
CS
omputer

cience

Foundations

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 1 / 25

COS 140: Foundations of Computer Science

Handling Deadlocks: Banker’s Algorithm

Fall 2018



CS
omputer

cience

Foundations

Homework, reminder

Deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 2 / 25

• Chapter 22 (online)

• Homework at the end of chapter

• Homework due 11/16 (later than usual!)

• Prelim II: Wednesday, 11/14



CS
omputer

cience

Foundations

Operating systems as resource managers

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 3 / 25

• Example of resources

• Sharable vs non-sharable resources

• Preemptible vs non-preemptible resources

• Potential problem: deadlocks



CS
omputer

cience

Foundations

What are deadlocks?

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 25

• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:



CS
omputer

cience

Foundations

What are deadlocks?

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 25

• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card



CS
omputer

cience

Foundations

What are deadlocks?

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 25

• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card

◦ P1: asks for CD-ROM and receives it



CS
omputer

cience

Foundations

What are deadlocks?

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 25

• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card

◦ P1: asks for CD-ROM and receives it

◦ P2: needs CD-ROM and sound card



CS
omputer

cience

Foundations

What are deadlocks?

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 25

• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card

◦ P1: asks for CD-ROM and receives it

◦ P2: needs CD-ROM and sound card

◦ P2: asks for sound card and gets it



CS
omputer

cience

Foundations

What are deadlocks?

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 25

• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card

◦ P1: asks for CD-ROM and receives it

◦ P2: needs CD-ROM and sound card

◦ P2: asks for sound card and gets it

◦ P1: asks for sound card ⇒ blocks



CS
omputer

cience

Foundations

What are deadlocks?

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 4 / 25

• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card

◦ P1: asks for CD-ROM and receives it

◦ P2: needs CD-ROM and sound card

◦ P2: asks for sound card and gets it

◦ P1: asks for sound card ⇒ blocks

◦ P2: asks for CD-ROM ⇒ blocks



CS
omputer

cience

Foundations

Conditions for deadlocks

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 5 / 25

Mutual exclusion: Resource is either available or assigned to at

most one process



CS
omputer

cience

Foundations

Conditions for deadlocks

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 5 / 25

Mutual exclusion: Resource is either available or assigned to at

most one process

Hold-and-wait: Process can hold one resource and then ask for

others



CS
omputer

cience

Foundations

Conditions for deadlocks

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 5 / 25

Mutual exclusion: Resource is either available or assigned to at

most one process

Hold-and-wait: Process can hold one resource and then ask for

others

No preemption: Can’t take a resource away from a process once

assigned



CS
omputer

cience

Foundations

Conditions for deadlocks

Deadlocks

• Resource conflicts

• What are deadlocks?

• Conditions for

deadlocks

Deadlocks and digraphs

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 5 / 25

Mutual exclusion: Resource is either available or assigned to at

most one process

Hold-and-wait: Process can hold one resource and then ask for

others

No preemption: Can’t take a resource away from a process once

assigned

Circular wait: ≥ 2 processes in circle in which each is waiting for

resource held by next in circle



CS
omputer

cience

Foundations

Digression: Directed graphs

Deadlocks

Deadlocks and digraphs

• Digraphs

• Modeling deadlocks

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 6 / 25

• Many areas of CS require us to think of objects and relationships

between them; e.g., paths between locations, data

dependencies, constraints in logic puzzles



CS
omputer

cience

Foundations

Digression: Directed graphs

Deadlocks

Deadlocks and digraphs

• Digraphs

• Modeling deadlocks

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 6 / 25

• Many areas of CS require us to think of objects and relationships

between them; e.g., paths between locations, data

dependencies, constraints in logic puzzles

• Can represent this formally as a graph:

◦ Vertices (or nodes) represent the objects

◦ Edges (or arcs, or links) represent the relationships



CS
omputer

cience

Foundations

Digression: Directed graphs

Deadlocks

Deadlocks and digraphs

• Digraphs

• Modeling deadlocks

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 6 / 25

• Many areas of CS require us to think of objects and relationships

between them; e.g., paths between locations, data

dependencies, constraints in logic puzzles

• Can represent this formally as a graph:

◦ Vertices (or nodes) represent the objects

◦ Edges (or arcs, or links) represent the relationships

• Sometimes, relationship is directional

◦ Think “one-way streets”

