
CS
omputer

cience

Foundations

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 1 / 22

COS 140: Foundations of Computer Science

Programming Languages

Fall 2018



CS
omputer

cience

Foundations

Problem

Introduction

• Problem

• What is a

Programming

Language?

• First steps

• Issues

• Why so many?

• Example languages

Programming Language

Paradigms

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 2 / 22

• Assembly language much better than machine language for

programming

◦ Mnemonics for op codes (e.g., ADD)

◦ Symbolic addresses (memory and registers)

◦ Rudimentary control structures via macros in some

assemblers: if, loop

• But still basically one-to-one correspondence with machine

language

• Very low-level



CS
omputer

cience

Foundations

Problem

Introduction

• Problem

• What is a

Programming

Language?

• First steps

• Issues

• Why so many?

• Example languages

Programming Language

Paradigms

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 3 / 22

• Many instructions needed to do one conceptual step –

E.g., want to set C = A + B – something like:

LD R1,A

LD R2,B

ADD R1,R2 ; result in R1, say

ST R1,C

• Requires programmer to think at very low level

• Tedious to program

• Prone to errors

• No type checking

• No automatic optimization

• Solution: High-level programming languages



CS
omputer

cience

Foundations

What is a Programming Language?

Introduction

• Problem

• What is a

Programming

Language?

• First steps

• Issues

• Why so many?

• Example languages

Programming Language

Paradigms

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 22

• A way to communicate with the computer.

◦ Allows users to think about the computer in a way that is

natural for them.

◦ Formal language so it can be easily interpreted by the

computer.



CS
omputer

cience

Foundations

First steps

Introduction

• Problem

• What is a

Programming

Language?

• First steps

• Issues

• Why so many?

• Example languages

Programming Language

Paradigms

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 5 / 22

• FORTRAN – 1957 (John Backus)

• LISP – 1958 (John McCarthy)

• COBOL – 1959 (Grace Hopper)

• Algol – 1960 (proposed 1958; John Backus, Peter Naur, others)



CS
omputer

cience

Foundations

Issues for the Study of Programming Languages

Introduction

• Problem

• What is a

Programming

Language?

• First steps

• Issues

• Why so many?

• Example languages

Programming Language

Paradigms

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 6 / 22

• Constructs that are available (or needed) in programming

languages.

• Specifics of existing languages (to understand ramifications of

design decisions, not to simply learn the language).

• Paradigms for programming languages.

• Formal methods for describing syntax and semantics.

• Implementation issues for interpreting the languages by the

computer and supporting constructs.



CS
omputer

cience

Foundations

Why are There So Many Languages?

Introduction

• Problem

• What is a

Programming

Language?

• First steps

• Issues

• Why so many?

• Example languages

Programming Language

Paradigms

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 7 / 22

• Limitations of current languages give rise to new languages.

• New technology (speed, cost of computers as well as language

implementation technology) makes new languages possible.

• Different languages are suited for different tasks (even among

“general purpose languages”).



CS
omputer

cience

Foundations

Some Languages in Use

Introduction

• Problem

• What is a

Programming

Language?

• First steps

• Issues

• Why so many?

• Example languages

Programming Language

Paradigms

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 22

• General-purpose languages: C, C++, Java, Ada, Visual Basic,

Python, Lisp

• Languages for specific domains and tasks:

◦ Scientific applications - FORTRAN (and now C/C++)

◦ Business applications - COBOL

◦ Artificial intelligence - Lisp and Scheme, Prolog

◦ Systems programming - C, PL/I

◦ Scripting languages - tcl, Perl, PHP

◦ Teaching programming - Pascal, Modula

◦ Web-oriented languages - JavaScript, PHP, Java

◦ Simulation: Simula, GPSS, SNOBOL

◦ Statistical analysis: SAS

◦ Mathematics: APL (also Mathematica/Mathcad “languages”;

Lisp for symbolic computation)

◦ Mobile apps: Python, Java, Objective-C, Swift



CS
omputer

cience

Foundations

Paradigms of Programming Languages

Introduction

Programming Language

Paradigms

• Imperative

Languages

• Functional

Languages

• Logic Languages

• Object-Oriented

Languages

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 22

• High-level languages (as opposed to assembly language) give

users an abstraction from the details of the machine and the

CPU.

• Paradigm: way of thinking about how the programming language

works.

• Paradigms in general:

◦ Give the paradigm-holder a way of looking at the world.

◦ Promote certain ways of thinking.

◦ Make other ways of thinking more difficult.



CS
omputer

cience

Foundations

Imperative Languages

Introduction

Programming Language

Paradigms

• Imperative

Languages

• Functional

Languages

• Logic Languages

• Object-Oriented

Languages

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 10 / 22

• Based on von Neumann architecture.

◦ Data has a location in memory (variables).

◦ Assignment allows data to be stored at some location.

◦ Iteration as a way of doing repetitive steps – corresponds to

executing a sequence of machine instructions multiple times

in a loop.

• Model is an abstraction of the actual machine ⇒ helps with

efficient programming and systems programming

• Examples: C, Python, Pascal, FORTRAN



CS
omputer

cience

Foundations

Functional Languages

Introduction

Programming Language

Paradigms

• Imperative

Languages

• Functional

Languages

• Logic Languages

• Object-Oriented

Languages

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 22

• Modeled on functions from mathematics.

◦ Apply functions to values - not necessarily memory locations.

◦ Recursion is method of iteration.

• Ignore constraints of von Neumann architecture.

• Assumes that people think in terms of mathematical functions

“naturally”.

