
Semester Project
COS 301: Programming Languages

Fall 2018

Introduction

This course has a semester-long individual project in which you will
learn a new language and analyze it based on what you are learning
in the course. The language will be one with which you are not
familiar. Part of the learning process will be completing some simple
programming assignments using the language.

Although there will be some programming, this is primarily a
written project, where you will hone your writing skills. The project
is divided into 6 parts. The first is just to choose a programming
language, while the other 5 involve writing the parts of the final
project paper:
• Part 2: Introduction – including an overview and history of the

language
• Part 3: Syntax, scope, primitive data types, and operators
• Part 4: Data types, expressions, and assignment
• Part 5: Control constructs, subprograms, and recursion
• Part 6: Discussion and conclusion + integration into a final paper

Each of these parts will be substantial. The process for each part
will be:
1. Write and turn in a draft of the part. Note that this should not be

your first draft of the part; that one will be a rough draft that you
will then revise, at least once, to create a polished draft to turn in.

2. Peer editing. During this, you will edit (usually 2) of your class-
mates’ papers, while yours is being edited by (usually 2) class-
mates. Editing is an important skill in itself for both academic and
industry jobs, and one with which this will give you practice.

3. Revise your draft based on comments from your peer editors and
turn in the revised draft for grading.
The assigned and due dates are listed in this document as well as

on the syllabus/web.1 You do not have to wait until a part is assigned 1 Since these may change as the
semester progresses, in the event of
a discrepancy between the two, the one
on the website will be the correct one.

to begin working on it, but you may find it useful to get feedback
from your peers on a prior part before beginning.

Each part will be graded, although the preponderance of the grade
for the written portion of the project will come from the grade given
on the final draft. This means that you won’t be penalized for a poor
draft that you later clean up and improve. However, if you do not
make a substantial effort on one or more of the parts, including the
editing, your final grade will suffer substantially.

semester project 2

Part 1: Choosing a programming language
Assigned: 9/5

Due: 9/14After reading Chapter 1 of the text, do some research on the web
and select a language on which to base this project. The web sites
listed in the syllabus are good starting points. Also select an alternate
language in case your first selection is not approved. You must select
languages with which you have no (or very little) experience. The
languages should not be too specialized (e.g., PostScript, SQL), and
they must have a real-world purpose (i.e., no joke/toy languages
such as WhiteSpace, BF, etc.)

You are strongly encouraged to select a language that is so far
removed from your current experience that it will be a true learn-
ing experience (i.e., “the weirder the better”). C and Java are not
acceptable languages for this project, since they are covered in the
curriculum.

Free compilers and/or interpreters are available for almost all
languages; however, make sure that you are able to obtain what you
need before committing to a language!

Turn in: For this assignment, submit a PDF or plain text file (no
Word, etc., files) via Blackboard that answers these questions:

1. Which language is your first choice?
2. Which language is your alternate choice?
3. Why did you choose these languages? This should be a well-

written paragraph or two explaining the rationale for your se-
lection. (This and all written assignments in this course will be
graded for style, grammar, and spelling.)

semester project 3

Part 2: Introduction
Assigned: 9/14

Initial draft due: 9/24

Editing: 9/24–9/28

Revised draft due: 10/5

Write the introduction for your paper.2 This should give a overview

2 Note that it is very likely that you
will revise this introduction as you
go through the semester based on the
focus of your paper and what you learn
about your language. That’s fine and to
be expected.

of the language as well as its history.
Some points that might be covered in the above topics are when

and where the language originated, major influences on the lan-
guage, the purpose of the language, main features, unusual features,
strengths and weaknesses, acceptance by the software community,
future prospects (if any) or reasons for the lack of future prospects.
Remember to support your opinions and statements with logical
arguments and citations of other authors.

The length of this part of the paper is somewhat up to you. I would
suggest you shoot for 5 or more pages, since you will want to cover
the language in sufficient detail. If it is too short, and hence, too
sketchy or superficial, then you may lose points. Oddly, the difficult
part of writing this paper is to keep it short.3 The goal is to summa- 3 “I have made this longer than usual

because I have not had time to make it
shorter.” –Blaise Pascal

rize (and highlight the interesting points), not to provide a reference
manual for the language or to unduly cover things that you will
cover later in the paper.

Format and LATEX

Your document needs to have standard margins of 1 inch on all sides,
and it must include a title page that includes the title, your name, the
date, and an abstract.

