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Homework, reminder

� Chapter 22 (online)
� Homework at the end of chapter
� Homework due 11/16 (later than usual!)
� Prelim II: Wednesday, 11/14
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Operating systems as resource managers

� Example of resources
� Sharable vs non-sharable resources
� Preemptible vs non-preemptible resources
� Potential problem: deadlocks
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What are deadlocks?

� A deadlock occurs when each process in a set of processes is waiting for some event that only another
process in the set can cause. [after Tannenbaum]

� Example:

– P1: needs CD-ROM and sound card
– P1: asks for CD-ROM and receives it
– P2: needs CD-ROM and sound card
– P2: asks for sound card and gets it
– P1: asks for sound card ⇒ blocks
– P2: asks for CD-ROM ⇒ blocks
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Conditions for deadlocks

Mutual exclusion: Resource is either available or assigned to at most one process
Hold-and-wait: Process can hold one resource and then ask for others
No preemption: Can’t take a resource away from a process once assigned
Circular wait: ≥ 2 processes in circle in which each is waiting for resource held by next in circle
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Deadlocks and digraphs 6 / 25

Digression: Directed graphs

� Many areas of CS require us to think of objects and relationships between them; e.g., paths between
locations, data dependencies, constraints in logic puzzles

� Can represent this formally as a graph:

– Vertices (or nodes) represent the objects
– Edges (or arcs, or links) represent the relationships

� Sometimes, relationship is directional

– Think “one-way streets”
– Now the edges have direction, and the graph is called a directed graph or digraph
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Modeling deadlocks as digraphs

� Circles: processes
� Squares: resources
� Link from process → resource: process requests resource
� Link from resource → process: process has control of resource

P1

Printer

P1

Printer
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Modeling deadlocks as digraphs
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What do we do about deadlocks?

� Ignore them
� Detect them and (try to) recover
� Prevent them altogether
� Predict and avoid them
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Ignoring deadlocks: The Ostrich Algorithm

� Sounds stupid, but...
� Consider:

– How often will a deadlock happen?
– How severe will it be if it does happen?
– How hard would it be to avoid/prevent/detect?
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Deadlock detection/recovery

� Detection:

– Monitor resource allocation using (e.g.) a digraph
– If detect a cycle ⇒ deadlock has occurred

� Recovery:

– Kill one of the processes
– If that doesn’t work: kill another, etc.

� Another alternative: just look for processes that have been idle for a long time and kill them
� May be okay when aborting and restarting is okay (e.g., batch jobs)
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Deadlock prevention

� Set things up so that deadlocks cannot occur at all
� Done by attacking one of the deadlock conditions
� Attacking mutual exclusion condition:

– Don’t let non-sharable resources be assigned to anyone
– E.g., spooling
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Deadlock prevention

� Attacking hold-and-wait condition:

– Process can’t request a resource if holding any
– One way: processes request all resources up front
– Problem: may not know ahead of time what you need!
– Problem: hold resources too long in general
– Another approach: release all you’re holding momentarily to request another

� Attacking no preemption condition: not realistic
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Deadlock prevention

� Attacking the circular wait condition:

– Stupid way: processes can only hold a single resource at a time
– Better way:

⊲ Number the resources
⊲ Process can request whatever it wants, whenever it wants...as long as the requests are in

numerical order
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Deadlock prevention

� Attacking the circular wait condition (cont’d):

– Resource allocation graph can’t have cycles in this scheme – why not?

⊲ Consider the case where process A holds resource i and B holds j – deadlock only possible if A
requests j and B requests i

⊲ If i > j, then A can’t request j
⊲ If j > i, then B can’t request i

– Problem – may not be able to find an ordering that satisfies everyone!
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Deadlock avoidance

� Idea: predict when some action → deadlock, avoid it
� Dijkstra’s Banker’s Algorithm (single resource version)

– Modeled on the way a banker might deal with lines of credit to customers
– Deadlock if there is no way to guarantee that all customers can borrow up to their maximum

resource limit at some point in time
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Dijkstra’s Banker’s Algorithm

� Safety:

A state is safe if some sequence of other possible states exists that allows all customers
(processes) to get up to their maximum resource limit at some time

� Keep track of maxmimum and current allocation for each customer
� Start in a safe state
� When process requests additional amount of resource, make sure that next state will also be safe
� If so, allow request, else disallow it
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Banker’s Algorithm Example

� Initial state:

Process Current Maximum
A 0 7
B 0 3
C 0 2
D 0 4

Remaining: 8
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Banker’s Algorithm Example 2

� Initial state:

Process Current Maximum
A 3 7
B 2 3
C 0 2
D 2 4

Remaining: 1
� Safe or not?

Process Finishing
Proc Max Init B D C A
A 7 3 3 3 3 3 3 3 7 –
B 3 2 3 – – – – – – –
C 2 0 0 0 0 0 2 – – –
D 4 2 2 2 4 – – – – –

Rem 1 0 3 1 5 3 5 1 8
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Banker’s Algorithm Example 3

Proc Curr Max Proc Curr Max
A 3 7 A 3 7

B 2 3
B wants 1

=⇒ B 3 3
C 0 2 C 0 2
D 2 4 D 2 4
Remaining: 1 Remaining: 0

� Allow the request?

– Yes.
– Possible sequence of processes running to completion: B → D → C → A
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Banker’s Algorithm Example 4

Proc Curr Max Proc Curr Max
A 6 7 A 7 7

B 0 3
A wants 1

=⇒ B 0 3
C 0 2 C 0 2
D 1 4 D 1 4
Remaining: 1 Remaining: 0

� Allow the request?

– Yes.
– Possible sequence of processes running to completion: A → B → C → D
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Banker’s Algorithm Example 5

Proc Curr Max Proc Curr Max
A 4 7 A 4 7

B 1 3
D wants 1

=⇒ B 1 3
C 0 2 C 0 2
D 1 4 D 2 4
Remaining: 2 Remaining: 1

� Allow the request?

– NO!
– No sequence possible where they all can finish
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Banker’s Algorithm: Critique

� Is it too strong?
� After all – no guarantee that in the previous example:

Proc Curr Max Proc Curr Max
A 4 7 A 4 7

B 1 3
D wants 1

=⇒ B 1 3
C 0 2 C 0 2
D 1 4 D 2 4
Remaining: 2 Remaining: 1

D might not give back 1 immediately, moving back into safe state
� But we’re interested in guarantee that there will be no deadlock, so this is what we need.
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Banker’s Algorithm: Critique

� Scales to multiple processes/resources
� Problems:

– Need to know maximum resources needed per process – often (usually?) impossible for
multiprocess system

– Number of processes constantly changes
– Resources can disappear

� But: Really no better general-purpose algorithm exists for this
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Summary

� Handling deadlocks is difficult
� No best general solution
� How you choose to handle it depends on your situation: trade-offs
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