### **Homework**

Circuit Minimization

Boolean Approach

Karnaugh Maps

"Don't cares"

Conclusion

- Update on website issue
- Reading: Chapter 7
- Homework: All exercises at end of Chapter 7
- Due 9/26



# **COS 140: Foundations of Computer Science**

Karnaugh Maps

Fall 2018



### The problem

Circuit Minimization

- Problem
- Equivalence

Boolean Approach

Karnaugh Maps

"Don't cares"

Conclusion

- Given a circuit specification, how can we make the best circuit possible?
- What constitutes "better" for circuits?
  - Reduce the number of gates
  - Reduce the number of inputs (pins)
- May also have to use only a particular set of gates
  - Some chips have only one type of gate, and may have that chip
  - NAND and NOR are cheaper to make
  - Must be in a functionally complete set to be able to realize all functions, e.g.: {AND, OR, NOT}, {NAND}, {NOR}



### **Equivalence**

**Circuit Minimization** 

- Problem
- Equivalence

Boolean Approach

Karnaugh Maps

"Don't cares"

Conclusion

 Recall: two circuits are equivalent if they perform the same function, without regard for the gates used, the way the circuit is constructed, etc.



### **Equivalence**

Circuit Minimization

- Problem
- Equivalence

Boolean Approach

Karnaugh Maps

"Don't cares"

Conclusion

- Recall: two circuits are equivalent if they perform the same function, without regard for the gates used, the way the circuit is constructed, etc.
- Equivalence is also a more general concept
  - Basically, two entities are equivalent if, for all possible inputs,
     they have the same output
  - Equivalence allows computer scientists to use "the right tool for the job" by choosing the entity that best suits their needs



Circuit Minimization

Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

 Given a Boolean circuit specification—say, an SOP—how would you proceed?



**Circuit Minimization** 

Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

- Given a Boolean circuit specification—say, an SOP—how would you proceed?
- Suppose two terms differ only by the "sign" of a variable one has the variable, the other the complement (negation):



Circuit Minimization

#### Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

- Given a Boolean circuit specification—say, an SOP—how would you proceed?
- Suppose two terms differ only by the "sign" of a variable one has the variable, the other the complement (negation):

$$\dots + ABC + \overline{A}BC + \dots$$



Circuit Minimization

#### Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

- Given a Boolean circuit specification—say, an SOP—how would you proceed?
- Suppose two terms differ only by the "sign" of a variable one has the variable, the other the complement (negation):

$$\dots + ABC + \overline{A}BC + \dots$$

Can replace via laws of Boolean algebra:



Circuit Minimization

#### Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

- Given a Boolean circuit specification—say, an SOP—how would you proceed?
- Suppose two terms differ only by the "sign" of a variable one has the variable, the other the complement (negation):

$$\dots + ABC + \overline{A}BC + \dots$$

• Can replace via laws of Boolean algebra:

$$\dots + (A + \overline{A})BC + \dots$$



Circuit Minimization

#### Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

- Given a Boolean circuit specification—say, an SOP—how would you proceed?
- Suppose two terms differ only by the "sign" of a variable one has the variable, the other the complement (negation):

$$\dots + ABC + \overline{A}BC + \dots$$

Can replace via laws of Boolean algebra:

$$\ldots + (A + \overline{A})BC + \ldots$$
 (Distributive Law)



Circuit Minimization

#### Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

- Given a Boolean circuit specification—say, an SOP—how would you proceed?
- Suppose two terms differ only by the "sign" of a variable one has the variable, the other the complement (negation):

$$\dots + ABC + \overline{A}BC + \dots$$

Can replace via laws of Boolean algebra:

$$\dots + (A + \overline{A})BC + \dots$$
 (Distributive Law) 
$$\dots + BC + \dots$$



Circuit Minimization

#### Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

- Given a Boolean circuit specification—say, an SOP—how would you proceed?
- Suppose two terms differ only by the "sign" of a variable one has the variable, the other the complement (negation):

$$\dots + ABC + \overline{A}BC + \dots$$

• Can replace via laws of Boolean algebra:

$$\ldots + (A + \overline{A})BC + \ldots$$
 (Distributive Law)  $\ldots + BC + \ldots$  (Inverse Law)



