Primary contributions:

– Classes, objects, and inheritance
– Coroutines - a kind of subprogram

• The main ancestor of Smalltalk

COS 301 - 2018UMaine School of Computing and Information Science

Simula exampleBEGIN
 COMMENT
 Simula version of 99 beers
 Maciej Macowicz (mm@cpe.ipl.fr)
 Status: UNTESTED :)

 Amended 2007-03-10 by Jack Leunissen (jack.leunissen@wur.nl)
 Status: WORKING (at least it prints and counts correctly)
 ;
 INTEGER bottles;
 INTEGER num;

 num := 2;
 FOR bottles:= 99 STEP -1 UNTIL 1 DO
 BEGIN
 IF (bottles < 10) THEN num := 1;
 OutInt(bottles,num);
 OutText(" bottle(s) of beer on the wall, ");
 OutInt(bottles,num);
 OutText(" bottle(s) of beer");
 OutImage;
 Outtext("Take one down, pass it around, ");
 OutInt(bottles - 1,num);
 OutText(" bottle(s) of beer on the wall. ");
 OutImage;
 OutImage;
 END;
 OutText("1 bottle of beer on the wall, one bottle of beer.");
 OutImage;
 OutText("Take one down, pass it around, ");
 OutText("no more bottles of beer on the wall");
 OutImage
END

COS 301 - 2018UMaine School of Computing and Information Science

Smalltalk

• One of the first object-oriented languages

• Xerox PARC — Alan Kay, Adele Goldberg
• First full implementation of an OO language

• data abstraction
• inheritance

• dynamic binding
• Kay foresaw development of desktop PC, use of computers

by non-programmers

• Pioneered the graphical user interface design based on a
desktop model

• Model adopted with permission by Macintosh after Steve
Jobs visited PARC…

• …then “borrowed” by Microsoft (and Linux, and…)

COS 301 - 2018UMaine School of Computing and Information Science

Smalltalk
Very small, simple language

No conventional control structures:

uses objects + messages instead

Much of Smalltalk is defined in Smalltalk

Smalltalk world: populated by objects

booleans, numbers, strings
also large complex things — e.g., Class BitBlt
used for drawing bitmaps

Objects pass messages to other objects

COS 301 - 2018UMaine School of Computing and Information Science

Smalltalk example

count ← 0.
letters do: [:each | each asLowercase == $a
 ifTrue: [count ← count + 1]]

Count the number of characters are ‘a’ or ‘A’ in collection
letters:

COS 301 - 2018UMaine School of Computing and Information Science

Smalltalk: longer example
' Smalltalk class to constrain a 2D point to a fixed grid
Point subclass: #GriddedPoint
 instanceVariableNames: ''

 classVariableNames: ''
 poolDictionaries: ''
!GriddedPoint methodsFor: 'accessing'!

x: xInteger
 "Set the x coordinate gridded to 10 (using rounding, alternatively I

could use truncating)."
 ^ super x: (xInteger roundTo: 10)

y: yInteger
 "Set the y coordinate gridded to 10 (using rounding, alternatively I

could use truncating)."
 ^ super y: (yInteger roundTo: 10)

!GriddedPoint methodsFor: 'private'!
setX: xPoint setY: yPoint
 "Initialize the instance variables rounding to 10."

 ^ super setX: (xPoint roundTo: 10) setY: (yPoint roundTo: 10)

COS 301 - 2018UMaine School of Computing and Information Science

See if you can figure this out:
"Copy into a workspace, highlight the code and choose do it."
"Tested under Squeak 3.7 and VisualWorks 7.3"
| verseBlock |
verseBlock := [:bottles | | verse |
 verse := WriteStream with: (String new).
 bottles = 0 ifTrue:
 [verse
 nextPutAll: 'No more bottles of beer on the wall. No more bottles of beer...'; cr;
 nextPutAll: 'Go to the store and buy some more... 99 bottles of beer.'; cr].
 bottles = 1 ifTrue:
 [verse
 nextPutAll: '1 bottle of beer on the wall. 1 bottle of beer...'; cr;
 nextPutAll: 'Take one down and pass it around, no more bottles of beer on the wall';
cr].
 bottles > 1 ifTrue:
 [verse
 nextPutAll: bottles printString; nextPutAll: ' bottles of beer on the wall. ';
 nextPutAll: bottles printString; nextPutAll: ' bottles of beer...'; cr;
 nextPutAll: 'Take one down and pass it around, ';
 nextPutAll: (bottles - 1) printString, ' bottle';
 nextPutAll: (((bottles - 1) > 1) ifTrue: ['s '] ifFalse: [' ']);
 nextPutAll: 'of beer on the wall'; cr].
 verse contents].

99 to: 0 by: -1 do: [: i | Transcript show: (verseBlock value: i); cr].