You must use the LATEX document preparation system to format
your project paper so that you gain familiarity with this valuable tool.
This means that during this part of the project, you will have to learn
LATEX if you don’t already know it. This is a good part in which to
learn LATEX, however, since there are unlikely to be many unusual
text-formatting needs in an introduction.

If you have never used LATEX before, you will need to install it
on your computer or use an online tool such as ShareLaTeX (share-
latex.com). Versions are readily available for all three of the major
operating systems (Windows, MacOS, and Linux). Although LATEX is
a markup language for documents, there are several free WYSIWYG
LATEX editors available as well, which can be useful for novices.

For information about LATEX, including resources for installing
and learning it, see the “ LATEX information” page under the “Course
Documents” menu item on the course website.

The article document style is a reasonable one to use; correct
margins can be obtained using the \geometry package. To see infor-
mation about a package on a Unix-like system (e.g., MacOS, Linux,
etc.), you can usually use the texdoc command, e.g.:

http://sharelatex.com
http://sharelatex.com
http://mainesail.umcs.maine.edu/COS301/documents/latex/

semester project 4

texdoc geometry

Bibliography

In this part of the project, you will begin developing an annotated bibli-
ography. This will each work you reference in the body of your paper
as well as notes about that reference, in particular, why the reference
is useful. You will add to this bibliography throughout the other
parts of the project, and with each part, you will turn in the entire
bibliography up to that time. You should only include references to
works you actually cite in the paper (either the current part or a prior
part). Every bibliography entry must have an annotation describing it.

You will use the BibTEX program, which works in conjunction with
LATEX, to process your references. This means you will use a .bib

file in which to store bibliographic information about the references,
and you will use the LATEX \cite macro (or some variant of it) to
insert references in your paper. Documentation for BibTEX is available
online and on the course website (on the “ LATEX information” page).

For the citations and references, you may use one of the IEEE
citation style, the APA citation style, or the natural sciences style.
BibTEX has style files for most common citation/reference styles; for
instance, the natural sciences style is implemented by the natbib

BibTEX style file.

Programming assignment

Write a program in your language that interactively obtains two
floating point numbers x and y from the user and computes and
displays: the integer and fractional parts of each number; the sum;
the difference; the product; and the quotient. Also try division by
zero to find out how your language handles it. (For this, don’t use
any of the exception-handling facilities of the language other than its
default mechanism.)

You do not need to be concerned with determining whether input
is correct; you can assume that it is. Some languages may not be Good heavens, we hope the language

can do arithmetic!well suited to interactive input and the assignment may be modified
for non-interactive input if necessary; ask me or the TA if you have
questions.

If you are working with a web scripting language you can use
HTML for input. An example form is given below.

Example HTML Page for Web Scripting Languages:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

http://MaineSAIL.umcs.maine.edu/COS301/documents/latex

semester project 5

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<title>COS 301 Fall 2016 Project 1</title>

</head>

<body>

<h1>COS 301 Fall 2016 Project 1</h1>

<form id="form1" name="form1" method="get" action="">

<p>

Enter x:

<input type="text" id="textx" name="textx" style="text-align: right;" />

Enter y:

<input type="text" id="texty" name="texty" style="text-align: right;" />

<input type="submit" value="Submit" name="submit" id="submit" />

</p>

</form>

</body>

</html>

Other issues

• Remember that the suggested page count doesn’t include the cover
page or the bibliography.

• Remember to review the paper format checklist on the website
before submitting!

• An amusing and interesting website for programming languages is
the “99 Bottles of Beer” site, www.99-bottles-of-beer.net, which has
the song implemented in 1500 different programming languages.
For popular languages you can usually find at least half-a-dozen
different programs varying widely in style. In particular, see the
“bottled” version of the Perl program.

Turn in via Blackboard

1. A PDF of your paper—this is the only format acceptable! See the
instructions on Blackboard for how you must name your file.

2. A zipfile or gzip’d tarfile of your LATEX and BibTEX files.
3. Your program and its output.

http://www.99-bottles-of-beer.net

semester project 6

Part 3: Syntax, scope, primitive data types, and operators
Assigned: 10/5

Initial draft due: 10/15

Editing: 10/15–10/19

Revised draft due: 10/26

In this part of the project, you will be learning and describing fun-
damental parts of your language. This section of the document will
discuss:
• basic syntactic structure, including statement terminators or

separators, block structure, syntactic peculiarities, etc.;
• units or levels of scope and the nature and type (runtime or

compile-time) of name bindings within the different levels of
scope;

• primitive data types available, including any range limitations, etc.;
and

• operators for primitive data types and their precedence and asso-
ciativity.
For this part of the project, a “primitive” data type is one that is

not created from other data types. What is primitive in one language
may not be primitive in another. For example, many languages will
include strings as a primitive data type; however, some languages,
such as C, do not (since they are defined as arrays of characters).