Circuit Minimization

#### Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

- Given a Boolean circuit specification—say, an SOP—how would you proceed?
- Suppose two terms differ only by the "sign" of a variable one has the variable, the other the complement (negation):

$$\dots + ABC + \overline{A}BC + \dots$$

• Can replace via laws of Boolean algebra:

$$\ldots + (A + \overline{A})BC + \ldots$$
 (Distributive Law)  $\ldots + BC + \ldots$  (Inverse Law)

• In other words, the value of the variable doesn't matter, and it can be eliminated from that pair



Circuit Minimization

#### Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

- Given a Boolean circuit specification—say, an SOP—how would you proceed?
- Suppose two terms differ only by the "sign" of a variable one has the variable, the other the complement (negation):

$$\dots + ABC + \overline{A}BC + \dots$$

• Can replace via laws of Boolean algebra:

$$\ldots + (A + \overline{A})BC + \ldots$$
 (Distributive Law) 
$$\ldots + BC + \ldots$$
 (Inverse Law)

- In other words, the value of the variable doesn't matter, and it can be eliminated from that pair
- The pair is replaced by a new term having one fewer variable

Circuit Minimization

#### Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

- Given a Boolean circuit specification—say, an SOP—how would you proceed?
- Suppose two terms differ only by the "sign" of a variable one has the variable, the other the complement (negation):

$$\dots + ABC + \overline{A}BC + \dots$$

Can replace via laws of Boolean algebra:

$$\ldots + (A + \overline{A})BC + \ldots$$
 (Distributive Law)  $\ldots + BC + \ldots$  (Inverse Law)

- In other words, the value of the variable doesn't matter, and it can be eliminated from that pair
- The pair is replaced by a new term having one fewer variable
- Process is repeated until minimal expression found



## Difficulty with Boolean approach

Circuit Minimization

Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

 Problem: Can be difficult to see which terms to combine, in what order



### Difficulty with Boolean approach

Circuit Minimization

#### Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

 Problem: Can be difficult to see which terms to combine, in what order

$$\overline{A}B\overline{C}D + ABCD + \overline{A}BCD + AB\overline{C}D$$
 $+ ABC\overline{D} + A\overline{B}C\overline{D} + A\overline{B}\overline{C}\overline{D}$ 

### Difficulty with Boolean approach

Circuit Minimization

#### Boolean Approach

- An insight
- Difficulty

Karnaugh Maps

"Don't cares"

Conclusion

 Problem: Can be difficult to see which terms to combine, in what order

$$\overline{A}B\overline{C}D + ABCD + \overline{A}BCD + AB\overline{C}D$$

$$+ ABC\overline{D} + A\overline{B}C\overline{D} + A\overline{B}\overline{C}\overline{D}$$

 It would be better if there was some way to see which terms can be combined

### **Karnaugh Maps**

Circuit Minimization

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

- A Karnaugh Map is a visual representation of a Boolean SOP expression
- Each term is represented by a cell in a table (map)
- Adjacent cells differ in the "sign" of only one variable
- E.g., ABC would be adjacent to  $AB\overline{C}$ , also  $\overline{A}BC$ , ...
- So how to draw the map?



Circuit Minimization

Boolean Approach

Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Suppose you want to create a circuit for the majority function

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

and you want to minimize the circuit, keeping it an SOP.



Circuit Minimization

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Create a Karnaugh Map for the number of variables that you have in the expression.



**Circuit Minimization** 

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Create a Karnaugh Map for the number of variables that you have in the expression.

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$



Circuit Minimization

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Put a 1 in squares that correspond to the terms in the expression.

- Term ⇔ square:
  - 1 if variable occurs in the term, 0 if complement occurs
  - $\circ$  E.g.:  $\overline{A}B\overline{C} \Leftrightarrow \text{square 010}$
- For truth tables:
  - Match the input pattern for rows where output is 1 to the square's label
  - E.g.: 0 0 1 1 ⇔ square 001

**Circuit Minimization** 

Boolean Approach

Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

|  | $\overline{A}BC$ | $+A\overline{B}C+$ | - $AB\overline{C}$ - | +ABC |
|--|------------------|--------------------|----------------------|------|
|--|------------------|--------------------|----------------------|------|

|   |   | 00 | 01 | 11 | 10 |
|---|---|----|----|----|----|
| C | 0 |    |    |    |    |
| C | 1 |    | 1  |    |    |



**Circuit Minimization** 

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

| $\overline{A}BC +$ | $A\overline{B}C$ + | - $AB\overline{C}$ - | +ABC |
|--------------------|--------------------|----------------------|------|
|                    |                    |                      |      |

|   |   | 00 | 01 | 11 | 10 |
|---|---|----|----|----|----|
| C | 0 |    |    |    |    |
| C | 1 |    | 1  |    | 1  |



**Circuit Minimization** 

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

| $\overline{A}BC$ - | $+A\overline{B}C$ - | $+\underline{AB\overline{C}}$ | +ABC |
|--------------------|---------------------|-------------------------------|------|
|                    |                     |                               |      |

|              |   | 00 | 01 | 11 | 10 |
|--------------|---|----|----|----|----|
| $\mathbf{C}$ | 0 |    |    | 1  |    |
| C            | 1 |    | 1  |    | 1  |