COS 301 - 2018UMaine School of Computing and Information Science

Objective C
Early: Pre-processor to add OO to C
Brad Cox (Stepstone)

NeXT Computer (Steve Jobs) licensed it for
NeXTSTEP, later bought rights

Apple acquired NeXT & Objective C in 1996
Objective C became Apple’s main language until
recently:

Mac OS/macOS (now OS X)
iOS

Hansen Hsu, https://medium.com/chmcore/a-short-history-of-objective-c-aff9d2bde8dd

COS 301 - 2018UMaine School of Computing and Information Science

Objective-C
Merged ideas from C & Smalltalk

Pure OO language (pretty much)
Communication between objects: messages

Separate interface and implementation files

Compilers: Xcode, gcc, others
Garbage collection facilities

No type checking for messages

COS 301 - 2018UMaine School of Computing and Information Science

Example
Long example here

COS 301 - 2018UMaine School of Computing and Information Science

Swift
Created by Apple to replace Objective-C
Modern, powerful, easy-to-learn OOP language

Xcode support
Interoperable with Objective-C

Open source (swift.org)

Objects/classes, closures, enumerated types, generic
functions & types, tuples, optional types, type-safety,
type inference, exception handling, assertions and
preconditions,
The Playground in Xcode

COS 301 - 2018UMaine School of Computing and Information Science

Example

var i = 99
while i > 0
 println(i + " bottles of beer on the wall, " + i + "bottles of beer.")
 var num = i - 1
 if i == 1 {
 var num = "no more"
 }
 println("Take one down and pass it around, " + num + "bottles of beer on the wall.")
println("No more bottles of beer on the wall, no more bottles of beer.")
println("Go to the store and buy some more, 99 bottles of beer on the wall.")

COS 301 - 2018UMaine School of Computing and Information Science

Example
import Foundation

func primes(n: Int) -> AnyGenerator<Int> {

 var (seive, i) = ([Int](0..<n), 1)
 let lim = Int(sqrt(Double(n)))

 return anyGenerator {
 while ++i < n {
 if seive[i] != 0 {
 if i <= lim {
 for notPrime in stride(from: i*i, to: n, by: i) {
 seive[notPrime] = 0
 }
 }
 return i
 }
 }
 return nil
 }
}

COS 301 - 2018UMaine School of Computing and Information Science

C++: Imperative programming & OOP

Bell Labs, Bjarne Stroustrup in 1980

Evolved from C and SIMULA 67 (⇒ OO)

Design: provide classes, inheritance w/ no performance hit

Exception handling
Large and complex language – in part because it supports
both procedural and OO programming

Rapidly grew in popularity, along with OOP

ANSI standard approved in November 1997
Microsoft’s version (released with .NET in 2002)

Managed C++

delegates, interfaces, no multiple inheritance

COS 301 - 2018UMaine School of Computing and Information Science

OO and C++
Alan Kay coined the term “object oriented”

 “…and I can tell you I did not have C++ in mind.”

Combining object oriented constructions with a low-
level language like C can produce some strange
constructs:

 “If you think C++ is not overly complicated, just what is
a protected abstract virtual base pure virtual private
destructor, and when was the last time you needed

one?”

 – Tom Cargil, C++ Journal

COS 301 - 2018UMaine School of Computing and Information Science

Related OOP languages
Eiffel (designed by Bertrand Meyer - 1992)

Not directly derived from any other language

Smaller and simpler than C++, but still has most of
the power
Lacked popularity of C++ – many potential C++
programmers already used C

Delphi (Borland)

Pascal plus features to support OOP
Smaller, more elegant and safer than C++

Example:
 www.99-bottles-of-beer.net/language-c++-108.html

COS 301 - 2018UMaine School of Computing and Information Science

Java
Sun Microsystems in the early 1990s

Needed language for embedded electronics
C and C++ were deemed unsatisfactory

They are unsafe, unreliable and not (truly?) object-oriented

Based on C++

Significantly simplified:

Does not allow pointer arithmetic

Only allows safe “widening” type coercions, e.g., int → float is OK,
float → int is not

Does not include struct, union, enum (Why not?)

Completely OO

Has references, but not pointers
Includes support for applets and a form of concurrency

Automated memory management

Does not support multiple inheritance

COS 301 - 2018UMaine School of Computing and Information Science

Java
• Eliminated many unsafe features of C++ – at the expense of

verbosity, some convenience (e.g., pointer arithmetic)

• Supports concurrency

• Libraries for applets, GUIs, database access
• Portable: Java Virtual Machine concept, JIT compilers

• Use increased faster than almost any previous language

• Java 6 was released in 2006 with significant runtime
performance enhancement

• Current (2018) version: 8

• Example?

