
Homework

� It’s back by popular demand!
� Readings, exercises: Chapter 11, due 10/10 (later than usual!)
� Homework keys
� Study group(s)
� Prelim 1 – 10/12

Copyright c© 2002–2018 UMaine Computer Science Department – 1 / 21

1

COS 140: Foundations of Computer Science

Bus Arbitration: Daisy Chain Buses

Fall 2018

Overview 3
The problem. 3
What is a Bus? . 4
Communication with Memory . 5
Communication with the I/O Module . 6
Communication with the CPU. 7
Interrupts. 8
Some Bus Terminology . 9

Bus Arbitration 10
Centralized Arbitration. 11
Decentralized Arbitration . 12

Daisy Chains 13
Issues . 14
Priorities . 15

HIdden Arbitration 16
Hidden arbitration . 17

Decentralized Daisy Chains 19

2

Overview 3 / 21

The problem

� Need to get information from one component to another
� Components can be:

– functional units inside the CPU
– CPU and memory
– CPU/memory and I/O devices

� Maybe too expensive/impractical to have point-to-point communication
� How to have devices share communication pathways?

Use a communication bus

Copyright c© 2002–2018 UMaine Computer Science Department – 3 / 21

3

What is a Bus?

� The method of communication between components of the architecture.
� Multiple lines.

– Each line sends a 1 or 0.
– Lines are grouped together and bits are sent in parallel.

� Multiple devices can send and receive.

– No privacy.
– If all devices send, have a garbled message.

Copyright c© 2002–2018 UMaine Computer Science Department – 4 / 21

Communication with Memory

� words of data read or written to memory
� address of word
� control to specify read or write

Copyright c© 2002–2018 UMaine Computer Science Department – 5 / 21

4

Communication with the I/O Module

� data
� address
� read or write control
� select for a particular I/O device
� interrupt CPU

Copyright c© 2002–2018 UMaine Computer Science Department – 6 / 21

Communication with the CPU

� read instructions
� read and write data
� control signals to make system work
� handle interrupts

Copyright c© 2002–2018 UMaine Computer Science Department – 7 / 21

5

Interrupts

� Interrupts alert CPU to something important that has happened ⇒ CPU does not have to constantly
check for each potential situation.

� Devices put a 1 on an interrupt line to signal interrupt
� CPU checks for interrupts at specific points in its functioning.
� If it finds an interrupt, it suspends what it is doing (e.g., the user’s program) to handle the interrupt.
� When the interrupt has been handled, the CPU returns to what it was doing before the interrupt was

discovered.

Copyright c© 2002–2018 UMaine Computer Science Department – 8 / 21

Some Bus Terminology

System bus: connects memory, CPU and I/O
Bus width: number of lines
Assert: put information on a line
Negate: remove information from a line

Copyright c© 2002–2018 UMaine Computer Science Department – 9 / 21

6

Bus Arbitration 10 / 21

Bus Arbitration

� No physical reason why all devices on the bus can’t use the bus at the same time
� If more than one device tries to send information on the bus at once: information garbled
� Bus arbitration: controls which device will get the bus.
� Many schemes for bus arbitration – for each

– all devices have to follow the rules
– do not send information unless they have permission

Copyright c© 2002–2018 UMaine Computer Science Department – 10 / 21

Centralized Arbitration

� One arbiter makes choice and informs devices on bus.
� Advantage:

– Can use very simple scheme to select which device will have control.
– Devices do not have to put any resources toward arbitration.

� Disadvantages:

– Cost of arbiter.
– Single point of failure at arbiter. If arbiter goes down, can’t use the bus.

Copyright c© 2002–2018 UMaine Computer Science Department – 11 / 21

7

Decentralized Arbitration

� All devices participate in selecting which device will control the bus next.
� Advantages:

– Less costly because do not have to have an arbiter.
– If a device goes down, can continue to use bus.

� Disadvantage:

– Schemes are more complicated than those for centralized arbitration.

Copyright c© 2002–2018 UMaine Computer Science Department – 12 / 21

Daisy Chains 13 / 21

Daisy Chaining Architecture

Arbiter

Request Line

Grant Line

Device 2 Device 3Device 1

Release Line

Arbiter

Request Line

Grant Line

Device 2 Device 3Device 1

Release Line

Arbiter

Request Line

Grant Line

Device 2 Device 3Device 1

Release Line

Arbiter

Request Line

Grant Line

Device 2 Device 3Device 1

Release Line

Arbiter

Request Line

Grant Line

Device 2 Device 3Device 1

Release Line

Arbiter

Request Line

Grant Line

Device 2 Device 3Device 1

Release Line

Arbiter

Request Line

Grant Line

Device 2 Device 3Device 1

Release Line

Arbiter

Request Line

Grant Line

Device 2 Device 3Device 1

Release Line

Arbiter

Request Line

Grant Line

Device 2 Device 3Device 1

Release Line

The bus has additional control lines: grant, request, and release When a device wants the bus it asserts
its request line The arbiter senses the request, then it asserts the grant line If a node (a bus master)
receives the grant line, but hasn’t requested the bus, it passes it through When the node requesting the
bus gets the grant line, it can start using the bus When the node is done with the bus, it releases the
request line It then tells the arbiter it’s done by raising the release line The arbiter then drops the grant
line At this point, it’s back to the initial state Now another device can request the bus

Copyright c© 2002–2018 UMaine Computer Science Department – 13 / 21

8

Daisy Chaining Issues

Arbiter

Request Line

Grant Line

Device 2 Device 3Device 1

Release Line

� How do devices know that the bus is busy and they can’t take control?
� Which device most often gets control of the bus?