**Circuit Minimization** 

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

| $\overline{A}BC +$ | $A\overline{B}C$ + | $AB\overline{C}$ | +ABC |
|--------------------|--------------------|------------------|------|
|                    |                    |                  |      |

|           |   | 00 | 01 | 11 | 10 |
|-----------|---|----|----|----|----|
| $\subset$ | 0 |    |    | 1  |    |
| C         | 1 |    | 1  | 1  | 1  |



Circuit Minimization

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Circle groups of powers of  $2 \ge 2^1$  (2, 4, 8, etc.) until all ones have been circled. Circle the largest groups possible.



Circuit Minimization

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Circle groups of powers of  $2 \geq 2^1$  (2, 4, 8, etc.) until all ones have been circled. Circle the largest groups possible.

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$



Circuit Minimization

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Circle groups of powers of  $2 \ge 2^1$  (2, 4, 8, etc.) until all ones have been circled. Circle the largest groups possible.

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

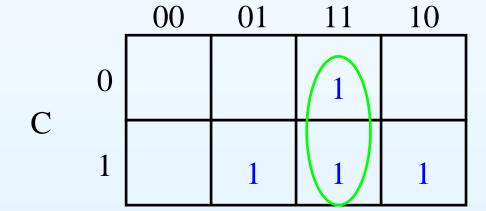
|   |   | 00 | 01 | 11 | 10 |
|---|---|----|----|----|----|
| C | 0 |    |    | 1  |    |
| C | 1 |    | 1  | 1  | 1  |



Circuit Minimization

Boolean Approach

#### Karnaugh Maps


- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Circle groups of powers of  $2 \ge 2^1$  (2, 4, 8, etc.) until all ones have been circled. Circle the largest groups possible.

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

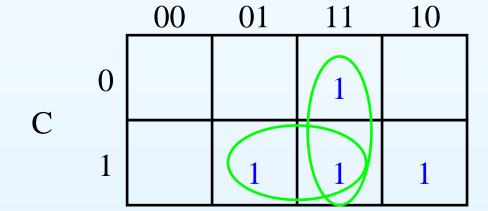




Circuit Minimization

Boolean Approach

#### Karnaugh Maps


- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Circle groups of powers of  $2 \ge 2^1$  (2, 4, 8, etc.) until all ones have been circled. Circle the largest groups possible.

$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

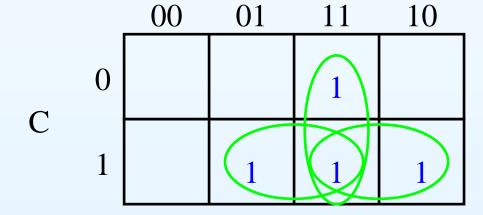




Circuit Minimization

Boolean Approach

#### Karnaugh Maps


- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Circle groups of powers of  $2 \ge 2^1$  (2, 4, 8, etc.) until all ones have been circled. Circle the largest groups possible.

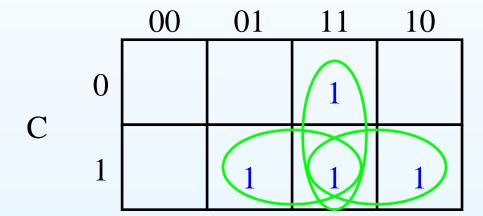
$$\overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$





Circuit Minimization

Boolean Approach


#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Read the terms from the circled items, leaving out variables that have different values within the group.

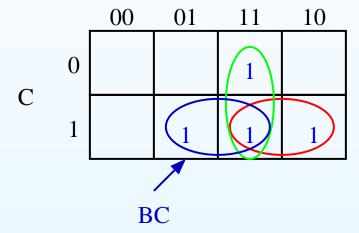




Circuit Minimization

Boolean Approach

#### Karnaugh Maps


- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Read the terms from the circled items, leaving out variables that have different values within the group.