 Well, you should be able to write the example!

COS 301 - 2018UMaine School of Computing and Information Science

C#
Part of the .NET development platform (2000)

Based on C++ , Java, and Delphi

A few improvements over C++
Provides a language for component-based software
development

All .NET languages use Common Type System (CTS) –
common class library

Compiled to byte code for the Common Language
Runtime (CLR)
Used as scripting language in Unity, e.g.

Example: at bottles of beer website

COS 301 - 2018UMaine School of Computing and Information Science

Scripting Languages
• Scripting languages

• Designed for particular environment

• Automate things that could be done by commands
• E.g., file/computer management tools for superusers

• Shell: command processor
• sh (Bourne shell) – first one, on Unix

• Many others: e.g., ksh (Korn shell), csh (C shell), bash
(Bourne-again shell) – even DOS

• Script: list of shell commands in a file

• awk: a scripting/programming language for text manipulation
• Perl: scripting language for systems work, reports

• Scripting languages and web (server-side)

COS 301 - 2018UMaine School of Computing and Information Science

sh example
#!/bin/sh
#The real sh not with bash extensions
#for testing use dash as interpreter because sh is often simlinked to bash
bottles(){
 if test $1 -eq 1
 then echo 1 bottle
 elif test $1 -eq 0
 then echo no more bottles
 else echo $1 bottles
 fi
}
i=99
until test $i -eq 0
 do echo `bottles $i` of beer standing on the wall, `bottles $i` of beer.
 i=$(($i-1))
 echo Take one down and pass it around, `bottles $i` of beer on the wall.
 echo
done
echo No more bottles of beer standing on the wall, `bottles 0` of beer.
echo Go to the store and buy some more, `bottles 99` of beer on the wall.

COS 301 - 2018UMaine School of Computing and Information Science

Perl
Larry Wall, 1987
Kind of combination of sh and awk

Variables are statically typed but implicitly declared

Three distinctive namespaces, denoted by the first
character of a variable’s name:

$xxx – scalar

@xxx – array

%xxx – associative array
Large number of implicit variables, e.g., $_, @_, $$

Very expressive: “Swiss Army chainsaw”
Difficult to read

COS 301 - 2018UMaine School of Computing and Information Science

Perl
Somewhat dangerous: type coercions

Gained widespread use for UNIX administration, then
CGI programming on the Web
Now extensively used in computational biology and
bioinformatics, still for systems work

COS 301 - 2018UMaine School of Computing and Information Science

Perl example
#!/usr/bin/perl

$num = 99;

while ($num > 1) {

 print("$num bottles of bear on the wall, $num bottles of beer.\n");

 $num--;

 print("Take one down, pass it around, $num bottle");

 print("s") if $num > 1;

 print(" of bear on the wall\n");

}

print("One bottle of beer on the wall, one bottle of beer.\n");

print("Take it down, pass it around, no more bottles of beer on the
wall.\n");

1;

COS 301 - 2018UMaine School of Computing and Information Science

Perl example
 ''=~('(?{' .('`' |'%') .('[' ^'-')

 .('`' |'!') .('`' |',') .'"'. '\\$'

 .'==' .('[' ^'+') .('`' |'/') .('['

 ^'+') .'||' .(';' &'=') .(';' &'=')

 .';-' .'-'. '\\$' .'=;' .('[' ^'(')

 .('[' ^'.') .('`' |'"') .('!' ^'+')

 .'_\\{' .'(\\$' .';=('. '\\$=|' ."\|".('`'^'.'

).(('`')| '/').').' .'\\"'.+('{'^'['). ('`'|'"') .('`'|'/'

).('['^'/') .('['^'/'). ('`'|',').('`'|('%')). '\\".\\"'.('['^('(')).

 '\\"'.('['^ '#').'!!--' .'\\$=.\\"' .('{'^'['). ('`'|'/').('`'|"\&").(

 '{'^"\[").('`'|"\"").('`'|"\%").('`'|"\%").('['^(')')). '\\").\\"'.

 ('{'^'[').('`'|"\/").('`'|"\.").('{'^"\[").('['^"\/").('`'|"\(").(

 '`'|"\%").('{'^"\[").('['^"\,").('`'|"\!").('`'|"\,").('`'|(',')).

 '\\"\\}'.+('['^"\+").('['^"\)").('`'|"\)").('`'|"\.").('['^('/')).

