Homework □ Reading: Chapter 9 □ Homework: Chapter 9, exercises 1–4 & 7 □ Due Monday, October 1

Copyright © 2002–2018 UMaine Computer Science Department – 1 / 26

COS 140: Foundations of Computer Science

Parallel Registers

Fall 2018

Problem. Solution. Example. Example. Circuits that Remember Gequential Circuits SR Latch. SR Latch. Characteristic Table. SR Latch Behavior How It Works. 10 Resetting. 12 Input is 1 1?. 13 Timing Diagrams. 14 Clocked Latches. 16 Registers. 17
Solution 6 Example 6 Circuits that Remember 6 Sequential Circuits 7 SR Latch 8 Characteristic Table 9 SR Latch Behavior 10 How It Works 11 Resetting 12 Input is 1 1? 13 Timing Diagrams 14 Clocked Latches 16
Example Circuits that Remember Sequential Circuits SR Latch Characteristic Table SR Latch Behavior How It Works Resetting Input is 1 1? Timing Diagrams Clocked Latches
Sequential Circuits SR Latch 8 Characteristic Table 9 SR Latch Behavior 10 How It Works 11 Resetting 12 Input is 1 1? 13 Timing Diagrams 14 Clocked Latches 16
SR Latch 8 Characteristic Table 9 SR Latch Behavior 10 How It Works 11 Resetting 12 Input is 1 1? 13 Timing Diagrams 14 Clocked Latches 16
Characteristic Table 9 SR Latch Behavior 10 How It Works 11 Resetting 12 Input is 1 1? 13 Timing Diagrams 14 Clocked Latches 16
SR Latch Behavior 10 How It Works 11 Resetting 12 Input is 1 1? 13 Timing Diagrams 14 Clocked Latches 16
How It Works 1. Resetting 1. Input is 1 1? 1. Timing Diagrams 1. Clocked Latches 1.
How It Works 1. Resetting 1. Input is 1 1? 1. Timing Diagrams 1. Clocked Latches 1.
Resetting 12 Input is 1 1? 13 Timing Diagrams 14 Clocked Latches 16
Input is 1 1? 15 Timing Diagrams 14 Clocked Latches 16
Timing Diagrams
Clocked Latches
Posistors 1
Registers
Requirements
Construction
One Bit
Two bits
Using the Register
More
Flip-flops
Edge-triggering
SR flip-flop

Overview 3 / 26

Problem

 $\hfill\Box$ The central processing unit (CPU) needs some memory

- Place to store instructions being executed
- Place to store instruction's *operands*
- Place to store intermediate values, output of calculations
- $\hfill\Box$ This memory has to be extremely fast: faster than RAM

Copyright © 2002–2018 UMaine Computer Science Department – 3 / 26

Solution: Parallel Registers □ Use parallel registers □ Very fast type of memory □ Stores several bits at a time, function together as a unit. □ Could be one chip or more than one chip used in parallel □ Most often: part of the CPU

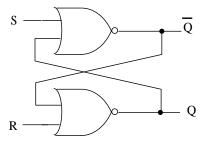
Copyright © 2002–2018 UMaine Computer Science Department – 4 / 26

A Parallel Registe	er				
D	REGISTER	D a t a b i t t c v t c d d t t t t t t t t t t t t t t t t	D	REGISTER	D a t a b i t s O u t
D	0 0 0 0 0 0 0 REGISTER	0 D 0 a 0 t 0 a 0 B 0 t 0 t 0 c 0 t 0 c 0 t 0 t 0 c 0 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t	D 1		0 D 0 a 0 t 0 a 0 b 0 a 0 B 0 i 0 t 0 s 0 t 0 t 0 t 0 t 0 t
D 1	0 1 0 0 0 1 1 REGISTER	1 D 0 t 1 a 0 t 1 B 0 i 0 t 0 s 1 U 1 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t 0 t	D x a t x a x B x t x x x x x x x x x x x x x x x x x x	0 1 0 0 0 1 1 REGISTER	1 a 0 t a 1 a 1 B i 0 t t 0 s i 1 O 1 u t

Copyright © 2002–2018 UMaine Computer Science Department – 5 / 26

WANTED: A Circuit that Can Remember

- ☐ To be useful for memory, the circuit must:
 - Be readable.
 - Maintain the current data, unless its inputs tell it to change.
 - Allow the data to be changed.
- □ Combination circuits have outputs that are a function only of inputs, so no ability to maintain the current data.