AB



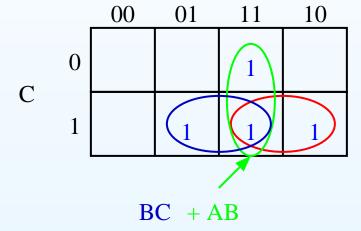
(Because B is same, C is same, but A = both 1 & 0)



# **Example: The magic of Karnaugh Maps**

Circuit Minimization

Boolean Approach


#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Read the terms from the circled items, leaving out variables that have different values within the group.



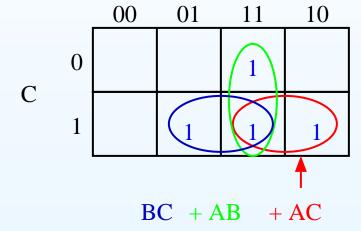
(Because A is same, B is same, but C = both 1 & 0)



# **Example: The magic of Karnaugh Maps**

Circuit Minimization

Boolean Approach


#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Read the terms from the circled items, leaving out variables that have different values within the group.



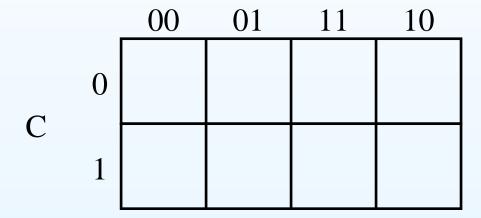
(Because A is same, C is same, but B = both 1 & 0)



## **Another Look at the Map**

**Circuit Minimization** 

Boolean Approach


#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Values for variables are listed so that only one change of value occurs between neighbors. ("Gray code")



With 4 variables  $\Rightarrow$  4 rows, 4 columns.



### **What to Circle**

#### Circuit Minimization

#### Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

- Circle: groups of size  $2^n$ , n > 0
- Don't have to circle groups of 1
  - implicit circles
  - must remember to include them in minimized expression, though!
- Circle largest group possible to cover each 1
  - Larger groups ⇒ fewer terms
  - $\circ$  Group of  $2^n$ : n inputs are eliminated
- A 1 can be in > 1 group:
  - May be needed to increase size of multiple groups
  - Each group: must have at least one 1 not in any other group
- Circles can "wrap around" map:
  - side to side, top to bottom
  - all 4 corners



Circuit Minimization

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Design a minimal circuit for the following expression:

$$\overline{A}B\overline{C}D + ABCD + \overline{A}BCD + AB\overline{C}D + ABC\overline{D} + ABC\overline{D} + A\overline{B}C\overline{D} + A\overline{B}C\overline{D}$$



Circuit Minimization

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Design a minimal circuit for the following expression:

$$\overline{A}B\overline{C}D + ABCD + \overline{A}BCD + AB\overline{C}D + ABC\overline{D} + ABC\overline{D} + A\overline{B}C\overline{D} + A\overline{B}C\overline{D}$$

Draw the Karnaugh map and add the values:

AB

|    | •  | 00 | 01 | 11 | 10 |
|----|----|----|----|----|----|
|    | 00 |    |    |    | 1  |
|    | 01 |    | 1  | 1  |    |
| CD | 11 |    | 1  | 1  |    |
|    | 10 |    |    | 1  | 1  |



Circuit Minimization

Boolean Approach

#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

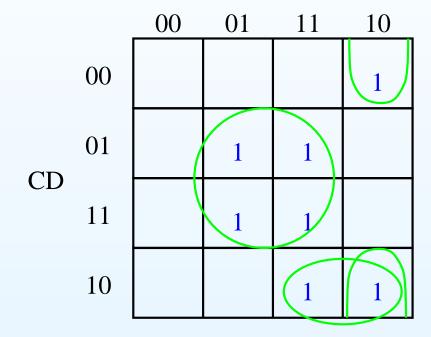
Circle the groups and read the terms for the minimal circuit.

|    |    | 00 | 01 | 11 | 10 |
|----|----|----|----|----|----|
| 00 |    |    | 1  |    |    |
| CD | 01 |    | 1  | 1  |    |
| CD | 11 |    | 1  | 1  |    |
|    | 10 |    |    | 1  | 1  |



Circuit Minimization

Boolean Approach


#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

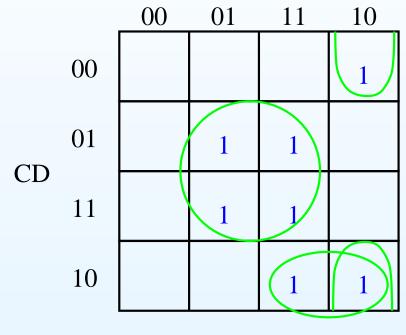
Circle the groups and read the terms for the minimal circuit.