 '+_,\\",'.('{'^('[')). ('\\$;!').('!'^"\+").('{'^"\/").('`'|"\!").(

 '`'|"\+").('`'|"\%").('{'^"\[").('`'|"\/").('`'|"\.").('`'|"\%").(

 '{'^"\[").('`'|"\$").('`'|"\/").('['^"\,").('`'|('.')). ','.(('{')^

 '[').("\["^ '+').("\`"| '!').("\["^ '(').("\["^ '(').("\{"^ '[').("\`"|

 ')').("\["^ '/').("\{"^ '[').("\`"| '!').("\["^ ')').("\`"| '/').("\["^

 '.').("\`"| '.').("\`"| '$')."\,".('!'^('+')). '\\",_,\\"' .'!'.("\!"^

 '+').("\!"^ '+').'\\"'. ('['^',').('`'|"\(").('`'|"\)").('`'|"\,").(

 '`'|('%')). '++\\$="})');$:=('.')^ '~';$~='@'| '(';$^=')'^ '[';$/='`';

COS 301 - 2018UMaine School of Computing and Information Science

JavaScript
• Client-side HTML-embedded scripting language

• Used to create dynamic HTML documents

• Processing on the client side, rather than server

• Related to Java only through similar syntax

• Not a true object-oriented language: object-centered
or object-based language

• Began at Netscape, later Netscape and Sun
• Purely interpreted by the browser

• Ancestor of ActionScript (Flash programming language)

• Real name: ECMAScript (standard)

COS 301 - 2018UMaine School of Computing and Information Science

JavaScript
JS is relatively low-level

Subject to browser incompatibilities
However, now supplemented with very high level
standard libraries such as jQuery and Prototype

AJAX (Asynchronous Javascript and XML)
technology has become very popular over the last
few years

Complexity of Javascript apps has grown significantly
Chrome browser (Google) has had significant impact
on the maturity of Javascript

COS 301 - 2018UMaine School of Computing and Information Science

JavaScript example/**
 * 99 Bottles of Beer on the Wall in JavaScript
 * This program prints out the lyrics of an old pub song.
 * Copyright (C) 1996, Brian Patrick Lee (blee@media-lab.mit.edu)
 */
if (confirm("Are you old enough to read about beer\n" +

 "according to your local community standards?")) {
 for (i = 99 ; i > 0 ; i--) {
 j = i - 1;
 if (i != 1) {
 icase = "bottles";
 } else {
 icase = "bottle";
 }
 if (j != 1) {
 jcase = "bottles";
 } else {
 jcase = "bottle";
 }
 document.writeln(i + " " + icase + " of beer on the wall,");
 document.writeln(i + " " + icase + " of beer,");
 document.writeln("Take 1 down, pass it around,");
 if (j != 0) {
 document.writeln(j + " " + jcase + " of beer on the wall.");
 } else {
 document.writeln("No more bottles of beer on the wall!");
 }
 document.writeln()
 }
} else {
 document.write("You might want think about moving to another community.")
}

COS 301 - 2018UMaine School of Computing and Information Science

PHP
• Rasmus Lerdorf: Personal Home Page

• Now just called PHP, or Hypertext Preprocessor
• Interpreted, sever-side, HTML-embedded scripting language

• Requires web server support (as do other server-side languages)
• Often used for form processing, DB access

• Features: dynamic strings, associative dynamic arrays, free use of
type coercions

• Support for OOP added with second release
• Extensive support for form processing, back-end databases

• Open source

• Huge number of libraries available

COS 301 - 2018UMaine School of Computing and Information Science

PHP example
<table>
 <tr>
 <?php
 $menu["Home"] = "$root";
 $menu["Announcements"] = "$root/announcements";
 $menu["People"] = "$root/personnel";
 $menu["Projects"] = "$root/projects";
 $menu["Publications"] = "$root/pubs";
 $menu["AI"] = "$root/AI";
 $menu["Software"] = "$root/software";
 $menu["Contact"] = "$root/contact";
 $menu["Private"] = "$root/internal";
 $menu["CS"] = "http://www.umcs.maine.edu";
 $menu["CIS"] = "http://www.umaine.edu/cis";
 $menu["UMaine"] = "http://www.umaine.edu";
 foreach ($menu as $name => $link) {
 print(" <td>$name</td>\n");
 }
 ?>
 </tr>
</table>

COS 301 - 2018UMaine School of Computing and Information Science

Markup/Programming Hybrid Languages
• XSLT

– eXtensible Markup Language (XML): a metamarkup language
– eXtensible Stylesheet Language Transformation (XSLT) transforms

XML documents for display
– Programming constructs (e.g., looping) — Turing complete

• JSP
– Java Server Pages: a collection of technologies to support dynamic

Web documents
– servlet: a Java program that resides on a Web server and is enacted

when called by a requested HTML document; a servlet’s output is
displayed by the browser

– JSTL includes programming constructs in the form of HTML elements

• ASP and ASP.NET
– Active Server Pages
– Similar to JSP. .NET elements look like HTML but are interpreted

server side and rendered in HTML
– Any .NET language can be used for programming