• Examples: Lisp, Scheme, ML



CS
omputer

cience

Foundations

Logic Languages

Introduction

Programming Language

Paradigms

• Imperative

Languages

• Functional

Languages

• Logic Languages

• Object-Oriented

Languages

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 22

• Based on some form of formal logic.

◦ Expressions written in logical formalism.

◦ Processing done as theorem proving.

• Assumes that people think in terms of first order predicate

calculus “naturally”.

• Example: Prolog



CS
omputer

cience

Foundations

Object-Oriented Languages

Introduction

Programming Language

Paradigms

• Imperative

Languages

• Functional

Languages

• Logic Languages

• Object-Oriented

Languages

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 22

• Data and related functions are grouped together as objects.

◦ Processing is tied to specific data types.

◦ Similarities and differences between types of data, including

what you want to do with them, becomes focus.

• Can be a paradigm for a whole language or an add-on to an

existing language.

• Examples: Smalltalk, C++, Java, Lisp/CLOS, Python, Perl, Visual

Basic



CS
omputer

cience

Foundations

Language Translation

Introduction

Programming Language

Paradigms

Language Translation

• Compiling

• Compilation steps

• Interpretation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 22

• Needed to change the high-level language into instructions the

computer can carry out.

• Two types: compiling and interpreting



CS
omputer

cience

Foundations

Translation by Compiling

Introduction

Programming Language

Paradigms

Language Translation

• Compiling

• Compilation steps

• Interpretation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 22

• Creates a machine language program that carries out the

program in the higher-level language.

• Need to have access to much of the program to make necessary

decisions.

◦ May need to re-compile large portions (or all) of a program to

make small changes.

• Compiled code runs fast because it is at the machine level. (This

code can also be optimized.)



CS
omputer

cience

Foundations

Steps of Compilation

Introduction

Programming Language

Paradigms

Language Translation

• Compiling

• Compilation steps

• Interpretation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 16 / 22

1. Lexical analysis - break program into lexical units and classify by

type

2. Syntactic analysis - identify structure of statement or find syntax

errors

3. Intermediate code generation - produce code that can be used

by humans and machines

4. Optimization - make intermediate code more efficient by

finding specific patterns, applying refinements

5. Machine code generation - converts intermediate code to

machine code

6. Linking - linker links machine code with necessary system calls,

libraries, etc.

7. Executable image - machine instructions + system calls

The language is designed so that all steps can be automated.



CS
omputer

cience

Foundations

Translation by Interpretation

Introduction

Programming Language

Paradigms

Language Translation

• Compiling

• Compilation steps

• Interpretation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 17 / 22

• Interpreter carries out high-level commands directly.

• Debugging is easier than with compiler because source code

which produced the error is available.

• Don’t have to recompile to make small changes.

• Slower for execution because must interpret commands each

time used and cannot optimize.

• Cannot use knowledge of whole program, so language must

have simple structure.



CS
omputer

cience

Foundations

How to Evaluate a Language

Introduction

Programming Language

Paradigms

Language Translation

Evaluation

• How to evaluate

• Evaluation criteria

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 22

• Use agreed-upon criteria.

• There may be a trade-off between different criteria.

• Must be applied depending on the use of the language (users,

project, etc.).



CS
omputer

cience

Foundations

Some Criteria for Evaluating Languages

Introduction

Programming Language

Paradigms

Language Translation

Evaluation

• How to evaluate

• Evaluation criteria

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 22

• Writability/Readability

◦ Is it simple and natural?

◦ Does it allow the user to do what is needed?

• Orthogonality

◦ Are there a small number of primitive constructs?

◦ Can all constructs be used in the same way?

◦ Can take this too far. Still may need special cases and want to

make sure that don’t have too many options.



CS
omputer

cience

Foundations

Some Criteria for Evaluating Languages (cont’d)

Introduction

Programming Language

Paradigms

Language Translation

Evaluation

• How to evaluate

• Evaluation criteria

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 20 / 22

• Are appropriate control structures and data structures provided

by the language?

• Does the syntax help the programmer write clearly instead of

posing obstacles to clear writing?

• Do features exist which increase the likelihood that code will not

contain errors (type checking, etc.)?

• Is the language portable?

• What is the cost of using the language (including: training

programmers, writing code, compiling and executing code,

maintaining code)?



CS
omputer

cience

Foundations

Abstraction in Programming Languages

Introduction

Programming Language

Paradigms

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 21 / 22

• Programming languages abstract the details of the machine from

the user.

• Some constructs follow abstraction in processing that most

people use (e.g., conditionals, loops).

• Some constructs help users build abstractions which can be used

throughout the program.

◦ Subroutines - allow user to abstract processing.

◦ User-defined data types - allow user to abstract data by

functional type.

◦ Data encapsulation - allow user to group together by function

data and ways to process it.

◦ Data hiding - allow only the routines that must access data to

access it.



CS
omputer

cience

Foundations

What’s next in this section?

Introduction

Programming Language

Paradigms

Language Translation

Evaluation

Abstraction

Next Up

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 22 / 22

• Variables and data types

• Control structures

• Backus–Naur form and parsing


	Introduction
	Problem
	Problem
	What is a Programming Language?
	First steps
	Issues for the Study of Programming Languages
	Why are There So Many Languages?
	Some Languages in Use

	Programming Language Paradigms
	Paradigms of Programming Languages
	Imperative Languages
	Functional Languages
	Logic Languages
	Object-Oriented Languages

	Language Translation
	Language Translation
	Translation by Compiling
	Steps of Compilation
	Translation by Interpretation

	Evaluation
	How to Evaluate a Language
	Some Criteria for Evaluating Languages
	Some Criteria for Evaluating Languages (cont'd)

	Abstraction
	Abstraction in Programming Languages

	Next Up
	What's next in this section?


