
COS 140: Foundations of Computer Science

Transport-Layer Protocols∗

Fall 2018

Transport Layer 3

Protocols . 3
Transport layer . 6
Ports & sockets . 7
Types . 9

Unreliable Transport Protocols 10

Reliable Transport Protocols 11

Using a reliable channel . 12
Bit errors . 13
Bit error protocol . 15
Lossy channels . 20
Lossy protocol . 21
Pipelining. 22
Recovery in pipelining . 24

Example: TCP 25

Segments . 26
Sequence numbers. 27
Connection initiation . 28
Handling problems. 30
Handling problems. 31

Other Transport Layer Topics 33

Homework 34

∗This lecture draws heavily from Kurose & Ross (2008): Computer Networks: A Top-Down Approach

1

Homework

� Reading: None
� Slides online
� Homework:

– On Blackboard
– Due 12/10

Copyright c© 2002–2018 UMaine Computer Science Department – 2 / 33

Transport Layer 3 / 33

Protocols

� Recall: Protocol is a description of a pattern of interaction between agents
� Most common: TCP/IP

Copyright c© 2002–2018 UMaine Computer Science Department – 3 / 33

2

Review: Layered protocols

� Recall: Layered network stack

– Application: network applications (e.g., Web clients/servers), application protocols (e.g., HTTP)
– Transport: Delivery of application messages between applications: error correction, reliable

transport (some protocols), etc.
– Network: Delivery of transport-layer messages: routing, etc.
– Data link: Delivery of network-layer messages – e.g., forwarding to next router/host (e.g.,

Ethernet, WiFi, link layers on routers)
– Physical: Moving the bits (Ethernet has variants for different media)

Copyright c© 2002–2018 UMaine Computer Science Department – 4 / 33

Layered protocols

� As message goes from top−→ bottom:

– Broken into pieces
– Each piece has its own header added at each level

Copyright c© 2002–2018 UMaine Computer Science Department – 5 / 33

3

Transport layer

� Responsible for delivery of application-layer messages between processes
� Interacts with: application and network layers
� Divides/encapsulates application messages as segments

� Possibly:

– Error correction
– Reliable delivery
– Congestion control

� Connectionless (e.g., UDP) versus connection-oriented (e.g., TCP)

Copyright c© 2002–2018 UMaine Computer Science Department – 6 / 33

Ports and sockets

� Network stack manages set of ports on host:

– Interface of host to outside world
– Numbered (virtual) connection points
– Some: well-known ports (e.g., email (25), Web (80))
– Some: usable on fly by processes

� Sockets: virtual connections between application process and transport layer (and thus, a port)
� Each application process talks to (e.g.) TCP via a socket
� Can have multiple sockets attached to a port
� E.g.: Web server
� Transport layer: multiplexing/demultiplexing of sockets ↔ ports

Copyright c© 2002–2018 UMaine Computer Science Department – 7 / 33

4

Ports and sockets

Copyright c© 2002–2018 UMaine Computer Science Department – 8 / 33

Connection-oriented and connectionless protocols

� Connectionless protocols:

– E.g., User Datagram Protocol (UDP)
– Send segments (“datagrams”) between application layers
– No notion of a continuous connection – think US Mail
– Maybe some error checking embedded
– No error correcting
– Not reliable

� Connection-oriented protocols:

– E.g., Transmission Control Protocol (TCP)
– Connection: a virtual pipeline between applications
– Think “phone”, but no real connection
– Reliable transport protocols

Copyright c© 2002–2018 UMaine Computer Science Department – 9 / 33

5

Unreliable Transport Protocols 10 / 33

Unreliable Transport Protocols

� Very simple
� Possibly segment application data
� Possibly add error-checking code (e.g., CRC)
� Just pass along to network layer

Copyright c© 2002–2018 UMaine Computer Science Department – 10 / 33

Reliable Transport Protocols 11 / 33

Reliable transport protocols

� More complex
� Have to deal with:

– bitwise errors
– lost segments
– out-of-order segments

� Can conceptualize as state machines

� We’ll look at increasingly-complex variants

Copyright c© 2002–2018 UMaine Computer Science Department – 11 / 33

6

Using a reliable channel

� Simplest

Wait
Create packet (segment)

Send packet

Request from
application layer

Sender:

Receiver:
Wait

Extract data
Deliver to application

Receive
packet

Copyright c© 2002–2018 UMaine Computer Science Department – 12 / 33

Using a channel with bit errors

� Problem: Few channels are reliable
� Simple problem: errors in some bits
� Detect this with: parity, cyclic redundancy checks (CRC)
� The question is: what to do when detected?