– Do you think that’s fair?
– Can one device suffer from starvation – never getting any resources?

Copyright c© 2002–2018 UMaine Computer Science Department – 14 / 21

Adding Priorities to Daisy Chaining

Arbiter

Request Line

Grant Line

Device 2 Device 3Device 1

Request Line

Grant Line

Device 2 Device 3Device 1

Request Line

Grant Line

Device 2 Device 3Device 1

Highest
Priority

Lowest
Priority

� Can add request and grant lines to
create priorities.

– Devices are assigned priorities
and make requests and seek
grants of the bus from the lines
for their priorities.

– Can have several priority levels.

� The arbiter has to assert the grant
line corresponding to the highest
priority request line that is asserted.

� For each priority level, arbitration
works the same way for the device.

Copyright c© 2002–2018 UMaine Computer Science Department – 15 / 21

9

HIdden Arbitration 16 / 21

Hidden Arbitration

� In current scheme, arbitration occurs when the bus is available.

– Data is not sent when arbitration is going on.
– Less data sent over the bus – waste time on arbitration.

� Hidden arbitration means that arbitration takes place while the bus is being used, so arbitration is
hidden from the bus usage.

Copyright c© 2002–2018 UMaine Computer Science Department – 16 / 21

Hidden Arbitration in Daisy Chaining

Arbiter

Request Line

Grant Line

Device 2 Device 3ACK
BusDevice 1

Arbiter

Request Line

Grant Line

Device 2 Device 3ACK
BusDevice 1

Arbiter

Request Line

Grant Line

Device 2 Device 3ACK
BusDevice 1

� The device that controls the bus is chosen in the same way as with regular daisy chaining.
� When a device takes control of the bus, it asserts an acknowledgment (ACK) line, which is noticed by arbiter
� The arbiter then negates the grant line

Copyright c© 2002–2018 UMaine Computer Science Department – 17 / 21

10

Hidden Arbitration in Daisy Chaining

Arbiter

Request Line

Grant Line

Device 2 Device 3ACK
BusDevice 1

Arbiter Grant Line

Device 2ACK
BusDevice 1 Device 3

Request Line

Request Line

Grant Line

Device 2ACK
BusDevice 1 Device 3

Arbiter

Request Line

Grant Line

Device 1 Device 2ACK
Bus

Arbiter

Device 3

Request Line

Grant Line

Device 1 Device 2ACK
Bus

Arbiter

Device 3

Arbiter

Request Line

Grant Line

Device 1 Device 2ACK
BusDevice 3

� Once grant line is negated...
� Others may request bus...and are selected in the usual way
� When the first device is finished, it negates ACK line
� Next device starts using bus as soon as ACK negated

Copyright c© 2002–2018 UMaine Computer Science Department – 18 / 21

Decentralized Daisy Chains 19 / 21

Decentralized Daisy Chain

� The arbiter is replaced with an asserted grant line.
� Add a busy line to show when bus is busy and cannot change grant line.
� Take control of bus as with centralized daisy chain (with addition of busy line).

Copyright c© 2002–2018 UMaine Computer Science Department – 19 / 21

11

Decentralized Daisy Chains
Grant Line

Busy Line

Device 1 Device 2 Device 3 Bus

1 Grant Line

Busy Line

Device 1 Device 3 Bus

1

Device 2

Grant Line

Busy Line

Device 3 Bus

1

Device 2Device 1

Grant Line

Busy Line

Device 3 Bus

1

Device 1 Device 2

Grant Line

Busy Line

Device 3 Bus

1

Device 1 Device 2

Grant Line

Busy Line

Device 3 Bus

1

Device 1 Device 2

1. Initially, grant line passed throughout chain
2. When device wants bus and busy negated, negate grant line, assert busy
3. If another wants bus, senses busy, waits
4. When finished, negate busy, pass asserted grant
5. Device wanting bus now notices busy negated, asserts it and negates grant downstream
6. Device begins using bus

Copyright c© 2002–2018 UMaine Computer Science Department – 20 / 21

So...

� Which is best?
� Pros, cons?
� Real buses can be much more complicated than this!
� Many different kinds

Copyright c© 2002–2018 UMaine Computer Science Department – 21 / 21

12

	Homework
	Overview
	The problem
	What is a Bus?
	Communication with Memory
	Communication with the I/O Module
	Communication with the CPU
	Interrupts
	Some Bus Terminology

	Bus Arbitration
	Bus Arbitration
	Centralized Arbitration
	Decentralized Arbitration

	Daisy Chains
	Daisy Chaining Architecture
	Daisy Chaining Issues
	Adding Priorities to Daisy Chaining

	HIdden Arbitration
	Hidden Arbitration
	Hidden Arbitration in Daisy Chaining
	Hidden Arbitration in Daisy Chaining

	Decentralized Daisy Chains
	Decentralized Daisy Chain
	Decentralized Daisy Chains
	So...