Copyright © 2002–2018 UMaine Computer Science Department – 6 / 26

Sequential Circuits

- \square Have state which can be 0 or 1.
- □ New state depends on inputs and previous state.
- ☐ Often have *clock* (strobe, enable) that allows input to enter the circuit only at particular times.
- ☐ Sequential circuits work for memory because
 - The current state can be easily read from its output (packaging often makes the state's complement available as well)
 - Some set of inputs (usually all 0's) cause it to maintain state
 - Other inputs can change the data

Copyright © 2002–2018 UMaine Computer Science Department – 7 / 26

A Circuit that Can Maintain State: The S-R Latch

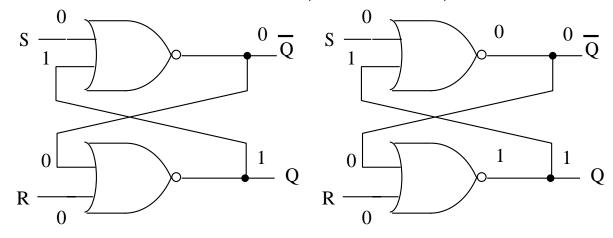
- \Box Can be set (with S) and reset (with R)
- □ Maintains whatever state it's set to when inputs removed (set to 0)

Copyright © 2002–2018 UMaine Computer Science Department – 8 / 26

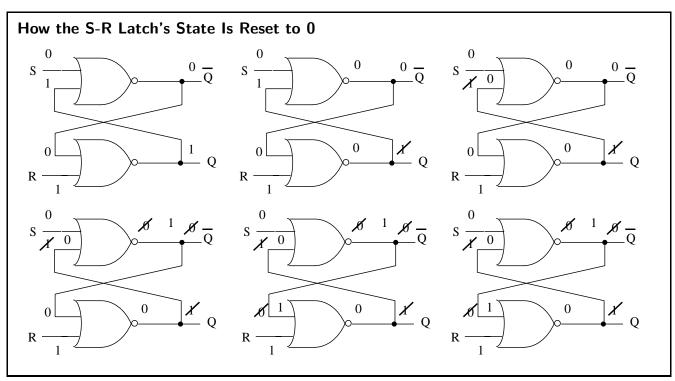
Characteristic Table

- ☐ How to specify the behavior of a sequential circuit?
- ☐ Truth table won't work: doesn't reference current state
- ☐ Instead, use a *characteristic table*; like a truth table, but:
 - Shows current state as well as inputs
 - Gives new state (which is output as well)
 - Note: Can have inputs for which there is no stable state, an undefined state, or a state that does not make sense

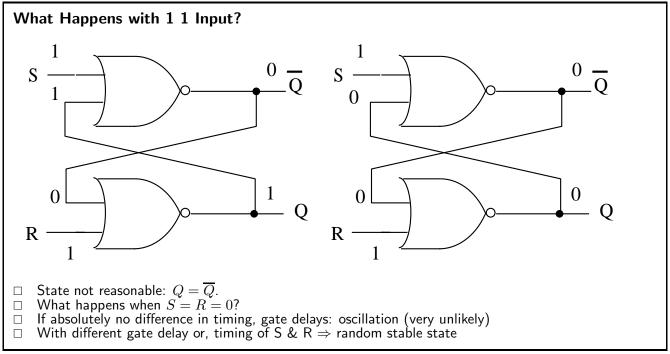
Copyright © 2002–2018 UMaine Computer Science Department – 9 / 26

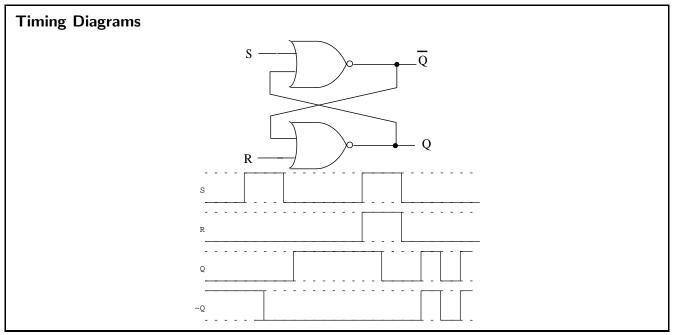

What Would We Expect?