Copyright c© 2002–2018 UMaine Computer Science Department – 13 / 33

7

Using a channel with bit errors

� For this, need additional messages:

– ACK: to acknowledge correct receipt
– NAK: negative acknowledgment

� Recipient checks the packet, sends the appropriate message in reply
� Problem: ACKs and NAKs can be garbled, too!

Copyright c© 2002–2018 UMaine Computer Science Department – 14 / 33

A protocol for handling bit errors

� Sender:

Wait for
request

Wait for
ACK/NAK

"send" request
Create segment
Send segment

Receive NAK
Send segment again

Receive ACK

Copyright c© 2002–2018 UMaine Computer Science Department – 15 / 33

8

A protocol for handling bit errors

� Recipient:

Wait for
message

Corrupt segment
Create NAK segment

Send segment

Good segment
Extract data
Deliver data

Create ACK segment
Send segment

� Any problems with this? Yes! What about errors in ACK/NAK?

Copyright c© 2002–2018 UMaine Computer Science Department – 16 / 33

A better protocol for handling bit errors

� Have the sender number its segments
� Receiver can then determine if the packet received is a retransmission
� ACK/NAK don’t need to say what they’re ACK’ing (or not) – since no messages are lost, garbled or

okay, the last ACK/NAK was for its last message
� For this simple protocol, we only need two sequence numbers, 0 and 1 (a bit) – only one packet being

dealt with at a time.

Copyright c© 2002–2018 UMaine Computer Science Department – 17 / 33

9

A better protocol for handling bit errors

� Sender:
"send" request

Create segment, #0
Send segment

Wait for
ACK/NAK
(1)

Wait for
request
(1)

Wait for
request
(0)

Wait for
ACK/NAK
(0)

Receive ACK

"send" request
Create segment, #1

Send segment

Receive NAK or corrupt segment
Send segment again

Receive NAK or corrupt segment
Send segment

Receive ACK

Copyright c© 2002–2018 UMaine Computer Science Department – 18 / 33

A better protocol for handling bit errors

� Recipient:

Wait for
segment

Wait for
segment

Receive segment, #0
Extract data, deliver

Create ACK, send

Receive corrupt packet
Create NAK, send

Receive corrupt packet
Create NAK, send

Receive segment, #1
Extract data, deliver

Create ACK, send

Receieve segment, #0
Create ACK, sendReceive segment, #1

Create ACK, send

Copyright c© 2002–2018 UMaine Computer Science Department – 19 / 33

10

Using a “lossy” channel

� Even harder: What if the channel can lose some messages?
� ACKs and NAKs could also be lost or garbled.
� Need timers, now – if haven’t received an ACK after some time, retransmit
� How to choose the time? At least round trip delay + some

Copyright c© 2002–2018 UMaine Computer Science Department – 20 / 33

Protocol for lossy channels

� Sender:

Wait for
request
(1)

Wait for
ACK
(1)

"send" request
Create segment, #1

Send segment
Start timer

Receive ACK
Stop timer

"send" request
Create segment, #0

Send segment
Start timer Receive corrupt segment or ACK(1)

Timeout
Resend segment
Start timer

Receive ACK(0)
Stop timer

Receive segment

Timeout
Resend segment
Start timer

Receive segment

Wait for
request
(0)

Wait for
ACK
(0)

Receive corrupt segment or ACK(0)

Copyright c© 2002–2018 UMaine Computer Science Department – 21 / 33

11

Pipelining

� Problem: reliable, but inefficient
� Suppose it takes 5 ms for message to propagate from sender to receiver, or vice versa – a 1 Gbps

channel, and time to actually put the message on the channel is negligible
� Time to send, say, a 1 KB message:

– Send message: 5 ms
– Send ACK: 5 ms
– Total 10 ms/message
– Transfer rate = 1 KB/10 ms = only 100 KB/s!

Copyright c© 2002–2018 UMaine Computer Science Department – 22 / 33

Pipelining

� Better idea: don’t wait for ACK before sending other messages
� Now can have n messages “in the pipe” at once.
� How many, potentially?

