COS 140: Foundations of Computer Science

Process Synchronization: Semaphores

Fall 2018

Process Synchronization

Example
Mutual exclusion.

Semaphores
One solution: Semaphores
Using semaphores
Example

Implementation
Data structure

Counting Semaphores
Counting semaphores.
Example . . .
Producer—Consumer Problem

Discussion
Problems with semaphores
Other approaches e

Homework, etc.

O Reading: Chapter 20

O Homework: Exercises at end of Chapter 20
O Due: Friday, 11/9
0 NOTE: Remember that Prelim Il is Wednesday, 11/14!
Copyright (© 2002-2018 UMaine Computer Science Department — 2 / 20
Process Synchronization 3/20

Process synchronization

O Problems < processes share resource — e.g., memory or device
O Possible: both want to use the resource simultaneously and incompatibly

Copyright (© 2002-2018 UMaine Computer Science Department — 3 / 20

Process synchronization

O Example: Two movers, Bob and Jill, are putting furniture into house

- Both approach doorway (shared resource) simultaneously with a chair they can't see around
— What happens? Bob goes first; Jill goes first; both get stuck!

O Example: Two tellers, two customers, Sue and Jim, with joint account

— Joint account = shared resource
- Both want to put $100 in at same time, tellers update accounts
— What can happen?

> Sue or Jim go first — $200 in account
> Both at same time...? Maybe only $100 in account!

Copyright (© 2002-2018 UMaine Computer Science Department — 4 / 20

Race conditions

O Examples of race conditions: outcome depends on timing/speed of participants
O Computer: processes are the “racers”
O Resource: any non-simultaneously-sharable thing

Copyright (© 2002-2018 UMaine Computer Science Department — 5 / 20

Process 1 Process 2 Process 1 Process 2
Class NumStds Class NumsStds
Roster Roster
4 num = NumStds; 4
1] Ada —~INTERRUPT-- 1] Ada
2| Betty 2| Betty
3| Ceil 3| Ceil
4| Doug 4| Doug
5 5
6 6
7 7
Shared Shared
Memory Memory
Process 1 Process 2 Process 1 Process 2
Class NumStds Class NumsStds
Roster Roster
b [aa] it i[ai] 3
2 Bat num = Numstds; 2| Bat 5 num = NumStds;
Yy num = num + 1; Y num=num +1;
3| Ceil Roster[num] = 'Edith’; num = num + 1: 3| Cecil Roster[num] ="Edith’;
NumStds = num;) i NumStds = num;
Roster[num] ="Francine'; .
4| Doug —INTERRUPT-- Roster[oum = ¢ —\ 4| Doug ~INTERRUPT--
5| Edith 4 ! 5 | Edith 4
6 6
7 7
Shared Shared
Memory Memory
Process 1 Class NumStds Process2
Roster
num = NumStds; N
1| Ada
--INTERRUPT-- 5 num = Numstds
2| Betty
num = num + 1;
num = num + 1: 3| Cecil Roster[num] = 'Edith’;
Roster[num] = 'Francine’; \ 4| Doug NurTﬁ_?sE;Stljr‘gT
NumStds = num; 5[h p! - -
rancing
6
7
Shared
Memory

Copyright (© 2002-2018 UMaine Computer Science Department — 6 / 20

Approach: Mutual exclusion

O Identify critical regions where shared resource is being accessed — in teach process
O If we only allow one process into its critical region at a time — no conflict, no race condition

Copyright (© 2002-2018 UMaine Computer Science Department — 7 / 20

Solution requirements

O Result is predictable
O Solution does not depend on speed of processes
O Solution does not depend on number of CPUs

Copyright (© 2002-2018 UMaine Computer Science Department — 8 / 20

Semaphores 9 /20

One solution: Semaphores

O Semaphores:

— synchronization primitive
— guarantee mutual exclusion when used correctly

00 Semaphore: data structure (and associated code) that:

— Keeps track of whether or not the resource is in use...
— ...or alternatively, keeps track of whether anyone is in their critical region
— Blocks process if it tries to enter its critical region when someone else is in theirs

O Usually includes queue of processes that are blocked

Head Tail

P1 P2 | P3 > P4

Copyright (© 2002-2018 UMaine Computer Science Department — 9 / 20

Using semaphores

O A semaphore S has two major procedures associated with it:

- P(S), or Down(S)
- V(S), or Up(S)
— (V for Dutch verhoog (increase) and P for prolaag (try to decrease) [Dijkstral)

O Think of semaphore signaling “okay” when up, “stop!”" when down

S g |

Copyright (© 2002-2018 UMaine Computer Science Department — 10 / 20

Using semaphores

O Initially: semaphore is “up”
O Key: wrap calls to Down and Up around each process’ critical region

- Suppose we have semaphore S

- Process wants to enter critical region, calls Down(S)

