Homework, etc.

- □ Reading: Chapter 12 (on website)
- \Box Homework:
 - Exercises from Ch. 12
 - Due: 10/12 (later than usual due to break)
- \Box Prelim I:
 - Friday, 10/12
 - Covers: Everything through Friday (10/5) lecture
 - Only up to today's (RAID) in-depth, though

Copyright © 2002–2018 UMaine Computer Science Department – 1 / 35

COS 140: Foundations of Computer Science

RAID: Redundant Array of Independent Disks

Fall 2018

Problem	3
Disks Data layout Access time Types Example: Seagate 3.5 in. hard disk	4 5 6 8 9
Disk Performance 1 Performance issues 1 Transfer capacity 1 Request rate 1	0 1 2
RAID 1 Purpose 1 Architecture 1 Data distribution 1	3 4 5
RAID 0 1 RAID Level 0 1 Benefits 1 Cost 2	8 9
RAID 1 2 RAID Level 1 2 Benefits 2 Cost 2 When to use 2	1 2 3
RAID 2 2 RAID Level 2 2 Benefit 2 Costs. 2 Benefits. 2 RAID 3 2	5 5 7 8 9

RAID Level 3	 	 		 		 	 	 	 			 				 	 	 	 	 	29
Parity	 	 		 		 	 	 	 			 					 	 	 	 	30
Benefits	 	 		 		 	 	 	 			 					 	 	 	 	32
Cost	 	 		 		 	 	 	 			 					 	 	 	 	33
Use	 	 		 	•	 •	 	 	 	•	•	 	•			 •	 •	 •	 •	 	34
RAID 4 & 5																					35
Other RAIDs	 	 		 		 	 	 	 			 				 	 	 	 	 	35

Problem

The problem

- $\hfill\square$ How to store data:
 - Reliably
 - So that we can maximize a lot of *requests* by different processes
 - So that we can maximize the amount of data transferred/second to each process
- $\hfill\square$ These are conflicting, as we'll see!
- $\hfill \ensuremath{\square}$ We'll concentrate on disk storage

Copyright © 2002–2018 UMaine Computer Science Department – 3 / 35

More About Magnetic Disks

- □ Type of external memory, like magnetic tape, flash, or optical disks (e.g., DVSs)
- $\hfill\square$ Access method: direct access

Copyright \bigodot 2002–2018 UMaine Computer Science Department – 4 / 35

Copyright \bigodot 2002–2018 UMaine Computer Science Department – 5 / 35

Copyright © 2002–2018 UMaine Computer Science Department – 6 / 35

Example

- □ 2018 Western Digital 1TB laptop drive: 3 Gb/s max. transfer rate, 12 ms avg seek time, 5400 RPM, 512 B/sector
- □ Assume 4096 B wanted also assume contiguous, sector-aligned:
 - Rotational latency:

$$\frac{60s}{5400 \mathrm{rev}} imes 0.5 \mathrm{rev} \approx 6$$
 ms average rotational latency

- Transfer time:

$$4KB \times \frac{1GB}{2^{20}KB} \times \frac{8Gb}{1GB} \times \frac{1s}{3Gb} \approx 0.01 \mathrm{ms}$$

- Total time $\approx 12 + 6 = 18$ ms

Copyright © 2002–2018 UMaine Computer Science Department – 7 / 35

Types of Disks

- $\hfill\square$ Type: depends on how close head gets to surface
- $\hfill\square$ Closer the head \Rightarrow narrower head can be \Rightarrow narrower tracks \Rightarrow more data
- \Box Closer the head \Rightarrow increased chance of errors due (e.g.) to impurities, dust, etc.
- $\hfill\square$ Standard disks: head floats on a cushion of air does not come in contact with the disk
- $\hfill\square$ \hfill Floppy: head touches the disk when reading and writing
- □ Winchester: in a sealed unit so head can get closer to the disk because there are no contaminants

Copyright © 2002–2018 UMaine Computer Science Department - 8 / 35

Copyright © 2002–2018 UMaine Computer Science Department – 9 / 35

Performance Issues for External Memory Reliability Speed *Transfer capacity* - how much data can be read from or written to the disk in a given amount of time *I/O request rate* - how many reads or writes can be accomplished in a given amount of time Cost