– If 1 Gbps channel, 1 KB messages, then a message takes

8Kb

1Gb/s
=

2
13

230
s = 2

−17s ≈ 7.6µs

– So there can be 5ms

7.6µs
≈ 658 messages in the pipe at once

– In practice, have (far) fewer:

⊲ Window : what can be sent before an ACK received
⊲ Receive an ACK: slide window, can transmit more

Copyright c© 2002–2018 UMaine Computer Science Department – 23 / 33

12

Recovery in pipelining

� In send-and-wait protocols, pretty clear what you’re ACKing
� What about pipelined protocols?
� Have to mark ACK with what is being acknowledged
� What to do when one is missing/corrupt?

– Go-Back-N: When missing one (corrupt or timeout), repeat it and all others after it
– Selective repeat: Just repeat the one missing

� GBN simpler, not as efficient

Copyright c© 2002–2018 UMaine Computer Science Department – 24 / 33

Example: TCP 25 / 33

Example: TCP

� Connection-oriented, reliable data transport protocol
� Can handle bit errors, lossy channels
� Full-duplex

Copyright c© 2002–2018 UMaine Computer Science Department – 25 / 33

13

TCP segment structure

� Header + data
� Source port number, destination port number
� Sequence number
� ACK number
� Checksum
� Header length field, flags, options, some other stuff

Copyright c© 2002–2018 UMaine Computer Science Department – 26 / 33

Sequence numbers

� Each half of the conversation is considered an ordered sequence of bytes
� Sequence number of a segment is the byte number of the first byte in the segment – not the segment

number!
� ACK number: The next byte expected from the sender
� These are cumulative acknowledgments

Copyright c© 2002–2018 UMaine Computer Science Department – 27 / 33

14

Connection initiation: “three-way handshake”

� First: Client sends a special segment (“SYN segment”) to request connection

– No application data contained
– SYN bit in header = 1
– Random sequence number

� Second: Server sets up its side of the connection and sends message 2 (“SYNACK segment”)

– Allocates buffers, variables
– Response segment: no application data
– SYN = 1, ACK = client sequence number + 1, random sequence number

Copyright c© 2002–2018 UMaine Computer Science Department – 28 / 33

Connection initiation: “three-way handshake”

� Third: Client sets up its side, sends another message

– Allocates client-side buffers, variables
– Segment has SYN = 0, server’s sequence number +1 as ACK
– Can carry application data (payload)

Copyright c© 2002–2018 UMaine Computer Science Department – 29 / 33

15

Handling problems

� Corrupt segment received (bitwise error) – don’t ACK
� Receive duplicate segment –

– Why? Lost ACK
– Just discard data, re-ACK

� Timeout –

– Why? Lost segment
– Single timer for all messages to reduce overhead
– Retransmit segment

Copyright c© 2002–2018 UMaine Computer Science Department – 30 / 33

Handling problems

� ACK received for segment after one it’s expecting an ACK for –

– Not really a problem
– Cumulative acknowledgment, so previous segments received, too

Copyright c© 2002–2018 UMaine Computer Science Department – 31 / 33

16

Handling problems

� Segment received out of order –

– One reason: a segment was lost
– For this, send ACK, but with next byte expected being the missing segment
– Another reason: segment tied up in network
– For this, ACK with next real byte expected, necessarily one right after this one

Copyright c© 2002–2018 UMaine Computer Science Department – 32 / 33

Other Transport Layer Topics 33 / 33

Other transport layer topics

� How to choose timeouts
� Flow control
� Congestion control
� When to use UDP vs TCP

Copyright c© 2002–2018 UMaine Computer Science Department – 33 / 33

17

Homework 34 / 33

18

	Homework
	Transport Layer
	Protocols
	Review: Layered protocols
	Layered protocols
	Transport layer
	Ports and sockets
	Ports and sockets
	Connection-oriented and connectionless protocols

	Unreliable Transport Protocols
	Unreliable Transport Protocols

	Reliable Transport Protocols
	Reliable transport protocols
	Using a reliable channel
	Using a channel with bit errors
	Using a channel with bit errors
	A protocol for handling bit errors
	A protocol for handling bit errors
	A better protocol for handling bit errors
	A better protocol for handling bit errors
	A better protocol for handling bit errors
	Using a ``lossy'' channel
	Protocol for lossy channels
	Pipelining
	Pipelining
	Recovery in pipelining

	Example: TCP
	Example: TCP
	TCP segment structure
	Sequence numbers
	Connection initiation: ``three-way handshake''
	Connection initiation: ``three-way handshake''
	Handling problems
	Handling problems
	Handling problems

	Other Transport Layer Topics
	Other transport layer topics

	Homework