**Circuit Minimization** 

Boolean Approach


#### Karnaugh Maps

- Karnaugh Maps
- Example
- Another Look at the Map
- What to Circle
- Another example

"Don't cares"

Conclusion

Circle the groups and read the terms for the minimal circuit.



$$BD + A\overline{B} \, \overline{D} + AC\overline{D}$$



# **Including Don't Cares**

**Circuit Minimization** 

Boolean Approach

Karnaugh Maps

"Don't cares"

- Including Don't Cares
- Example

- Put "Don't Cares" in Karnaugh Map as D
- Include them only in circles if it helps



# **Example** AB

Circuit Minimization

Boolean Approach

Karnaugh Maps

"Don't cares"

- Including Don't Cares
- Example

Conclusion

| Α | В | С | D | F |    |    | 00 | 01 | 1 |
|---|---|---|---|---|----|----|----|----|---|
| 0 | 0 | 0 | 0 | 1 |    | 00 | 1  |    |   |
| 0 | 0 | 0 | 1 | 0 |    |    |    |    |   |
| 0 | 0 | 1 | 0 | 0 |    | 01 |    |    | Ι |
| 0 | 0 | 1 | 1 | 0 | CD |    |    |    |   |
| 0 | 1 | 0 | 0 | 0 |    | 11 |    | 1  | Ι |
| 0 | 1 | 0 | 1 | 0 |    |    |    |    |   |
| 0 | 1 | 1 | 0 | 1 |    | 10 |    | 1  | 1 |
| 0 | 1 | 1 | 1 | 1 |    |    |    |    |   |
| 1 | 0 | 0 | 0 | _ |    |    |    |    |   |
| 1 | 0 | 0 | 1 | 0 |    |    |    |    |   |
| 1 | 0 | 1 | 0 | 0 |    |    |    |    |   |
| 1 | 0 | 1 | 1 | 0 |    |    |    |    |   |
| 1 | 1 | 0 | 0 | 0 |    |    |    |    |   |
| 1 | 1 | 0 | 1 | _ |    |    |    |    |   |
| 1 | 1 | 1 | 0 | 1 |    |    |    |    |   |
| 1 | 1 | 1 | 1 | D |    |    |    |    |   |

Computer Science Coundations 10

D

# Example

00

01

11

10

CD

| 0:    | . 14 | N /1: | :   | _:_  | - 41 |
|-------|------|-------|-----|------|------|
| Circu | ш    | IV/II | nın | nız: | anor |
|       |      |       |     |      |      |

Boolean Approach

Karnaugh Maps

#### "Don't cares"

- Including Don't Cares
- Example

Conclusion

| Α                               | В | С | D                | F                |
|---------------------------------|---|---|------------------|------------------|
| 0                               | 0 | 0 | 0                | 1                |
| 0                               | 0 | 0 | 1                | 0                |
| 0                               | 0 | 1 | 0                | 0                |
| 0                               | 0 | 1 | 1                | 0                |
| 0                               | 1 | 0 | 0                | 0                |
| 0                               | 1 | 0 | 0<br>1           | 0                |
| 0                               | 1 | 1 | 0                | 1                |
| 0<br>0<br>0<br>0<br>0<br>1<br>1 | 1 | 1 | 1                | 1                |
| 1                               | 0 | 0 |                  | 1<br>-<br>0<br>0 |
| 1                               | 0 | 0 | 0<br>1<br>0<br>1 | 0                |
| 1                               | 0 | 1 | 0                | 0                |
| 1                               | 0 | 1 | 1                | 0                |
| 1                               | 1 | 0 | 0                | 0                |
| 1                               | 1 | 0 | 1                | -                |
| 1                               | 1 | 1 | 0 1 0 1          | 0<br>-<br>1      |
| 1                               | 1 | 1 | 1                | D                |

| 01 | 11 | 10  |
|----|----|-----|
|    |    | D   |
|    | D  |     |
| 1  | D  |     |
| 1  | 1  |     |
|    | _  | D D |

