COS 140: Foundations of Computer Science

Virtual Memory: Translation Lookaside Buffer

Fall 2018

Virtual Memory

Page Tables
Mapping . . . o
Page tables
Example . . .
Example
MMU
Address translation
Problems
SolUtioN. o

TLB

Multi-Level Paging
Problem. . . .
Solution.
SUCCESS? . . .

Caching

Homework, announcements

O Reading: Chapter “Virtual Memory: Translation Lookaside Buffer” (Ch. 21)

O Homework: Exercises at end of chapter
0 Due Wednesday, 11/14 (later than usual)
O NOTE: Prelim Il on 11/14
O Reminder: Advising!
Copyright (© 2002-2018 UMaine Computer Science Department — 2 / 23
Virtual Memory 3/23

Virtual memory

O Goals:

— Allow more processes to run simultaneously (increase degree of multiprogramming)
— Allow very large processes to run

O Approach:

— Keep most of each process on disk (in paging/swap area)
— Only keep that part of each process in memory that is actually in use

Copyright (© 2002-2018 UMaine Computer Science Department — 3 / 23

Pages and page frames

O Divide process' address space into pages of some fixed size — usually 2Kb—4Kb
Divide (physical) memory into page frames of same size

Put needed pages of process into page frames: Need not be contiguous

Move pages back and forth between disk and memory as needed: demand paging

Oo0oo

Copyright (© 2002-2018 UMaine Computer Science Department — 4 / 23

St

Dat

("]

When will a process need a new page?

Accessing non-resident daganage IC mavec +a nanarecident nage Stack moves into non-resident-page

Ack St ack

I
SP =l

Gap

OJ

a I Ot o

ogr am Program
ext") ("Text")

| ¢ —p- T

Copyright (© 2002-2018 UMaine Computer Science Department — 5 / 23

Page faults
O If page is resident — use it
O If page is not resident = page fault
O A page fault is a type of interrupt
O Operating system wakes up, tries to bring in the needed page
— What if there are free page frames?
— What if there are no free page frames?
Copyright (© 2002-2018 UMaine Computer Science Department — 6 / 23
Page Tables 7/23

Page<frame mapping

O At any given time, need to keep track of where a process’ resident pages are

O Also need to keep track of which pages are not resident

O Use a page table for this

O Page table entries (PTEs) map from pages to where those pages live in memory

Copyright (© 2002-2018 UMaine Computer Science Department — 7 / 23

Page tables

One page table per process
0 One page table entry per page in virtual memory (address space)

O Each entry contains:

Present/absent bit
Page frame number
Dirty bit (M bit)
Reference bit (R bit)
Maybe other things

Copyright (© 2002-2018 UMaine Computer Science Department — 8 / 23

P} ivf%m@rm le PageTable ~ Virtua Memory page tabl
o\g’ro (64K) P ae € of Process (64K) ae €
15 | Staek] 15 15| 3
14 14 14 14

13 13
13 Physical Memory 13 Physical Memory
12 of Computer (32K) 12 12 of Computer (32K) 12
11 7 n 11 7 11
N\ 10 N 10
10 s N\ NN
9 5 9 5 9
8 4 8 4 8
7 3 7 —3"| T3
6 2 6 5 6
N 4 N\ 4
4 o N\ o A\
3 3 3
2 2 2
1 1 1
0 0 o| 1
Virtual Memory Page Tabl pagetabl
of Process (64K) age € age e
15 3 % g 15 3
14 14 14
13 13
13 Physical Memory 13 Physical Memory
12 of Computer (32K) 12 12 of Computer (32K) 12
11 7 n 11 7 11
N\ 10 N 10
10| 6 N NN
9 5 9 9 5 9
8 4 8 8 4 8
—3> 7 2 _3>" 7 2
! ! = Needsto
6 Z 6 6 pigi i ,/goto page 6
5 —1~] 5 5 —of 1 5
N 4 N 4
4 o N\ 4 o N\
3 3
3 3
2 2 2 2
1 1 1 1
0 0| 1 0 0| 1

Copyright (© 2002-2018 UMaine Computer Science Department —9 / 23

PR ettty -
15 Stk 5] 3 15 [Staek 150 3
1 14 1) 14
13 . 13 13 _ 13
12 o?rg:n:glu't\ﬂera&g}g) 12 12 o?rg:n:glu't\ﬂera&g}g) 12
M , 1 M — - 1
10 6 N 10 10 6 N 10
9 5 o 9 5ol o 5
8 8 8 8
. 7| 2 . 7| 2
6 6 6 _ 6
5 | 5 5 — 4}, 5

3 3

2 2 2 2| 1
1 1] 4 1 1| 4
0 0 0 0
s ey PageTae Vi Mooy Pae e
15 | Stack: 5] 3 15 | 'Staek’ 150 3
1 14 1) 14

13 . 13 13 _ 13

12 o?rg:n:glu't\ﬂera&g}g) 12 12 o?rg:n:glu't\ﬂera&g}g) 12

1 . Whatto 11 1 . 1

9 tovirtual 9 5 9 5 k : 9 3
o page3? g Bafe: i

7 T2 7 7| 2
6 B 6 : : °

5 5 5 e 5

| L
3 X 3 1

2 2| 7 2 2| 1
1 1| 4 1 Page 0 evicted, 1| a4
: : ; g [

Copyright (© 2002-2018 UMaine Computer Science Department — 10 / 23

Memory management unit

O How does a virtual address = a physical address?
0O Memory management unit (MMU): piece of hardware that sits between the CPU and memory:

CPU

virtual
addr ess

physi cal
addr ess

O These days: MMU is on CPU chip

address bus

Menory

Copyright (© 2002-2018 UMaine Computer Science Department — 11 / 23

Address translation

O How does the virtual address get translated to a physical address?