◦ Now the edges have direction, and the graph is called a

directed graph or digraph



CS
omputer

cience

Foundations

Modeling deadlocks as digraphs

Deadlocks

Deadlocks and digraphs

• Digraphs

• Modeling deadlocks

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 7 / 25

• Circles: processes

• Squares: resources

• Link from process → resource: process requests resource

• Link from resource → process: process has control of resource

P1

Printer

P1

Printer



CS
omputer

cience

Foundations

Modeling deadlocks as digraphs

Deadlocks

Deadlocks and digraphs

• Digraphs

• Modeling deadlocks

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 25

Proc.
A

Proc.
B

CD-ROM
Sound
Card



CS
omputer

cience

Foundations

Modeling deadlocks as digraphs

Deadlocks

Deadlocks and digraphs

• Digraphs

• Modeling deadlocks

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 25

Proc.
A

Proc.
B

CD-ROM
Sound
Card



CS
omputer

cience

Foundations

Modeling deadlocks as digraphs

Deadlocks

Deadlocks and digraphs

• Digraphs

• Modeling deadlocks

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 25

Proc.
A

Proc.
B

CD-ROM
Sound
Card



CS
omputer

cience

Foundations

Modeling deadlocks as digraphs

Deadlocks

Deadlocks and digraphs

• Digraphs

• Modeling deadlocks

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 25

Proc.
A

Proc.
B

CD-ROM
Sound
Card



CS
omputer

cience

Foundations

Modeling deadlocks as digraphs

Deadlocks

Deadlocks and digraphs

• Digraphs

• Modeling deadlocks

Handling deadlocks

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 8 / 25

Proc.
A

Proc.
B

CD-ROM
Sound
Card



CS
omputer

cience

Foundations

What do we do about deadlocks?

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 9 / 25

• Ignore them

• Detect them and (try to) recover

• Prevent them altogether

• Predict and avoid them



CS
omputer

cience

Foundations

Ignoring deadlocks: The Ostrich Algorithm

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 10 / 25

• Sounds stupid, but...

• Consider:

◦ How often will a deadlock happen?

◦ How severe will it be if it does happen?

◦ How hard would it be to avoid/prevent/detect?



CS
omputer

cience

Foundations

Deadlock detection/recovery

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 11 / 25

• Detection:

◦ Monitor resource allocation using (e.g.) a digraph

◦ If detect a cycle ⇒ deadlock has occurred

• Recovery:

◦ Kill one of the processes

◦ If that doesn’t work: kill another, etc.

• Another alternative: just look for processes that have been idle

for a long time and kill them

• May be okay when aborting and restarting is okay (e.g., batch

jobs)



CS
omputer

cience

Foundations

Deadlock prevention

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 12 / 25

• Set things up so that deadlocks cannot occur at all

• Done by attacking one of the deadlock conditions

• Attacking mutual exclusion condition:

◦ Don’t let non-sharable resources be assigned to anyone

◦ E.g., spooling



CS
omputer

cience

Foundations

Deadlock prevention

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 13 / 25

• Attacking hold-and-wait condition:

◦ Process can’t request a resource if holding any

◦ One way: processes request all resources up front

◦ Problem: may not know ahead of time what you need!

◦ Problem: hold resources too long in general

◦ Another approach: release all you’re holding momentarily to

request another

• Attacking no preemption condition: not realistic



CS
omputer

cience

Foundations

Deadlock prevention

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 25

• Attacking the circular wait condition:

◦ Stupid way: processes can only hold a single resource at a

time



CS
omputer

cience

Foundations

Deadlock prevention

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 14 / 25

• Attacking the circular wait condition:

◦ Stupid way: processes can only hold a single resource at a

time

◦ Better way:

• Number the resources

• Process can request whatever it wants, whenever it

wants...as long as the requests are in numerical order



CS
omputer

cience

Foundations

Deadlock prevention

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 25

• Attacking the circular wait condition (cont’d):

◦ Resource allocation graph can’t have cycles in this scheme –

why not?



CS
omputer

cience

Foundations

Deadlock prevention

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 25

• Attacking the circular wait condition (cont’d):

◦ Resource allocation graph can’t have cycles in this scheme –

why not?

• Consider the case where process A holds resource i and

B holds j – deadlock only possible if A requests j and B

requests i



CS
omputer

cience

Foundations

Deadlock prevention

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 25

• Attacking the circular wait condition (cont’d):

◦ Resource allocation graph can’t have cycles in this scheme –

why not?