AB



# Example

AB

00

01

11

10

| C | ircu | ıit N | /lin | imi | zat | ion |
|---|------|-------|------|-----|-----|-----|
|   |      |       |      |     |     |     |

Boolean Approach

Karnaugh Maps

"Don't cares"

- Including Don't Cares
- Example

| Α                | В | С | D | F |    |
|------------------|---|---|---|---|----|
| 0                | 0 | 0 | 0 | 1 |    |
| 0                | 0 | 0 | 1 | 0 |    |
| 0<br>0<br>0      | 0 | 1 | 0 | 0 |    |
|                  | 0 | 1 | 1 | 0 | CD |
| 0<br>0<br>0<br>0 | 1 | 0 | 0 | 0 |    |
| 0                | 1 | 0 | 1 | 0 |    |
| 0                | 1 | 1 | 0 | 1 |    |
| 0                | 1 | 1 | 1 | 1 |    |
| 1                | 0 | 0 | 0 | _ |    |
| 1                | 0 | 0 | 1 | 0 |    |
| 1                | 0 | 1 | 0 | 0 |    |
| 1                | 0 | 1 | 1 | 0 |    |
| 1                | 1 | 0 | 0 | 0 |    |
| 1                | 1 | 0 | 1 | _ |    |
| 1                | 1 | 1 | 0 | 1 |    |
| 1                | 1 | 1 | 1 | D |    |

| 00 | 01 | 11 | 10 |
|----|----|----|----|
| 1  |    |    | D  |
|    |    | D  |    |
|    | 1  | D  |    |
|    | 1  | 1  |    |

# **Example**

AB

00

01

11

10

CD

| C | ircu | ıit N | /lin | imi | zat | ion |
|---|------|-------|------|-----|-----|-----|
|   |      |       |      |     |     |     |

Boolean Approach

Karnaugh Maps

"Don't cares"

- Including Don't Cares
- Example

| Α | В           | С                | D                | F                               |
|---|-------------|------------------|------------------|---------------------------------|
| 0 | 0           | 0                | 0                | 1                               |
|   |             | 0                | 1                |                                 |
| 0 | 0           | 1                | 0                | 0                               |
| 0 | 0<br>0<br>0 | 1                | 0<br>1<br>0<br>1 | 0                               |
|   | 1           |                  | 0                | 0                               |
| 0 | 1           | 0                | 1                | 0                               |
| 0 | 1           | 0<br>0<br>1<br>1 | 0<br>1<br>0<br>1 | 0<br>0<br>0<br>0<br>1<br>1<br>- |
| 0 | 1           | 1                | 1                | 1                               |
| 1 | 0           | 0                | 0                | _                               |
| 1 | 0           | 0                | 0<br>1<br>0<br>1 | 0                               |
| 1 | 0           |                  | 0                | 0                               |
| 1 | 0 0 0       | 1                | 1                | 0                               |
| 1 | 1           | 0                | 0                |                                 |
| 1 | 1           | 0                | 1                | _                               |
| 1 | 1           | 1                | 0                | 0<br>-<br>1<br>D                |
| 1 | 1           | 1                | 1                | D                               |

| 00 | 01 | 11 | 10 |
|----|----|----|----|
| 1  |    |    | D  |
|    |    | D  |    |
|    | 1  | D  |    |
|    | 1  | 1  |    |

$$BC + \overline{B} \, \overline{C} \, \overline{D}$$

## **Advantages and Limitations of Karnaugh Maps**

Circuit Minimization

Boolean Approach

Karnaugh Maps

"Don't cares"

Conclusion

- Pros/Cons
- More

Pros:

- Easy to work with
- Handles don't cares no need to manipulate algebraic expression (as some other methods do)
- Cons:
  - Not meant for automation
  - $\circ$  Difficult to use with >4 variables
    - 5 or 6 variables: map is cube
    - Handle by overlaying tables, but hard to visualize
    - > 6: hypercube



## More about Karnaugh Maps and Minimizing Circuits

Circuit Minimization

Boolean Approach

Karnaugh Maps

"Don't cares"

Conclusion

- Pros/Cons
- More

 Can be used for functions other than SOPs – map is read differently

- Other methods exist that can be automated:
  - Work with more variables
  - E.g., Quine-McKluskey Method
  - But QM is NP-hard (i.e., intractable for many-variable functions)

