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• Assembly language much better than machine language for

programming

◦ Mnemonics for op codes (e.g., ADD)

◦ Symbolic addresses (memory and registers)

◦ Rudimentary control structures via macros in some

assemblers: if, loop

• But still basically one-to-one correspondence with machine

language

• Very low-level
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• Many instructions needed to do one conceptual step –

E.g., want to set C = A + B – something like:

LD R1,A

LD R2,B

ADD R1,R2 ; result in R1, say

ST R1,C

• Requires programmer to think at very low level

• Tedious to program

• Prone to errors

• No type checking

• No automatic optimization

• Solution: High-level programming languages



CS
omputer

cience

Foundations

What is a Programming Language?

Introduction

• Problem

• What is a

Programming

Language?

• First steps

• Issues

• Why so many?

• Example languages

Programming Language

Paradigms

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 22

• A way to communicate with the computer.

◦ Allows users to think about the computer in a way that is

natural for them.

◦ Formal language so it can be easily interpreted by the

computer.
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• FORTRAN – 1957 (John Backus)

• LISP – 1958 (John McCarthy)

• COBOL – 1959 (Grace Hopper)

• Algol – 1960 (proposed 1958; John Backus, Peter Naur, others)
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• Constructs that are available (or needed) in programming

languages.

• Specifics of existing languages (to understand ramifications of

design decisions, not to simply learn the language).

• Paradigms for programming languages.

• Formal methods for describing syntax and semantics.

• Implementation issues for interpreting the languages by the

computer and supporting constructs.
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• Limitations of current languages give rise to new languages.

• New technology (speed, cost of computers as well as language

implementation technology) makes new languages possible.

• Different languages are suited for different tasks (even among

“general purpose languages”).
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• General-purpose languages: C, C++, Java, Ada, Visual Basic,

Python, Lisp

• Languages for specific domains and tasks:

◦ Scientific applications - FORTRAN (and now C/C++)

◦ Business applications - COBOL

◦ Artificial intelligence - Lisp and Scheme, Prolog

◦ Systems programming - C, PL/I

◦ Scripting languages - tcl, Perl, PHP

◦ Teaching programming - Pascal, Modula

◦ Web-oriented languages - JavaScript, PHP, Java

◦ Simulation: Simula, GPSS, SNOBOL

◦ Statistical analysis: SAS

◦ Mathematics: APL (also Mathematica/Mathcad “languages”;

Lisp for symbolic computation)

◦ Mobile apps: Python, Java, Objective-C, Swift



CS
omputer

cience

Foundations

Paradigms of Programming Languages

Introduction

Programming Language

Paradigms

• Imperative

Languages

• Functional

Languages

• Logic Languages

• Object-Oriented

Languages

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 22

• High-level languages (as opposed to assembly language) give

users an abstraction from the details of the machine and the

CPU.

• Paradigm: way of thinking about how the programming language

works.

• Paradigms in general:

◦ Give the paradigm-holder a way of looking at the world.

◦ Promote certain ways of thinking.

◦ Make other ways of thinking more difficult.
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• Based on von Neumann architecture.

◦ Data has a location in memory (variables).

◦ Assignment allows data to be stored at some location.

◦ Iteration as a way of doing repetitive steps – corresponds to

executing a sequence of machine instructions multiple times

in a loop.

• Model is an abstraction of the actual machine ⇒ helps with

efficient programming and systems programming

• Examples: C, Python, Pascal, FORTRAN
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• Modeled on functions from mathematics.

◦ Apply functions to values - not necessarily memory locations.

◦ Recursion is method of iteration.

• Ignore constraints of von Neumann architecture.

• Assumes that people think in terms of mathematical functions

“naturally”.

• Examples: Lisp, Scheme, ML
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• Based on some form of formal logic.

◦ Expressions written in logical formalism.

◦ Processing done as theorem proving.

• Assumes that people think in terms of first order predicate

calculus “naturally”.

• Example: Prolog
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• Data and related functions are grouped together as objects.

◦ Processing is tied to specific data types.

◦ Similarities and differences between types of data, including

what you want to do with them, becomes focus.

• Can be a paradigm for a whole language or an add-on to an

existing language.

• Examples: Smalltalk, C++, Java, Lisp/CLOS, Python, Perl, Visual

Basic
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• Needed to change the high-level language into instructions the

computer can carry out.

• Two types: compiling and interpreting
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• Creates a machine language program that carries out the

program in the higher-level language.

• Need to have access to much of the program to make necessary

decisions.

◦ May need to re-compile large portions (or all) of a program to

make small changes.

• Compiled code runs fast because it is at the machine level. (This

code can also be optimized.)
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1. Lexical analysis - break program into lexical units and classify by

type

2. Syntactic analysis - identify structure of statement or find syntax

errors

3. Intermediate code generation - produce code that can be used

by humans and machines

4. Optimization - make intermediate code more efficient by

finding specific patterns, applying refinements

5. Machine code generation - converts intermediate code to

machine code

6. Linking - linker links machine code with necessary system calls,

libraries, etc.

7. Executable image - machine instructions + system calls

The language is designed so that all steps can be automated.
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• Interpreter carries out high-level commands directly.

• Debugging is easier than with compiler because source code

which produced the error is available.

• Don’t have to recompile to make small changes.

• Slower for execution because must interpret commands each

time used and cannot optimize.

• Cannot use knowledge of whole program, so language must

have simple structure.
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• Use agreed-upon criteria.

• There may be a trade-off between different criteria.

• Must be applied depending on the use of the language (users,

project, etc.).
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• Writability/Readability

◦ Is it simple and natural?

◦ Does it allow the user to do what is needed?

• Orthogonality

◦ Are there a small number of primitive constructs?

◦ Can all constructs be used in the same way?

◦ Can take this too far. Still may need special cases and want to

make sure that don’t have too many options.
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• Are appropriate control structures and data structures provided

by the language?

• Does the syntax help the programmer write clearly instead of

posing obstacles to clear writing?

• Do features exist which increase the likelihood that code will not

contain errors (type checking, etc.)?

• Is the language portable?

• What is the cost of using the language (including: training

programmers, writing code, compiling and executing code,

maintaining code)?
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• Programming languages abstract the details of the machine from

the user.

• Some constructs follow abstraction in processing that most

people use (e.g., conditionals, loops).

• Some constructs help users build abstractions which can be used

throughout the program.

◦ Subroutines - allow user to abstract processing.

◦ User-defined data types - allow user to abstract data by

functional type.

◦ Data encapsulation - allow user to group together by function

data and ways to process it.

◦ Data hiding - allow only the routines that must access data to

access it.
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• Variables and data types

• Control structures

• Backus–Naur form and parsing
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