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COS 140: Foundations of Computer Science

Handling Deadlocks: Banker’s Algorithm
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• Chapter 22 (online)

• Homework at the end of chapter

• Homework due 11/16 (later than usual!)

• Prelim II: Wednesday, 11/14
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• Example of resources

• Sharable vs non-sharable resources

• Preemptible vs non-preemptible resources

• Potential problem: deadlocks
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• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:
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• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card
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• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card

◦ P1: asks for CD-ROM and receives it
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• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card

◦ P1: asks for CD-ROM and receives it

◦ P2: needs CD-ROM and sound card
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• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card

◦ P1: asks for CD-ROM and receives it

◦ P2: needs CD-ROM and sound card

◦ P2: asks for sound card and gets it
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• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card

◦ P1: asks for CD-ROM and receives it

◦ P2: needs CD-ROM and sound card

◦ P2: asks for sound card and gets it

◦ P1: asks for sound card ⇒ blocks
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• A deadlock occurs when each process in a set of processes is

waiting for some event that only another process in the set can

cause. [after Tannenbaum]

• Example:

◦ P1: needs CD-ROM and sound card

◦ P1: asks for CD-ROM and receives it

◦ P2: needs CD-ROM and sound card

◦ P2: asks for sound card and gets it

◦ P1: asks for sound card ⇒ blocks

◦ P2: asks for CD-ROM ⇒ blocks
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Mutual exclusion: Resource is either available or assigned to at

most one process
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Mutual exclusion: Resource is either available or assigned to at

most one process

Hold-and-wait: Process can hold one resource and then ask for

others
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Mutual exclusion: Resource is either available or assigned to at

most one process

Hold-and-wait: Process can hold one resource and then ask for

others

No preemption: Can’t take a resource away from a process once

assigned
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Mutual exclusion: Resource is either available or assigned to at

most one process

Hold-and-wait: Process can hold one resource and then ask for

others

No preemption: Can’t take a resource away from a process once

assigned

Circular wait: ≥ 2 processes in circle in which each is waiting for

resource held by next in circle
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• Many areas of CS require us to think of objects and relationships

between them; e.g., paths between locations, data

dependencies, constraints in logic puzzles
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• Many areas of CS require us to think of objects and relationships

between them; e.g., paths between locations, data

dependencies, constraints in logic puzzles

• Can represent this formally as a graph:

◦ Vertices (or nodes) represent the objects

◦ Edges (or arcs, or links) represent the relationships
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• Many areas of CS require us to think of objects and relationships

between them; e.g., paths between locations, data

dependencies, constraints in logic puzzles

• Can represent this formally as a graph:

◦ Vertices (or nodes) represent the objects

◦ Edges (or arcs, or links) represent the relationships

• Sometimes, relationship is directional

◦ Think “one-way streets”

◦ Now the edges have direction, and the graph is called a

directed graph or digraph
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• Circles: processes

• Squares: resources

• Link from process → resource: process requests resource

• Link from resource → process: process has control of resource

P1

Printer

P1

Printer
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• Ignore them

• Detect them and (try to) recover

• Prevent them altogether

• Predict and avoid them
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• Sounds stupid, but...

• Consider:

◦ How often will a deadlock happen?

◦ How severe will it be if it does happen?

◦ How hard would it be to avoid/prevent/detect?
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• Detection:

◦ Monitor resource allocation using (e.g.) a digraph

◦ If detect a cycle ⇒ deadlock has occurred

• Recovery:

◦ Kill one of the processes

◦ If that doesn’t work: kill another, etc.

• Another alternative: just look for processes that have been idle

for a long time and kill them

• May be okay when aborting and restarting is okay (e.g., batch

jobs)
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• Set things up so that deadlocks cannot occur at all

• Done by attacking one of the deadlock conditions

• Attacking mutual exclusion condition:

◦ Don’t let non-sharable resources be assigned to anyone

◦ E.g., spooling
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• Attacking hold-and-wait condition:

◦ Process can’t request a resource if holding any

◦ One way: processes request all resources up front

◦ Problem: may not know ahead of time what you need!

◦ Problem: hold resources too long in general

◦ Another approach: release all you’re holding momentarily to

request another

• Attacking no preemption condition: not realistic
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• Attacking the circular wait condition:

◦ Stupid way: processes can only hold a single resource at a

time
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• Attacking the circular wait condition:

◦ Stupid way: processes can only hold a single resource at a

time

◦ Better way:

• Number the resources

• Process can request whatever it wants, whenever it

wants...as long as the requests are in numerical order
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• Attacking the circular wait condition (cont’d):

◦ Resource allocation graph can’t have cycles in this scheme –

why not?
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• Attacking the circular wait condition (cont’d):

◦ Resource allocation graph can’t have cycles in this scheme –

why not?

• Consider the case where process A holds resource i and

B holds j – deadlock only possible if A requests j and B

requests i
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• Attacking the circular wait condition (cont’d):

◦ Resource allocation graph can’t have cycles in this scheme –

why not?

• Consider the case where process A holds resource i and

B holds j – deadlock only possible if A requests j and B

requests i

• If i > j, then A can’t request j
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• Attacking the circular wait condition (cont’d):

◦ Resource allocation graph can’t have cycles in this scheme –

why not?