• Consider the case where process A holds resource i and

B holds j – deadlock only possible if A requests j and B

requests i

• If i > j, then A can’t request j



CS
omputer

cience

Foundations

Deadlock prevention

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 25

• Attacking the circular wait condition (cont’d):

◦ Resource allocation graph can’t have cycles in this scheme –

why not?

• Consider the case where process A holds resource i and

B holds j – deadlock only possible if A requests j and B

requests i

• If i > j, then A can’t request j

• If j > i, then B can’t request i



CS
omputer

cience

Foundations

Deadlock prevention

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 15 / 25

• Attacking the circular wait condition (cont’d):

◦ Resource allocation graph can’t have cycles in this scheme –

why not?

• Consider the case where process A holds resource i and

B holds j – deadlock only possible if A requests j and B

requests i

• If i > j, then A can’t request j

• If j > i, then B can’t request i

◦ Problem – may not be able to find an ordering that satisfies

everyone!



CS
omputer

cience

Foundations

Deadlock avoidance

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 16 / 25

• Idea: predict when some action → deadlock, avoid it

• Dijkstra’s Banker’s Algorithm (single resource version)

◦ Modeled on the way a banker might deal with lines of credit to

customers

◦ Deadlock if there is no way to guarantee that all customers

can borrow up to their maximum resource limit at some point

in time



CS
omputer

cience

Foundations

Dijkstra’s Banker’s Algorithm

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 17 / 25

• Safety:

A state is safe if some sequence of other possible

states exists that allows all customers (processes) to

get up to their maximum resource limit at some time

• Keep track of maxmimum and current allocation for each

customer

• Start in a safe state

• When process requests additional amount of resource, make

sure that next state will also be safe

• If so, allow request, else disallow it



CS
omputer

cience

Foundations

Banker’s Algorithm Example

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 18 / 25

• Initial state:

Process Current Maximum

A 0 7

B 0 3

C 0 2

D 0 4

Remaining: 8



CS
omputer

cience

Foundations

Banker’s Algorithm Example 2

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 25

• Initial state:

Process Current Maximum

A 3 7

B 2 3

C 0 2

D 2 4

Remaining: 1

• Safe or not?



CS
omputer

cience

Foundations

Banker’s Algorithm Example 2

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 25

• Initial state:

Process Current Maximum

A 3 7

B 2 3

C 0 2

D 2 4

Remaining: 1

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A



CS
omputer

cience

Foundations

Banker’s Algorithm Example 2

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 25

• Initial state:

Process Current Maximum

A 3 7

B 3 3

C 0 2

D 2 4

Remaining: 0

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A



CS
omputer

cience

Foundations

Banker’s Algorithm Example 2

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 25

• Initial state:

Process Current Maximum

A 3 7

B – –

C 0 2

D 2 4

Remaining: 3

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A



CS
omputer

cience

Foundations

Banker’s Algorithm Example 2

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 25

• Initial state:

Process Current Maximum

A 3 7

B – –

C 0 2

D 4 4

Remaining: 1

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A



CS
omputer

cience

Foundations

Banker’s Algorithm Example 2

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 25

• Initial state:

Process Current Maximum

A 3 7

B – –

C 0 2

D – –

Remaining: 5

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A



CS
omputer

cience

Foundations

Banker’s Algorithm Example 2

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 25

• Initial state:

Process Current Maximum

A 3 7

B – –

C 2 2

D – –

Remaining: 3

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A



CS
omputer

cience

Foundations

Banker’s Algorithm Example 2

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 25

• Initial state:

Process Current Maximum

A 3 7

B – –

C – –

D – –

Remaining: 5

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A



CS
omputer

cience

Foundations

Banker’s Algorithm Example 2

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 25

• Initial state:

Process Current Maximum

A 7 7

B – –

C – –

D – –

Remaining: 1

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A



CS
omputer

cience

Foundations

Banker’s Algorithm Example 2

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 19 / 25

• Initial state:

Process Current Maximum

A – –

B – –

C – –

D – –

Remaining: 8

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A



CS
omputer

cience

Foundations

Banker’s Algorithm Example 3

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 20 / 25

Proc Curr Max Proc Curr Max

A 3 7 A 3 7

B 2 3
B wants 1
=⇒ B 3 3

C 0 2 C 0 2

D 2 4 D 2 4

Remaining: 1 Remaining: 0

• Allow the request?