Advice on the length of this part of the paper is the same as for
Part 2.

Bibliography

You will continue developing your annotated bibliography. This
will include works you reference in the body of your paper as well
as notes about those references. This bibliography will be added to
throughout the other parts of the project, and with each part, you
will turn in the entire bibliography up to that time. You should only
include references to works you actually cite in the paper (either the
current part or a prior part). Every bibliography entry must have an
annotation describing it.

Programming assignment

Using your language, write a lexical analyzer (“lexer”, scanner) and a
recursive descent parser for a small grammar. The recursive descent
parser will simply be a recognizer that determines whether or not
a string is in the language; it will not construct an actual parse tree.
Note that the calling sequence corresponds exactly to the parse tree.
Output should be similar to the output from the example parser in
the text (see below).

The grammar for Boolean expressions. Note that || is a token in
the language (i.e., meaning logical OR), while | is a symbol used in
the grammar specification denoting alternatives. E.g.,

semester project 7

a == 3 & x == 4 || y == 3

would be a valid string in the language, meaning “a is equal to 3 and
x is equal to 4 or y is equal to 3”.

<bool_expr> ::= <and_term> { || <and_term> }

<and_term> ::= <bool_factor> { & <bool_factor> }

<bool_factor> ::= <bool_literal> | !<bool_factor> |

(<bool_expr>) | <relation_expr>

<relation_expr> ::= <id> { <relop> <id> }

<id> ::= letter { letter | digit }

<bool_literal> ::= true | false

Constructing the lexical analyzer is actually the more difficult
part of this assignment. You can always construct the parser first by
creating an input stream of tokens (e.g., 1 = Left Paren, 2 = Right
Paren, etc); then create a lexer that simply returns the next integer
token. Then worry about actually parsing characters in a “program”
later. Include output for the following expressions in an appendix:

foo & !(a2 > bar & w < foo || x < y)

A1 & B1 || A2 & B1 || (! C || A <> B)

Example output from the Sebesta parser (see the text):

Next token is: 25 lexeme is (

Enter <expr>

Enter <term>

Enter <factor>

Next token is: 11 lexeme is sum

Enter <expr>

Enter <term>

Enter <factor>

Next token is: 21 lexeme is +

Exit <factor>

Exit <term>

Next token is: 10 lexeme is 47

Enter <term>

Enter <factor>

Turn in via Blackboard

1. A PDF of your entire paper up to this point, i.e., the introduction
and this part. Only this part will be edited or graded, but having

semester project 8

the information in the first part will make editing and grading
easier. PDF is the only format acceptable. See the instructions on
Blackboard for how you must name your file.

2. A zipfile or gzip’d tarfile of your LATEX and BibTEX files.
3. Your program and its output.

semester project 9

Part 4: Data types, expressions, assignment
Assigned: 10/26

Initial draft due: 11/5

Editing: 11/5-11/9

Revised draft due: 11/16

Write a paper that addresses the following topics for your selected
language:
1. Data types available in the language beyond primitive data types

(such as ints, floats, etc.). This could include arrays, vectors, struc-
tures, strings, objects, and classes. You should include higher-level
structures, such as hashs, stacks, etc., if they are part of the lan-
guage itself and not just part of a library.

2. Summary of standard libraries or classes that extend the lan-
guage’s type system.

3. Semantics of expression evaluation.
4. Coercions/implicit type conversions that are performed in expres-

sion evaluation.
5. Semantics of assignment statements, if unusual.

The same comments about paper length as for Part 2 apply here as
well.

Programming

Write a function that accepts an HTML document (a string) and a
keyword (also a string). The function will find all occurrences of the
keyword in the HTML string after the <body> element unless the
keyword appears within an HTML tag, then surround the string
found with tags to “highlight” the keyword. For example,

keyword

You will have to be careful not to highlight strings occurring
within an HTML tag. For example, if the keyword is “table”, you
wouldn’t want to mark up this:

<table width="100%" border="0">

The result would hardly be valid HTML!
There are at least two approaches to this problem:

1. String processing. Treat the HTML as one long string and program
a lexer that returns the next chunk, which would either be a tag,
text, or a comment. (An HTML comment looks like this: <!--hi
there-->.) If it is a tag or a comment, then just append it to the
output. If it is text, then search the string for the keyword and
apply the new markup if found.