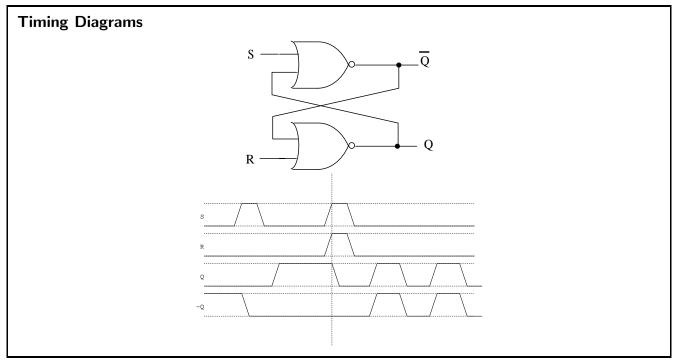
S	R	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	-


Copyright © 2002–2018 UMaine Computer Science Department – 10 / 26

How the S-R Latch Maintains State


Have feedback from the current state and its complement that act as input to the circuit.


Copyright © 2002–2018 UMaine Computer Science Department – 11 / 26


Copyright © 2002–2018 UMaine Computer Science Department – 12 / 26

Copyright © 2002–2018 UMaine Computer Science Department – 13 / 26


Copyright © 2002–2018 UMaine Computer Science Department – 14 / 26

Copyright © 2002–2018 UMaine Computer Science Department – 15 $\,/\,$ 26

CI	00	ked	1	21	اء	h	26
L	UC	ĸeu	L	.aı	LCI	ш	25

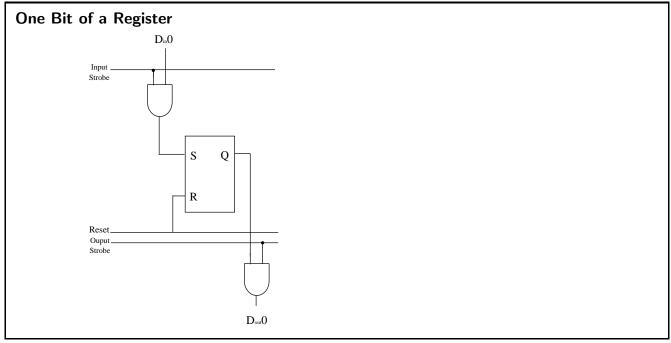
- Sometimes you want the state to change only at certain times.
- ☐ To do this, latches can be hooked to a clock.
- \Box The clock is a signal that is 1 at certain intervals.
- □ Creating clocks in hardware and dealing with timing issues in circuits is a complex problem…beyond the scope of this course.

☐ If clock is not 1, equivalent to S and R of unclocked latch being 0, and maintain state. If clock is 1, value of S and R get through AND gate.

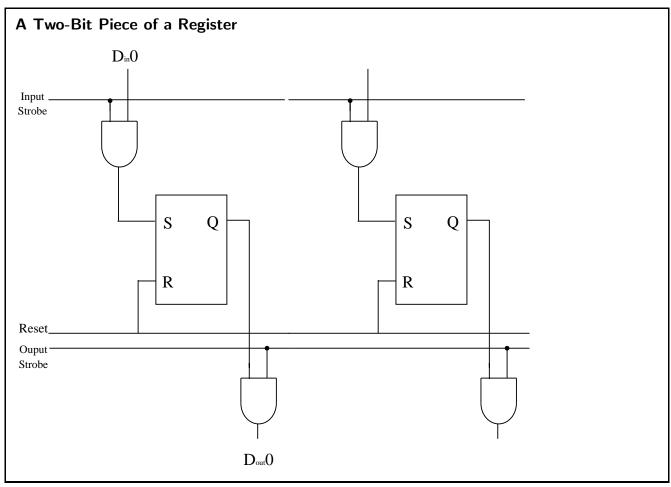
Copyright © 2002–2018 UMaine Computer Science Department – 16 / 26

Registers 17 / 26

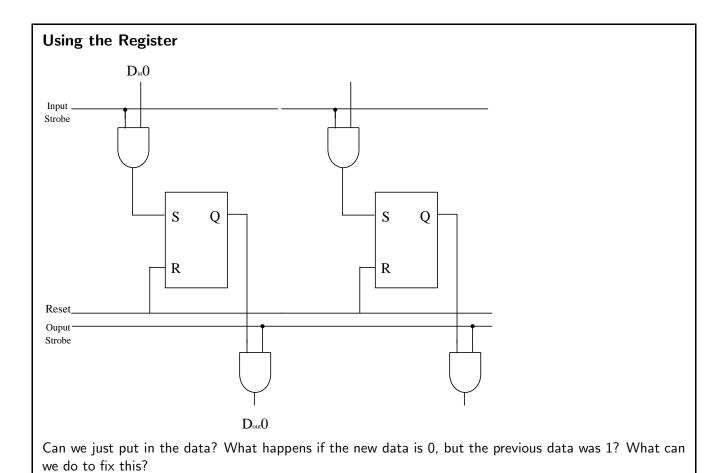
What Do We Need in a Register?