— If semaphore “up” then semaphore = “down"”, process continues
— If semaphore “down” then process blocks

— When process leaves critical region: call Up(S)

Copyright (© 2002-2018 UMaine Computer Science Department — 11 / 20

Example

Process1 Process 2 Process1 Process2 Process1 Process2
Numstds Class numstds Class numstds
Down(S); Down(s); =
4 num = NumStds; " num = NumStds; 4
~INTERRUPT—- ~INTERRUPT—-
Down(s);
~BLOCK--
Shared Shared Shared
Memory Memory Memory
Process1 Process 2 Process1 Process2 Process1 Process2
Class numstds Class Nymsids NumStds
Down(S); Down(S); Down(S);
num = NumStds; 5 num = Numstds; 5 num = Numstds; 6
~INTERRUPT-- ~INTERRUPT-- ~INTERRUPT--
Down(s); Down(S); Down(s);
~BLOCK-- ~BLOCK-- ~BLOCK--
num = num +1; num = num +1; num = num +1;
Roster{num]=" Francing T Roster[num]='Francing ™ Roster[num]=" Francing ™|
NumStds = num; NumStds = num; NumStds = num;
Up(s): Up(s); Up(s):
T | um=nNumsds
num = num + 1;
Roster{num] = "Ecfh;
NumStds = num;
* Shared { Shared * Shared Up(S):
Semaphore S Memory Semaphore S Memory Semaphore S Memory
Why isthistill down?
Process1 Process2
Numstds
Down(S);
num = NumStds; 6
~INTERRUPT--
Down(S);
~BLOCK--
num = num +1.
Roster[num]='Francing |
NumStds = num;
Up(S);
o[Eau | T | num=Numss
num = num + 1;
Roster{num] =" Edith;
NumStds = num;
Shared up(s);
semaphores 4 Memory o)

Implementation

Copyright (© 2002-2018 UMaine Computer Science Department — 12 / 20

13 / 20

Data structure

O Semaphores are data structures
O Two parts: count and queue

— Count is an integer
— Queue contains process IDs

O This type of semaphore = mutual exclusion, or mutex, semaphore
O Count: set to 1 for mutex semaphores

Copyright (© 2002-2018 UMaine Computer Science Department — 13 / 20

Procedures

O Can implement as separate procedures or methods of a semaphore class

0 Down() and Up() have to be atomic
0O Only OS can do this!
O Usually have to ask OS for semaphores, then Down() and Up() are accessed via system calls
Copyright (© 2002-2018 UMaine Computer Science Department — 14 / 20
Procedures

O Down(mutex):

— Decrement count
— If <0, then block current process
— Otherwise, continue (into critical region)

0O Up(mutex):

— Increment count
— If there are blocked processes, allow one to continue
— Note: semaphore is still “down” until count is positive

O Example

Copyright (© 2002-2018 UMaine Computer Science Department — 15 / 20

Counting Semaphores

16 / 20

Counting semaphores

O Mutex semaphores: just one kind
O Semaphores really count number of free resources
O Mutex: only 1 unit of resource = critical region
0O Other cases: may have > 1 = counting semaphores
Copyright (© 2002-2018 UMaine Computer Science Department — 16 / 20
Example
O Producer—consumer problem
O Two processes, shared resource of finite size
O Producer puts things into the resource
O Consumer removes them
O Producer must block when full, consumer must block when empty

Copyright (© 2002-2018 UMaine Computer Science Department — 17 / 20

Producer—Consumer Problem

Semaphores: mutex, full, empty;
Set count of mutex=1, full=0,
empty=size of resource;

Producer: Consumer:
loop forever: loop forever:
Get thing to put in; Down (full);
Down (empty) ; Down(mutex) ;
Down (mutex) ; Take thing out;
Put thing in resource; Up (mutex) ;
Up (mutex) ; Up (empty) ;
Up(full); Use thing;
end loop. end loop.
Copyright (© 2002-2018 UMaine Computer Science Department — 18 / 20
Discussion 19 / 20

Problems with semaphores

O Easy to make mistakes:

- Forget to do Up(S)
— Too many Down's
— Crossed semaphores

O Cheating
O Too low-level

Copyright (© 2002-2018 UMaine Computer Science Department — 19 / 20

10

Other approaches

O Event counters

O Monitors

O Message passing

O Equivalence of primitives

11

Copyright (© 2002-2018 UMaine Computer Science Department — 20 / 20

	Homework, etc.
	Process Synchronization
	Process synchronization
	Process synchronization
	Race conditions
	Example of a race condition
	Approach: Mutual exclusion
	Solution requirements

	Semaphores
	One solution: Semaphores
	Using semaphores
	Using semaphores
	Example

	Implementation
	Data structure
	Procedures
	Procedures

	Counting Semaphores
	Counting semaphores
	Example
	Producer–Consumer Problem

	Discussion
	Problems with semaphores
	Other approaches