O Suppose we have 2KB pages, 16-bit machine:

— 2KB = 2!'bytes — need 11 bits to address each byte on a page
— Divide virtual address into 5-bit page number, 11-bit offset

Copyright (© 2002-2018 UMaine Computer Science Department — 12 / 23

Address translation

000100000000O0O011

Page
Nunber O fset
Vi rtual
Addr ess 00101000 00000O011
(10243)
6
——> 500010 >
4
3
2
1
0

Physi cal
Addr ess
(4099)

Copyright (© 2002-2018 UMaine Computer Science Department — 13 / 23

Problems with page tables

O Speed of access:

— If table lives in memory, then for every memory access, have to look in page table to find
address—a memory access itself—then do memory access
— Effective memory access time is doubled

O Possible solution: Use very fast memory in MMU

Copyright (© 2002-2018 UMaine Computer Science Department — 14 / 23

Problems with page tables

O But page tables can be very large:

— One entry per page in virtual address
— With 2KB (2'! bytes) pages, 1 word/entry:
» 16-bit machine: 216/211 = 25 entries = 25 x 2 = 64 bytes
» 32-bit machines: 232 /211 = 22! entries = 22! x 22 = 8Mb (!)
» 64-bit machines: 264/211 x 23 = 256 pytes (I!1)= 67,108,864 GB
O Realistically, can't afford that much fast memory!

At $6/GB, $402,653,184...
...per process!

Copyright (© 2002-2018 UMaine Computer Science Department — 15 / 23

10

Solution: Caching

O A cache is fast memory that holds part of what's in slower memory
O Idea: prevent accessing slower memory by keeping in cache what will be needed soon
0O Cache according to (e.g.):

- recency
- frequency
— predicted next use

Copyright (© 2002-2018 UMaine Computer Science Department — 16 / 23

TLB 17 / 23

Translation Look-Aside Buffer

O TLB is a cache of page table entries

O TLB lives in MMU and is composed of very fast registers

O Special kind of registers: associative — MMU can look up page table entry corresponding to page
number in one step

Copyright (© 2002-2018 UMaine Computer Science Department — 17 / 23

11

How it works

O When process starts — TLB empty, address 0 CPU = MMU:

— PTE for page 0 not in TLB; read in from page table in memory
- Page 0 not mapped = page fault
— Page in page 0 into frame 4, update PTE in TLB

O Next time some address on page 0 referenced:

— Use PTE in TLB to find frame i
— No memory access for PTE

O When TLB full:

— Have to eject some PTE from cache
- Write it to page table first

Copyright (© 2002-2018 UMaine Computer Science Department — 18 / 23

How well does it work?

0 Assume memory access time t,, = 100ns; no TLB: 200ns/access
O With TLB:

Teop = p(tm +t,) + (1 = p)(2tm +tr)

where T, is effective access time, p is probability of PTE being in the cache (hit ratio), and ¢, is
time to look something up in TLB

O With ¢, = 20ns, hit ratio 0.5: Ty = 170ns

O Hit ratio 0.8: T,y = 140ns

O Hit ratio 0.98: Top = 122ns

Copyright (© 2002-2018 UMaine Computer Science Department — 19 / 23

12

Multi-Level Paging 20 / 23

Multiple-level paging

Problem: With large address sizes, page tables too big to keep in memory

Would like to page out the page tables themselves!

Can't, with monolithic tables

Solution: multi-level page tables

“Outer tables” act as page tables for “inner” pages — only outer needs to be resident in memory
Price: > 2 memory accesses/access in worst case

Ooo0000gao

Copyright (© 2002-2018 UMaine Computer Science Department — 20 / 23

Multi-level page tables

1. Usefirst page number (3) to find
entry in outer page table. f'

2. Usethat entry’svalue (16) as ~ Pa9es——
page frame number in which to find
inner page table needed (page table

3).
3. Use the second field in the virtual
address (4) to find the correct entry
in page table 3 -- this is the actual 16,
page table entry we want.

4. Usethat page table entry’s page frame
number (3) to find the correct page
frame containing our data-- i.e.,
page frame 3.

5. Use the offset (12) to find the correct
byte in page frame 3 where the data
lives.

Inner

Tables

Outer
Page
Table

o

o~

Virtual Address Virtual memory

)

0

Physi cal
Menory

Copyright (© 2002-2018 UMaine Computer Science Department — 21 / 23

13

Does TLB still help?

O Suppose we have 4-level paging, 100 ns memory access time, 20 ns TLB time

0 Worst case: 500ns/access (4 page table accesses + desired access)
O With TLB, hit rate 0.98: T, = 188 ns
O More realistic numbers: t,. = 1 ns,t,, = 60 ns; 4-level paging: T = 68.8 ns
O In case you're interested, the effective memory access time for n-level paging is:
Tegr, = nty +ty +n(l —plty
Copyright (© 2002-2018 UMaine Computer Science Department — 22 / 23
Caching 23 /23

Other kinds of caching

0O Caching shows up many places in OS, elsewhere
Processor caching physical memory

Disk block caching for files

Network file systems

Virtual memory itself

[I R W |

Copyright (© 2002-2018 UMaine Computer Science Department — 23 / 23

14

	Homework, announcements
	Virtual Memory
	Virtual memory
	Pages and page frames
	When will a process need a new page?
	Page faults

	Page Tables
	Pageframe mapping
	Page tables
	Paging Example
	Paging Example
	Memory management unit
	Address translation
	Address translation
	Problems with page tables
	Problems with page tables
	Solution: Caching

	TLB
	Translation Look-Aside Buffer
	How it works
	How well does it work?

	Multi-Level Paging
	Multiple-level paging
	Multi-level page tables
	Does TLB still help?

	Caching
	Other kinds of caching