How to Measure Speed: Transfer Capacity

- $\hfill\square$ Amount of data that can be read from or written to the disk per second
- $\hfill \Box \quad \text{Important} \to \text{Iarge amount of data/request}$
- $\hfill\square$ Depends on: buses, disk device, other factors

Copyright \bigodot 2002–2018 UMaine Computer Science Department – 11 / 35

How to Measure Speed: I/O Request Rate

- □ Number of requests/second that are serviced by disk (reads or writes)
- $\hfill \Box \quad {\sf Important} \to {\sf many} \mbox{ requests generated per second}$

Copyright © 2002–2018 UMaine Computer Science Department – 12 / 35

RAID

13 / 35

What RAID Hopes to Accomplish

- $\hfill\square$ Improve performance through parallelism.
 - increase speed
 - increase reliability
- \Box But: extra disks (for parallelism) \Rightarrow higher cost.

Copyright \bigodot 2002–2018 UMaine Computer Science Department – 13 / 35

Copyright © 2002–2018 UMaine Computer Science Department – 14 / 35

Distributing Data on the Disks □ Logical disk: Abstraction of real disks Think of single virtual disk on which data is stored □ Divide data unto equal-length chunks called strips □ Put strips on real disks in (e.g.) round-robin fashion □ Stripe: all the strips at correspondign locations on the disks

Copyright \odot 2002–2018 UMaine Computer Science Department – 15 / 35

Copyright © 2002–2018 UMaine Computer Science Department – 16 / 35

Copyright © 2002–2018 UMaine Computer Science Department – 17 / 35

RAID 0

RAID 0 benefits
 \square No effect on reliability

 \square Let r = average request size, s = strip size, n = # of disks, S = ns = stripe size

 \square Effect on transfer rate?

 \square Suppose $s \le r$
 \neg \Rightarrow multiple disks \Rightarrow strips for request

 \neg \Rightarrow transfer rate increase

 \neg Ideally r = S: transfer rate increased up to n times

 \square Effect on request rate?

 \neg Suppose $r \le s$
 \neg \Rightarrow disk active per strip \Rightarrow multiple requests handled at once

 \neg \Rightarrow increased request rate

 \neg Ideally r = s: request rate increased up to n times

 \square So which? Depends on system characteristics, goals

Copyright © 2002–2018 UMaine Computer Science Department – 19 / 35

RAID level 0 cost

- \Box If *n* disks were going to be used anyway \Rightarrow no additional cost
- $\hfill\square$ If not, then n small disks likely more expensive than 1 large disk

Copyright © 2002–2018 UMaine Computer Science Department – 20 / 35

RAID 1

21 / 35

Copyright © 2002–2018 UMaine Computer Science Department – 21 / 35

RAID level 1 benefits

- \Box Reliability $\uparrow\uparrow$
 - Data completely redundantly stored
 - Disk fails: read from/write to copy
- \Box Transfer rate, request rate
 - Same arguments as for RAID 0 re: strip size vs. request size
 - Additionally:
 - $_{\triangleright}$ If disk busy, can read from duplicate $\Rightarrow\uparrow$ speeds
 - $_{\triangleright}$ $\;$ Could handle up to $2\times$ requests of RAID 0 if s=r
 - $_{\triangleright}$ Could make $S=\frac{1}{2}r\Rightarrow$ all disks involved, up to $2\,times$ request rate of RAID 0
 - Writes must be done to both disks, but they can be done in parallel.

Copyright © 2002–2018 UMaine Computer Science Department – 22 / 35

RAID 1 cost

- $\hfill\square$ If need n disks worth of data, need 2n disks
- \Box I.e., doubles cost

Copyright \bigodot 2002–2018 UMaine Computer Science Department – 23 / 35

So what is RAID 1 good for?