CS
omputer

cience

Foundations

Banker’s Algorithm Example 3

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 20 / 25

Proc Curr Max Proc Curr Max

A 3 7 A 3 7

B 2 3
B wants 1
=⇒ B 3 3

C 0 2 C 0 2

D 2 4 D 2 4

Remaining: 1 Remaining: 0

• Allow the request?

◦ Yes.

◦ Possible sequence of processes running to completion: B →

D → C → A



CS
omputer

cience

Foundations

Banker’s Algorithm Example 4

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 21 / 25

Proc Curr Max Proc Curr Max

A 6 7 A 7 7

B 0 3
A wants 1
=⇒ B 0 3

C 0 2 C 0 2

D 1 4 D 1 4

Remaining: 1 Remaining: 0

• Allow the request?



CS
omputer

cience

Foundations

Banker’s Algorithm Example 4

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 21 / 25

Proc Curr Max Proc Curr Max

A 6 7 A 7 7

B 0 3
A wants 1
=⇒ B 0 3

C 0 2 C 0 2

D 1 4 D 1 4

Remaining: 1 Remaining: 0

• Allow the request?

◦ Yes.

◦ Possible sequence of processes running to completion: A →

B → C → D



CS
omputer

cience

Foundations

Banker’s Algorithm Example 5

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 22 / 25

Proc Curr Max Proc Curr Max

A 4 7 A 4 7

B 1 3
D wants 1
=⇒ B 1 3

C 0 2 C 0 2

D 1 4 D 2 4

Remaining: 2 Remaining: 1

• Allow the request?



CS
omputer

cience

Foundations

Banker’s Algorithm Example 5

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 22 / 25

Proc Curr Max Proc Curr Max

A 4 7 A 4 7

B 1 3
D wants 1
=⇒ B 1 3

C 0 2 C 0 2

D 1 4 D 2 4

Remaining: 2 Remaining: 1

• Allow the request?

◦ NO!

◦ No sequence possible where they all can finish



CS
omputer

cience

Foundations

Banker’s Algorithm: Critique

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 23 / 25

• Is it too strong?

• After all – no guarantee that in the previous example:

Proc Curr Max Proc Curr Max

A 4 7 A 4 7

B 1 3
D wants 1
=⇒ B 1 3

C 0 2 C 0 2

D 1 4 D 2 4

Remaining: 2 Remaining: 1

D might not give back 1 immediately, moving back into safe state

• But we’re interested in guarantee that there will be no deadlock,

so this is what we need.



CS
omputer

cience

Foundations

Banker’s Algorithm: Critique

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 24 / 25

• Scales to multiple processes/resources

• Problems:

◦ Need to know maximum resources needed per process –

often (usually?) impossible for multiprocess system

◦ Number of processes constantly changes

◦ Resources can disappear

• But: Really no better general-purpose algorithm exists for this



CS
omputer

cience

Foundations

Summary

Deadlocks

Deadlocks and digraphs

Handling deadlocks

• How to handle?

• Ignore them

• Detection/recover

• Prevention

• Avoidance

• Banker’s Algorithm

• Examples

• Critique

• Summary

Copyright c© 2002–2018 UMaine School of Computing and Information Science – 25 / 25

• Handling deadlocks is difficult

• No best general solution

• How you choose to handle it depends on your situation: trade-offs


	Homework, reminder
	Deadlocks
	Operating systems as resource managers
	What are deadlocks?
	Conditions for deadlocks

	Deadlocks and digraphs
	Digression: Directed graphs
	Modeling deadlocks as digraphs
	Modeling deadlocks as digraphs

	Handling deadlocks
	What do we do about deadlocks?
	Ignoring deadlocks: The Ostrich Algorithm
	Deadlock detection/recovery
	Deadlock prevention
	Deadlock prevention
	Deadlock prevention
	Deadlock prevention
	Deadlock avoidance
	Dijkstra's Banker's Algorithm
	Banker's Algorithm Example
	Banker's Algorithm Example 2
	Banker's Algorithm Example 3
	Banker's Algorithm Example 4
	Banker's Algorithm Example 5
	Banker's Algorithm: Critique
	Banker's Algorithm: Critique
	Summary