- ☐ Each bit can be stored in a latch (usually 8 or more)
- □ Nice to be able to reset register to all 0's
- □ Output available from each bit
- □ Input can be directed to each bit

Copyright © 2002–2018 UMaine Computer Science Department – 17 / 26


How Can We Construct a Register?

- \Box We can use S-R Latches and simply make sure S and R are not both 1 at the same time.
- \square Have a reset line that goes to R in each latch.
- □ "Strobe" input and output so that write or read data only at specific times. (Works similarly to a clock.)

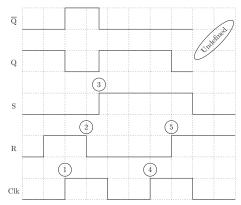

Copyright © 2002–2018 UMaine Computer Science Department – 18 / 26

Copyright © 2002–2018 UMaine Computer Science Department – 19 / 26

Copyright © 2002–2018 UMaine Computer Science Department – 20 / 26

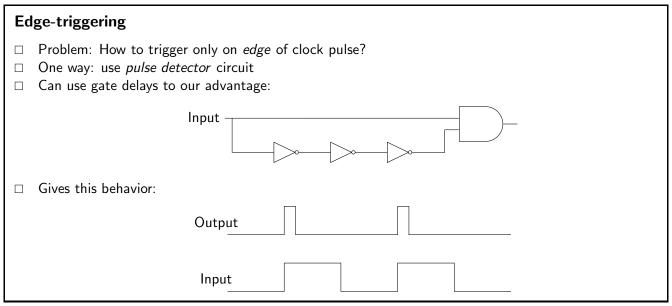
Need to reset each time before loading data.

Copyright © 2002–2018 UMaine Computer Science Department – 21 / 26

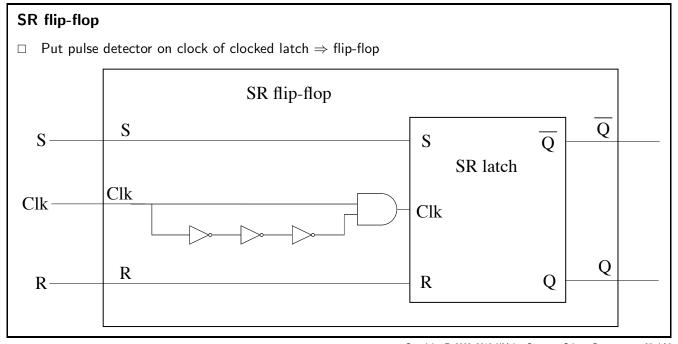

More About Latches and Registers

- ☐ There are other kinds of latches which:
 - Do not require resetting register before loading data so can toggle individual bits
 - Handle the problem of 1–1 inputs
- ☐ Registers can be constructed out of these latches, as well.

Copyright © 2002–2018 UMaine Computer Science Department – 22 / 26


Flip-flops

- □ So far: *latches* − *level-triggered*
- □ Problem:
 - Only want changes once per clock pulse
 - But: clock pulse can be long ⇒ time for inputs to change
 - Could lead to unwanted states: e.g., 1–1 to SR latch



- □ Solution: *edge-triggering*
- \square Edge-triggered latch \equiv flip-flop

Copyright © 2002–2018 UMaine Computer Science Department – 23 / 26

Copyright © 2002–2018 UMaine Computer Science Department – 24 / 26

Copyright © 2002–2018 UMaine Computer Science Department – 25 / 26

Edge triggering: master-slave configuration $\square \quad \text{Can also get edge triggering by using two latches:}$ $S_{in} \qquad S \qquad Q \qquad S \qquad Q_{out}$ $Clock \qquad Clk \qquad R \qquad \overline{Q} \qquad \overline{Q}_{out}$

Copyright © 2002–2018 UMaine Computer Science Department – 26 / 26