- $\hfill\square$ Critical data for which a failure cannot be tolerated and where the cost is not a problem.
- \Box Additional \uparrow transfer or request rates

Copyright © 2002–2018 UMaine Computer Science Department – 24 / 35

RAID 2

RAID Level 2

- □ Idea: use some additional space to store an *error-correcting code*
- \Box When an error occurs (on read or write), use that to fix it
- □ Uses a *Hamming code* (we'll study this later)
- $\hfill\square$ For corresponding bit locations on each data disk, create Hamming code
 - Hamming code requires about $\log_2 n$ additional bits for n data bits
 - \Rightarrow extra disks needed

Copyright © 2002–2018 UMaine Computer Science Department - 25 / 35

25 / 35

RAID 2 benefit

- \Box Reliability
- $\hfill\square$ Correction of 1-bit errors on read or write
- □ Reconstruct data if one disk fails.

Copyright © 2002–2018 UMaine Computer Science Department - 26 / 35

What is RAID Level 2 Good For?

- $\hfill\square$ Not commercially implemented
- □ Would be good if many single-disk errors...
- $\hfill\square$...but unlikely and...
- \Box ...disks themselves use ECC!
- \Box Bit error rates $\approx 1 \text{ per } 10^{14} \text{ bits read}$
- $\hfill\square$ If are really worried about data, use Level 1.

Copyright \bigodot 2002–2018 UMaine Computer Science Department – 28 / 35

RAID 3

29 / 35

Copyright C 2002–2018 UMaine Computer Science Department – 29 / 35

What is a Parity Bit? \Box Consider # 1s in data:-0100 1011-4 1s \Box Add an extra bit:-Set to make total # 1s even \Rightarrow even parity-Set to make total # 1s odd \Rightarrow odd parity \Box E.g., even parity:-0100 1011 \longrightarrow 0100 1011 0-0100 1111 1 \Box Store both data and parity bit

Copyright © 2002–2018 UMaine Computer Science Department - 30 / 35

Copyright © 2002-2018 UMaine Computer Science Department - 31 / 35

RAID 3 benefits

- \Box Reliability \uparrow
 - Detect errors; can try re-reading
 - If disk drive fails \longrightarrow reduced mode
 - $\scriptstyle \triangleright \quad \textit{Every} \ \text{read} \ \text{will} \rightarrow \text{parity error}$
 - $_{\triangleright}$ But now know which bit is wrong!
- $\hfill\square$ Transfer rate \uparrow due to small strip size
- \Box Request rate: no change

Copyright O 2002–2018 UMaine Computer Science Department – 32 / 35

RAID 3 costs

- \Box Need only 1 extra disk
- $\hfill\square$ Have to access it every read, write...
- $\hfill\square$...but small strip size, probably won't have multiple requests needing it at same time
- $\hfill\square$ Can only catch single-bit errors how bad is that?
 - Modern disk drives are very good maybe 1 error per 10^{14} bits read
 - P(error) in a 4 KB read: about 3×10^{-10}
 - P(2 errors) in a 4KB read = $(3 \times 10^{-10})^2 \approx 10^{-19}$
 - I.e., 0.0000000000000000001, or expect 1 2-bit error in 10,000,000,000,000,000 4KB reads

Copyright \bigodot 2002–2018 UMaine Computer Science Department – 33 / 35

What is RAID Level 3 Good For?

- $\hfill\square$ When some error detection is needed
- □ High transfer rate and low number of outstanding requests.

Copyright © 2002–2018 UMaine Computer Science Department – 34 / 35

RAID 4 & 5

35 / 35

RAID Level 4, 5, 6, and beyond

□ Same as RAID Level 3, but uses *independent access array*: disks in array operate independently

- Uses larger strips \Rightarrow strip-level parity
- Increases IO request rates at the expense of transfer capacity.
- Write penalty: have to read old data strip, old parity, then write them.
- Parity disk can become bottleneck.
- □ RAID Level 5 distributes the parity bits across the disks instead of having them all on one disk, to solve a potential problem with parity disk bottlenecks for Level 4.
- □ RAID Level 6: two parity blocks per stripe
- \Box Others: some proprietary, some combinations of others (e.g., RAID 0+1)

Copyright © 2002–2018 UMaine Computer Science Department – 35 / 35