• Consider the case where process A holds resource i and

B holds j – deadlock only possible if A requests j and B

requests i

• If i > j, then A can’t request j

• If j > i, then B can’t request i
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• Attacking the circular wait condition (cont’d):

◦ Resource allocation graph can’t have cycles in this scheme –

why not?

• Consider the case where process A holds resource i and

B holds j – deadlock only possible if A requests j and B

requests i

• If i > j, then A can’t request j

• If j > i, then B can’t request i

◦ Problem – may not be able to find an ordering that satisfies

everyone!
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• Idea: predict when some action → deadlock, avoid it

• Dijkstra’s Banker’s Algorithm (single resource version)

◦ Modeled on the way a banker might deal with lines of credit to

customers

◦ Deadlock if there is no way to guarantee that all customers

can borrow up to their maximum resource limit at some point

in time
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• Safety:

A state is safe if some sequence of other possible

states exists that allows all customers (processes) to

get up to their maximum resource limit at some time

• Keep track of maxmimum and current allocation for each

customer

• Start in a safe state

• When process requests additional amount of resource, make

sure that next state will also be safe

• If so, allow request, else disallow it
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• Initial state:

Process Current Maximum

A 0 7

B 0 3

C 0 2

D 0 4

Remaining: 8
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• Initial state:

Process Current Maximum

A 3 7

B 2 3

C 0 2

D 2 4

Remaining: 1

• Safe or not?
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• Initial state:

Process Current Maximum

A 3 7

B 2 3

C 0 2

D 2 4

Remaining: 1

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A
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• Initial state:

Process Current Maximum

A 3 7

B 3 3

C 0 2

D 2 4

Remaining: 0

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A
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• Initial state:

Process Current Maximum

A 3 7

B – –

C 0 2

D 2 4

Remaining: 3

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A
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• Initial state:

Process Current Maximum

A 3 7

B – –

C 0 2

D 4 4

Remaining: 1

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A
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• Initial state:

Process Current Maximum

A 3 7

B – –

C 0 2

D – –

Remaining: 5

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A
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• Initial state:

Process Current Maximum

A 3 7

B – –

C 2 2

D – –

Remaining: 3

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A
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• Initial state:

Process Current Maximum

A 3 7

B – –

C – –

D – –

Remaining: 5

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A
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• Initial state:

Process Current Maximum

A 7 7

B – –

C – –

D – –

Remaining: 1

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A
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• Initial state:

Process Current Maximum

A – –

B – –

C – –

D – –

Remaining: 8

• Safe or not?

◦ Safe

◦ Possible sequence of processes running to completion: B →

D → C → A
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Proc Curr Max Proc Curr Max

A 3 7 A 3 7

B 2 3
B wants 1
=⇒ B 3 3

C 0 2 C 0 2

D 2 4 D 2 4

Remaining: 1 Remaining: 0

• Allow the request?
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Proc Curr Max Proc Curr Max

A 3 7 A 3 7

B 2 3
B wants 1
=⇒ B 3 3

C 0 2 C 0 2

D 2 4 D 2 4

Remaining: 1 Remaining: 0

• Allow the request?

◦ Yes.

◦ Possible sequence of processes running to completion: B →

D → C → A
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Proc Curr Max Proc Curr Max

A 6 7 A 7 7

B 0 3
A wants 1
=⇒ B 0 3

C 0 2 C 0 2

D 1 4 D 1 4

Remaining: 1 Remaining: 0

• Allow the request?
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Proc Curr Max Proc Curr Max

A 6 7 A 7 7

B 0 3
A wants 1
=⇒ B 0 3

C 0 2 C 0 2

D 1 4 D 1 4

Remaining: 1 Remaining: 0

• Allow the request?

◦ Yes.

◦ Possible sequence of processes running to completion: A →

B → C → D
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Proc Curr Max Proc Curr Max

A 4 7 A 4 7

B 1 3
D wants 1
=⇒ B 1 3

C 0 2 C 0 2

D 1 4 D 2 4

Remaining: 2 Remaining: 1

• Allow the request?
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Proc Curr Max Proc Curr Max

A 4 7 A 4 7

B 1 3
D wants 1
=⇒ B 1 3

C 0 2 C 0 2

D 1 4 D 2 4

Remaining: 2 Remaining: 1

• Allow the request?

◦ NO!

◦ No sequence possible where they all can finish
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• Is it too strong?

• After all – no guarantee that in the previous example:

Proc Curr Max Proc Curr Max

A 4 7 A 4 7

B 1 3
D wants 1
=⇒ B 1 3

C 0 2 C 0 2

D 1 4 D 2 4

Remaining: 2 Remaining: 1

D might not give back 1 immediately, moving back into safe state

• But we’re interested in guarantee that there will be no deadlock,

so this is what we need.
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• Scales to multiple processes/resources

• Problems:

◦ Need to know maximum resources needed per process –

often (usually?) impossible for multiprocess system

◦ Number of processes constantly changes

◦ Resources can disappear

• But: Really no better general-purpose algorithm exists for this
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• Handling deadlocks is difficult

• No best general solution

• How you choose to handle it depends on your situation: trade-offs
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