This may not be the best way to approach the problem. HTML
and XHTML can be quite complex to parse. In addition, if we
were really doing this right, the text between certain tag pairs
would need to be skipped, for example, <script></script>, etc.;

semester project 10

we won’t worry about that for this assignment, however. The
approach also treats one abstraction (HTML) as another (a string),
which may not be the best approach.

If you do use the string approach, don’t start within the <head> tag,
but start searching after the <body> tag.

2. DOM document processing. An HTML document is handled by
browsers and other document processors by transforming the text
into a tree structure defined by the W3C Document Object Model
(DOM). For our purposes, each node in a DOM document is either
an HTML element, a comment, a script, or text. (We’ll ignore other
things, like CDATA nodes.) To handle string markup, traverse the
DOM tree and check the text nodes. You can also use an XPath
expression to do actual string search and return a set of nodes.
Either way, if you find a string to mark up, remove the text node,
then create and append a new subtree (left text, markup with child
text, and right text).

Although this sounds difficult, it’s actually pretty easy to do with
the DOM parser libraries that can be obtained for virtually any
language. Just search the Web for “[language name] DOM parser”.
You can use either approach. If you are not familiar with HTML

and the DOM, then the string processing method is likely easier in
the short run. However, the DOM approach is much easier in general,
and if you make the effort to understand the DOM, you will acquire
a foundation of skills that will be useful for a long time to come.

Write a program that demonstrates and tests your function. If your
language is a web scripting language, you can simply use a form that
posts to your program, which will then output the HTML back to the
browser. Or you can write a program that reads data from an HTML
file and outputs the revised HTML to a different file.

Turn in via Blackboard

1. A PDF of your entire paper up to this point, i.e., the introduction
and this part. Only this part will be edited or graded, but having
the information in the first part will make editing and grading
easier. PDF is the only format acceptable. See the instructions on
Blackboard for how you must name your file.

2. A zipfile or gzip’d tarfile of your LATEX and BibTEX files.
3. Your program and its output.

semester project 11

Part 5: Control constructs, subprograms, and recursion
Assigned: 11/16

Initial draft due: 11/26

Editing: 11/26–11/30

Revised draft due: 12/7

In this part of the project, you will write about: (1) control flow
constructs in your language (conditionals, loops, gotos, etc.); (2)
how subprograms are defined and called, including scoping rules,
parameter passing, recursion, and whether subprograms themselves
can be passed as parameters; and (3) how recursion is done in the
language, if it is.

Programming

Write two versions of a non-trivial program in your language, one
using iteration and the other using recursion. What is “non-trivial”,
you ask? That’s up to you to figure out! (I think you have a pretty
good idea.)

Turn in via Blackboard

1. A PDF of your entire paper up to this point, i.e., the introduction
and this part. Only this part will be edited or graded, but having
the information in the first part will make editing and grading
easier. PDF is the only format acceptable. See the instructions on
Blackboard for how you must name your file.

2. A zipfile or gzip’d tarfile of your LATEX and BibTEX files.
3. Your program and its output.

semester project 12

Part 6: Discussion and Conclusion + Integration
Assigned: 12/7

Editing: None for this one
PROJECT FINAL DRAFT DUE: 12/14

The part of the paper written here will a discussion and conclusion
section. It should present and argue for your impressions and evalua-
tion of the language—e.g., is it a good language for general-purpose
programming? Is it a specialty language, and if so, is it good for the
specialty? Who should/shouldn’t use the language? Is it easy to
learn? Easy to use? What are its strengths and limitations? Etc.

In this part of the project, you will also combine all prior parts into
a coherent paper about your language. This is a chance to redeem
yourself on prior work if you didn’t get a grade you liked. You will
turn in your entire project as a single paper. Your complete annotated
bibliography will be at the end. Any appendices (other than code)
will come after the bibliography.

You may either just reuse what you turned in before with no
changes to the writing, or you may edit what you turned in and
improve it. You should let me know on the title page which you’ve
done, either a note saying “as is” or “edited” for each of the parts 1–4,
where “as is” means there have been at most minor changes since the
part was graded by me.

Programming

There is no programming for this section. However, you need to
turn in all prior programs (but not their output) as a single, well-
formatted and easy to navigate appendix to the paper.

Turn in via Blackboard

1. A PDF of your entire paper. PDF is the only format acceptable.
See the instructions on Blackboard for how you must name your
file.

2. A zipfile or gzip’d tarfile of your LATEX and BibTEX files.

